1
|
Oh D, Chen Z, Biswas KH, Bai F, Ong HT, Sheetz MP, Groves JT. Competition for shared downstream signaling molecules establishes indirect negative feedback between EGFR and EphA2. Biophys J 2022; 121:1897-1908. [DOI: 10.1016/j.bpj.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/21/2022] [Accepted: 04/12/2022] [Indexed: 11/02/2022] Open
|
2
|
Chen Z, Oh D, Biswas KH, Zaidel-Bar R, Groves JT. Probing the effect of clustering on EphA2 receptor signaling efficiency by subcellular control of ligand-receptor mobility. eLife 2021; 10:67379. [PMID: 34414885 PMCID: PMC8397371 DOI: 10.7554/elife.67379] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/19/2021] [Indexed: 11/29/2022] Open
Abstract
Clustering of ligand:receptor complexes on the cell membrane is widely presumed to have functional consequences for subsequent signal transduction. However, it is experimentally challenging to selectively manipulate receptor clustering without altering other biochemical aspects of the cellular system. Here, we develop a microfabrication strategy to produce substrates displaying mobile and immobile ligands that are separated by roughly 1 µm, and thus experience an identical cytoplasmic signaling state, enabling precision comparison of downstream signaling reactions. Applying this approach to characterize the ephrinA1:EphA2 signaling system reveals that EphA2 clustering enhances both receptor phosphorylation and downstream signaling activity. Single-molecule imaging clearly resolves increased molecular binding dwell times at EphA2 clusters for both Grb2:SOS and NCK:N-WASP signaling modules. This type of intracellular comparison enables a substantially higher degree of quantitative analysis than is possible when comparisons must be made between different cells and essentially eliminates the effects of cellular response to ligand manipulation.
Collapse
Affiliation(s)
- Zhongwen Chen
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China.,Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Dongmyung Oh
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, United States.,Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Kabir Hassan Biswas
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Ronen Zaidel-Bar
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jay T Groves
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
3
|
Yoshizawa R, Umeki N, Yamamoto A, Okada M, Murata M, Sako Y. p52Shc regulates the sustainability of ERK activation in a RAF-independent manner. Mol Biol Cell 2021; 32:1838-1848. [PMID: 34260260 PMCID: PMC8684710 DOI: 10.1091/mbc.e21-01-0007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
p52SHC (SHC) and GRB2 are adaptor proteins involved in the RAS/MAPK (ERK) pathway mediating signals from cell-surface receptors to various cytoplasmic proteins. To further examine their roles in signal transduction, we studied the translocation of fluorescently labeled SHC and GRB2 to the cell surface, caused by the activation of ERBB receptors by heregulin (HRG). We simultaneously evaluated activated ERK translocation to the nucleus. Unexpectedly, the translocation dynamics of SHC were sustained when those of GRB2 were transient. The sustained localization of SHC positively correlated with the sustained nuclear localization of ERK, which became more transient after SHC knockdown. SHC-mediated PI3K activation was required to maintain the sustainability of the ERK translocation regulating MEK but not RAF. In cells overexpressing ERBB1, SHC translocation became transient, and the HRG-induced cell fate shifted from a differentiation to a proliferation bias. Our results indicate that SHC and GRB2 functions are not redundant but that SHC plays the critical role in the temporal regulation of ERK activation.
Collapse
Affiliation(s)
- Ryo Yoshizawa
- Cellular Informatics Lab, RIKEN, Wako, Saitama 351-0198, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Nobuhisa Umeki
- Cellular Informatics Lab, RIKEN, Wako, Saitama 351-0198, Japan
| | | | - Mariko Okada
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.,Center for Drug Design and Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki 567-0085, Japan
| | - Masayuki Murata
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Yasushi Sako
- Cellular Informatics Lab, RIKEN, Wako, Saitama 351-0198, Japan
| |
Collapse
|
4
|
Nanopore-mediated protein delivery enabling three-color single-molecule tracking in living cells. Proc Natl Acad Sci U S A 2021; 118:2012229118. [PMID: 33495347 DOI: 10.1073/pnas.2012229118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Multicolor single-molecule tracking (SMT) provides a powerful tool to mechanistically probe molecular interactions in living cells. However, because of the limitations in the optical and chemical properties of currently available fluorophores and the multiprotein labeling strategies, intracellular multicolor SMT remains challenging for general research studies. Here, we introduce a practical method employing a nanopore-electroporation (NanoEP) technique to deliver multiple organic dye-labeled proteins into living cells for imaging. It can be easily expanded to three channels in commercial microscopes or be combined with other in situ labeling methods. Utilizing NanoEP, we demonstrate three-color SMT for both cytosolic and membrane proteins. Specifically, we simultaneously monitored single-molecule events downstream of EGFR signaling pathways in living cells. The results provide detailed resolution of the spatial localization and dynamics of Grb2 and SOS recruitment to activated EGFR along with the resultant Ras activation.
