1
|
Goldammer J, Büschges A, Dürr V. Descending interneurons of the stick insect connecting brain neuropiles with the prothoracic ganglion. PLoS One 2023; 18:e0290359. [PMID: 37651417 PMCID: PMC10470933 DOI: 10.1371/journal.pone.0290359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
Stick insects respond to visual or tactile stimuli with whole-body turning or directed reach-to-grasp movements. Such sensory-induced turning and reaching behaviour requires interneurons to convey information from sensory neuropils of the head ganglia to motor neuropils of the thoracic ganglia. To date, descending interneurons are largely unknown in stick insects. In particular, it is unclear whether the special role of the front legs in sensory-induced turning and reaching has a neuroanatomical correlate in terms of descending interneuron numbers. Here, we describe the population of descending interneurons with somata in the brain or gnathal ganglion in the stick insect Carausius morosus, providing a first map of soma cluster counts and locations. By comparison of interneuron populations with projections to the pro- and mesothoracic ganglia, we then estimate the fraction of descending interneurons that terminate in the prothoracic ganglion. With regard to short-latency, touch-mediated reach-to-grasp movements, we also locate likely sites of synaptic interactions between antennal proprioceptive afferents to the deutocerebrum and gnathal ganglion with descending or ascending interneuron fibres. To this end, we combine fluorescent dye stainings of thoracic connectives with stainings of antennal hair field sensilla. Backfills of neck connectives revealed up to 410 descending interneuron somata (brain: 205 in 19 clusters; gnathal ganglion: 205). In comparison, backfills of the prothorax-mesothorax connectives stained only up to 173 somata (brain: 83 in 16 clusters; gnathal ganglion: 90), suggesting that up to 60% of all descending interneurons may terminate in the prothoracic ganglion (estimated upper bound). Double stainings of connectives and antennal hair field sensilla revealed that ascending or descending fibres arborise in close proximity of afferent terminals in the deutocerebrum and in the middle part of the gnathal ganglia. We conclude that two cephalothoracic pathways may convey cues about antennal movement and pointing direction to thoracic motor centres via two synapses only.
Collapse
Affiliation(s)
- Jens Goldammer
- Department of Animal Physiology and Neurobiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Ansgar Büschges
- Department of Animal Physiology and Neurobiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Volker Dürr
- Department of Biological Cybernetics, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
2
|
Hammel E, Mantziaris C, Schmitz J, Büschges A, Gruhn M. Thorax-Segment- and Leg-Segment-Specific Motor Control for Adaptive Behavior. Front Physiol 2022; 13:883858. [PMID: 35600292 PMCID: PMC9114818 DOI: 10.3389/fphys.2022.883858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/20/2022] [Indexed: 12/03/2022] Open
Abstract
We have just started to understand the mechanisms underlying flexibility of motor programs among segmental neural networks that control each individual leg during walking in vertebrates and invertebrates. Here, we investigated the mechanisms underlying curve walking in the stick insect Carausius morosus during optomotor-induced turning. We wanted to know, whether the previously reported body-side specific changes in a two-front leg turning animal are also observed in the other thoracic leg segments. The motor activity of the three major leg joints showed three types of responses: 1) a context-dependent increase or decrease in motor neuron (MN) activity of the antagonistic MN pools of the thorax-coxa (ThC)-joint during inside and outside turns; 2) an activation of 1 MN pool with simultaneous cessation of the other, independent of the turning direction in the coxa-trochanteral (CTr)-joint; 3) a modification in the activity of both FTi-joint MN pools which depended on the turning direction in one, but not in the other thorax segment. By pharmacological activation of the meso- or metathoracic central pattern generating networks (CPG), we show that turning-related modifications in motor output involve changes to local CPG activity. The rhythmic activity in the MN pools of the ThC and CTr-joints was modified similarly to what was observed under control conditions in saline. Our results indicate