Collapse
|
5
|
Vemulapalli V, Chylek LA, Erickson A, Pfeiffer A, Gabriel KH, LaRochelle J, Subramanian K, Cao R, Stegmaier K, Mohseni M, LaMarche MJ, Acker MG, Sorger PK, Gygi SP, Blacklow SC. Time-resolved phosphoproteomics reveals scaffolding and catalysis-responsive patterns of SHP2-dependent signaling. eLife 2021; 10:64251. [PMID: 33755016 PMCID: PMC8024022 DOI: 10.7554/elife.64251] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/21/2021] [Indexed: 12/21/2022] Open
Abstract
SHP2 is a protein tyrosine phosphatase that normally potentiates intracellular signaling by growth factors, antigen receptors, and some cytokines, yet is frequently mutated in human cancer. Here, we examine the role of SHP2 in the responses of breast cancer cells to EGF by monitoring phosphoproteome dynamics when SHP2 is allosterically inhibited by SHP099. The dynamics of phosphotyrosine abundance at more than 400 tyrosine residues reveal six distinct response signatures following SHP099 treatment and washout. Remarkably, in addition to newly identified substrate sites on proteins such as occludin, ARHGAP35, and PLCγ2, another class of sites shows reduced phosphotyrosine abundance upon SHP2 inhibition. Sites of decreased phospho-abundance are enriched on proteins with two nearby phosphotyrosine residues, which can be directly protected from dephosphorylation by the paired SH2 domains of SHP2 itself. These findings highlight the distinct roles of the scaffolding and catalytic activities of SHP2 in effecting a transmembrane signaling response.
Collapse
Affiliation(s)
- Vidyasiri Vemulapalli
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston, Boston, United States.,Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - Lily A Chylek
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, United States
| | - Alison Erickson
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Anamarija Pfeiffer
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Khal-Hentz Gabriel
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston, Boston, United States.,Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - Jonathan LaRochelle
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston, Boston, United States.,Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - Kartik Subramanian
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, United States
| | - Ruili Cao
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston, Boston, United States
| | - Kimberley Stegmaier
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, United States
| | - Morvarid Mohseni
- Novartis Institutes for Biomedical Research, Cambridge, United States
| | | | - Michael G Acker
- Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, United States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Stephen C Blacklow
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston, Boston, United States.,Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
6
|
Hiroshima M, Yasui M, Ueda M. Large-scale single-molecule imaging aided by artificial intelligence. Microscopy (Oxf) 2020; 69:69-78. [DOI: 10.1093/jmicro/dfz116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/24/2019] [Accepted: 12/16/2019] [Indexed: 01/21/2023] Open
Abstract
Abstract
Single-molecule imaging analysis has been applied to study the dynamics and kinetics of molecular behaviors and interactions in living cells. In spite of its high potential as a technique to investigate the molecular mechanisms of cellular phenomena, single-molecule imaging analysis has not been extended to a large scale of molecules in cells due to the low measurement throughput as well as required expertise. To overcome these problems, we have automated the imaging processes by using computer operations, robotics and artificial intelligence (AI). AI is an ideal substitute for expertise to obtain high-quality images for quantitative analysis. Our automated in-cell single-molecule imaging system, AiSIS, could analyze 1600 cells in 1 day, which corresponds to ∼ 100-fold higher efficiency than manual analysis. The large-scale analysis revealed cell-to-cell heterogeneity in the molecular behavior, which had not been recognized in previous studies. An analysis of the receptor behavior and downstream signaling was accomplished within a significantly reduced time frame and revealed the detailed activation scheme of signal transduction, advancing cell biology research. Furthermore, by combining the high-throughput analysis with our previous finding that a receptor changes its behavioral dynamics depending on the presence of a ligand/agonist or inhibitor/antagonist, we show that AiSIS is applicable to comprehensive pharmacological analysis such as drug screening. This AI-aided automation has wide applications for single-molecule analysis.
Collapse
Affiliation(s)
- Michio Hiroshima
- Laboratory for Cell Signaling Dynamics, RIKEN BDR, Suita 565-0874, Japan
| | | | - Masahiro Ueda
- Laboratory for Cell Signaling Dynamics, RIKEN BDR, Suita 565-0874, Japan
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
7
|
Abstract
Cell surface transmembrane receptors often form nanometer- to micrometer-scale clusters to initiate signal transduction in response to environmental cues. Extracellular ligand oligomerization, domain-domain interactions, and binding to multivalent proteins all contribute to cluster formation. Here we review the current understanding of mechanisms driving cluster formation in a series of representative receptor systems: glycosylated receptors, immune receptors, cell adhesion receptors, Wnt receptors, and receptor tyrosine kinases. We suggest that these clusters share properties of systems that undergo liquid-liquid phase separation and could be investigated in this light.
Collapse
Affiliation(s)
- Lindsay B Case
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; , ,
| | - Jonathon A Ditlev
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; , ,
| | - Michael K Rosen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; , ,
| |
Collapse
|
8
|
Yasui M, Hiroshima M, Kozuka J, Sako Y, Ueda M. Automated single-molecule imaging in living cells. Nat Commun 2018; 9:3061. [PMID: 30076305 PMCID: PMC6076334 DOI: 10.1038/s41467-018-05524-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 07/11/2018] [Indexed: 01/26/2023] Open
Abstract
An automated single-molecule imaging system developed for live-cell analyses based on artificial intelligence-assisted microscopy is presented. All significant procedures, i.e., searching for cells suitable for observation, detecting in-focus positions, and performing image acquisition and single-molecule tracking, are fully automated, and numerous highly accurate, efficient, and reproducible single-molecule imaging experiments in living cells can be performed. Here, the apparatus is applied for single-molecule imaging and analysis of epidermal growth factor receptors (EGFRs) in 1600 cells in a 96-well plate within 1 day. Changes in the lateral mobility of EGFRs on the plasma membrane in response to various ligands and drug concentrations are clearly detected in individual cells, and several dynamic and pharmacological parameters are determined, including the diffusion coefficient, oligomer size, and half-maximal effective concentration (EC50). Automated single-molecule imaging for systematic cell signaling analyses is feasible and can be applied to single-molecule screening, thus extensively contributing to biological and pharmacological research.
Collapse
Affiliation(s)
- Masato Yasui
- Laboratory for Cell Signaling Dynamics, RIKEN BDR, 6-2-3, Furuedai, Suita, Osaka, 565-0874, Japan
| | - Michio Hiroshima
- Laboratory for Cell Signaling Dynamics, RIKEN BDR, 6-2-3, Furuedai, Suita, Osaka, 565-0874, Japan
- Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako, 351-198, Japan
| | - Jun Kozuka
- Laboratory for Cell Signaling Dynamics, RIKEN BDR, 6-2-3, Furuedai, Suita, Osaka, 565-0874, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako, 351-198, Japan.
| | - Masahiro Ueda
- Laboratory for Cell Signaling Dynamics, RIKEN BDR, 6-2-3, Furuedai, Suita, Osaka, 565-0874, Japan.
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
9
|
Protein Clusters in Phosphotyrosine Signal Transduction. J Mol Biol 2018; 430:4547-4556. [PMID: 29870724 DOI: 10.1016/j.jmb.2018.05.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/08/2018] [Accepted: 05/28/2018] [Indexed: 11/20/2022]
Abstract
Signal transduction systems based on tyrosine phosphorylation are central to cell-cell communication in multicellular organisms. Typically, in such a system, the signal is initiated by activating tyrosine kinases associated with transmembrane receptors, which induces tyrosine phosphorylation of the receptor and/or associated proteins. The phosphorylated tyrosines then serve as docking sites for the binding of various downstream effector proteins. It has long been observed that the cooperative association of the receptors and effectors produces higher-order protein assemblies (clusters) following signal activation in virtually all phosphotyrosine signal transduction systems. However, mechanistic studies on how such clustering processes affect signal transduction outcomes have only emerged recently. Here we review current progress in decoding the biophysical consequences of clustering on the behavior of the system, and how clustering affects how these receptors process information.
Collapse
|
10
|
Oh D, Yu Y, Lee H, Jeon JH, Wanner BL, Ritchie K. Asymmetric polar localization dynamics of the serine chemoreceptor protein Tsr in Escherichia coli. PLoS One 2018; 13:e0195887. [PMID: 29771911 PMCID: PMC5957405 DOI: 10.1371/journal.pone.0195887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/30/2018] [Indexed: 11/30/2022] Open
Abstract
The spatial location of proteins in living cells can be critical for their function. For example, the E. coli chemotaxis machinery is localized to the cell poles. Here we describe the polar localization of the serine chemoreceptor Tsr using a strain synthesizing a fluorescent Tsr-Venus fusion at a low level from a single-copy chromosomal construct. Using photobleaching and imaging during recovery by new synthesis, we observed distinct asymmetry between a bright (old) pole and a dim (new) pole. The old pole was shown to be a more stable cluster and to recover after photobleaching faster, which is consistent with the hypothesis that newly synthesized Tsr proteins are inserted directly at or near the old pole. The new pole was shown to be a less stable cluster and to exchange proteins freely with highly mobile Tsr-Venus proteins diffusing in the membrane. We propose that the new pole arises from molecules escaping from the old pole and diffusing to the new pole where a more stable cluster forms over time. Our localization imaging data support a model in which a nascent new pole forms prior to stable cluster formation.
Collapse
Affiliation(s)
- Dongmyung Oh
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, United States of America
- * E-mail: (KR); (DO); (BLW)
| | - Yang Yu
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States of America
| | - Hochan Lee
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, United States of America
| | - Jae-Hyung Jeon
- Department of Physics, Pohang University of Science and Technology, Pohang, South Korea
| | - Barry L. Wanner
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States of America
- * E-mail: (KR); (DO); (BLW)
| | - Ken Ritchie
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, United States of America
- * E-mail: (KR); (DO); (BLW)
| |
Collapse
|
11
|
Transient Acceleration of Epidermal Growth Factor Receptor Dynamics Produces Higher-Order Signaling Clusters. J Mol Biol 2018; 430:1386-1401. [PMID: 29505756 DOI: 10.1016/j.jmb.2018.02.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 01/25/2018] [Accepted: 02/20/2018] [Indexed: 10/17/2022]
Abstract
Cell signaling depends on spatiotemporally regulated molecular interactions. Although the movements of signaling proteins have been analyzed with various technologies, how spatial dynamics influence the molecular interactions that transduce signals is unclear. Here, we developed a single-molecule method to analyze the spatiotemporal coupling between motility, clustering, and signaling. The analysis was performed with the epidermal growth factor receptor (EGFR), which triggers signaling through its dimerization and phosphorylation after association with EGF. Our results show that the few EGFRs isolated in membrane subdomains were released by an EGF-dependent increase in their diffusion area, facilitating molecular associations and producing immobile clusters. Using a two-color single-molecule analysis, we found that the EGF-induced state transition alters the properties of the immobile clusters, allowing them to interact for extended periods with the cytoplasmic protein, GRB2. Our study reveals a novel correlation between this molecular interaction and its mesoscale dynamics, providing the initial signaling node.
Collapse
|
12
|
Single-molecule fluorescence-based analysis of protein conformation, interaction, and oligomerization in cellular systems. Biophys Rev 2017; 10:317-326. [PMID: 29243093 PMCID: PMC5899725 DOI: 10.1007/s12551-017-0366-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/19/2017] [Indexed: 12/23/2022] Open
Abstract
Single-molecule imaging (SMI) of proteins in operation has a history of intensive investigations over 20 years and is now widely used in various fields of biology and biotechnology. We review the recent advances in SMI of fluorescently-tagged proteins in structural biology, focusing on technical applicability of SMI to the measurements in living cells. Basic technologies and recent applications of SMI in structural biology are introduced. Distinct from other methods in structural biology, SMI directly observes single molecules and single-molecule events one-by-one, thus, explicitly analyzing the distribution of protein structures and the history of protein dynamics. It also allows one to detect single events of protein interaction. One unique feature of SMI is that it is applicable in complicated and heterogeneous environments, including living cells. The numbers, location, movements, interaction, oligomerization, and conformation of single-protein molecules have been determined using SMI in cellular systems.
Collapse
|
13
|
Jadwin JA, Curran TG, Lafontaine AT, White FM, Mayer BJ. Src homology 2 domains enhance tyrosine phosphorylation in vivo by protecting binding sites in their target proteins from dephosphorylation. J Biol Chem 2017; 293:623-637. [PMID: 29162725 DOI: 10.1074/jbc.m117.794412] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 11/17/2017] [Indexed: 02/03/2023] Open
Abstract
Phosphotyrosine (pTyr)-dependent signaling is critical for many cellular processes. It is highly dynamic, as signal output depends not only on phosphorylation and dephosphorylation rates but also on the rates of binding and dissociation of effectors containing phosphotyrosine-dependent binding modules such as Src homology 2 (SH2) and phosphotyrosine-binding (PTB) domains. Previous in vitro studies suggested that binding of SH2 and PTB domains can enhance protein phosphorylation by protecting the sites bound by these domains from phosphatase-mediated dephosphorylation. To test whether this occurs in vivo, we used the binding of growth factor receptor bound 2 (GRB2) to phosphorylated epidermal growth factor receptor (EGFR) as a model system. We analyzed the effects of SH2 domain overexpression on protein tyrosine phosphorylation by quantitative Western and far-Western blotting, mass spectrometry, and computational modeling. We found that SH2 overexpression results in a significant, dose-dependent increase in EGFR tyrosine phosphorylation, particularly of sites corresponding to the binding specificity of the overexpressed SH2 domain. Computational models using experimentally determined EGFR phosphorylation and dephosphorylation rates, and pTyr-EGFR and GRB2 concentrations, recapitulated the experimental findings. Surprisingly, both modeling and biochemical analyses suggested that SH2 domain overexpression does not result in a major decrease in the number of unbound phosphorylated SH2 domain-binding sites. Our results suggest that signaling via SH2 domain binding is buffered over a relatively wide range of effector concentrations and that SH2 domain proteins with overlapping binding specificities are unlikely to compete with one another for phosphosites in vivo.
Collapse
Affiliation(s)
- Joshua A Jadwin
- From the Raymond and Beverly Sackler Laboratory of Molecular Medicine, Department of Genetics and Genome Sciences, and the Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut 06030 and
| | - Timothy G Curran
- the Department of Biological Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Adam T Lafontaine
- From the Raymond and Beverly Sackler Laboratory of Molecular Medicine, Department of Genetics and Genome Sciences, and the Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut 06030 and
| | - Forest M White
- the Department of Biological Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Bruce J Mayer
- From the Raymond and Beverly Sackler Laboratory of Molecular Medicine, Department of Genetics and Genome Sciences, and the Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut 06030 and
| |
Collapse
|
14
|
Conformational transitions and interactions underlying the function of membrane embedded receptor protein kinases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1417-1429. [DOI: 10.1016/j.bbamem.2017.01.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 01/08/2023]
|
15
|
Miller MB, Yan Y, Machida K, Kiraly DD, Levy AD, Wu YI, Lam TT, Abbott T, Koleske AJ, Eipper BA, Mains RE. Brain Region and Isoform-Specific Phosphorylation Alters Kalirin SH2 Domain Interaction Sites and Calpain Sensitivity. ACS Chem Neurosci 2017; 8:1554-1569. [PMID: 28418645 DOI: 10.1021/acschemneuro.7b00076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Kalirin7 (Kal7), a postsynaptic Rho GDP/GTP exchange factor (RhoGEF), plays a crucial role in long-term potentiation and in the effects of cocaine on behavior and spine morphology. The KALRN gene has been linked to schizophrenia and other disorders of synaptic function. Mass spectrometry was used to quantify phosphorylation at 26 sites in Kal7 from individual adult rat nucleus accumbens and prefrontal cortex before and after exposure to acute or chronic cocaine. Region- and isoform-specific phosphorylation was observed along with region-specific effects of cocaine on Kal7 phosphorylation. Evaluation of the functional significance of multisite phosphorylation in a complex protein like Kalirin is difficult. With the identification of five tyrosine phosphorylation (pY) sites, a panel of 71 SH2 domains was screened, identifying subsets that interacted with multiple pY sites in Kal7. In addition to this type of reversible interaction, endoproteolytic cleavage by calpain plays an essential role in long-term potentiation. Calpain cleaved Kal7 at two sites, separating the N-terminal domain, which affects spine length, and the PDZ binding motif from the GEF domain. Mutations preventing phosphorylation did not affect calpain sensitivity or GEF activity; phosphomimetic mutations at specific sites altered protein stability, increased calpain sensitivity, and reduced GEF activity.
Collapse
Affiliation(s)
| | | | | | - Drew D. Kiraly
- Department
of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Shah M, Smolko CM, Kinicki S, Chapman ZD, Brautigan DL, Janes KA. Profiling Subcellular Protein Phosphatase Responses to Coxsackievirus B3 Infection of Cardiomyocytes. Mol Cell Proteomics 2017; 16:S244-S262. [PMID: 28174228 DOI: 10.1074/mcp.o116.063487] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 01/31/2017] [Indexed: 01/23/2023] Open
Abstract
Cellular responses to stimuli involve dynamic and localized changes in protein kinases and phosphatases. Here, we report a generalized functional assay for high-throughput profiling of multiple protein phosphatases with subcellular resolution and apply it to analyze coxsackievirus B3 (CVB3) infection counteracted by interferon signaling. Using on-plate cell fractionation optimized for adherent cells, we isolate protein extracts containing active endogenous phosphatases from cell membranes, the cytoplasm, and the nucleus. The extracts contain all major classes of protein phosphatases and catalyze dephosphorylation of plate-bound phosphosubstrates in a microtiter format, with cellular activity quantified at the end point by phosphospecific ELISA. The platform is optimized for six phosphosubstrates (ERK2, JNK1, p38α, MK2, CREB, and STAT1) and measures specific activities from extracts of fewer than 50,000 cells. The assay was exploited to examine viral and antiviral signaling in AC16 cardiomyocytes, which we show can be engineered to serve as susceptible and permissive hosts for CVB3. Phosphatase responses were profiled in these cells by completing a full-factorial experiment for CVB3 infection and type I/II interferon signaling. Over 850 functional measurements revealed several independent, subcellular changes in specific phosphatase activities. During CVB3 infection, we found that type I interferon signaling increases subcellular JNK1 phosphatase activity, inhibiting nuclear JNK1 activity that otherwise promotes viral protein synthesis in the infected host cell. Our assay provides a high-throughput way to capture perturbations in important negative regulators of intracellular signal-transduction networks.
Collapse
Affiliation(s)
- Millie Shah
- From the ‡Department of Biomedical Engineering
| | | | | | | | - David L Brautigan
- the ‖Center for Cell Signaling and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | | |
Collapse
|
17
|
Abstract
The Src Homology 2 (SH2) domain is the prototypical protein interaction module that lies at the heart of phosphotyrosine signaling. Since its serendipitous discovery, there has been a tremendous advancement in technologies and an array of techniques available for studying SH2 domains and phosphotyrosine signaling. In this chapter, we provide a glimpse of the history of SH2 domains and describe many of the tools and techniques that have been developed along the way and discuss future directions for SH2 domain studies. We highlight the gist of each chapter in this volume in the context of: the structural biology and phosphotyrosine binding; characterizing SH2 specificity and generating prediction models; systems biology and proteomics; SH2 domains in signal transduction; and SH2 domains in disease, diagnostics, and therapeutics. Many of the individual chapters provide an in-depth approach that will allow scientists to interrogate the function and role of SH2 domains.
Collapse
Affiliation(s)
- Bernard A Liu
- Broad Institute of Harvard and MIT, 415 Main St., 5175 JJ, Cambridge, MA, 02142, USA.
| | - Kazuya Machida
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 400 Farmington Ave., Farmington, CT, 06030, USA.
| |
Collapse
|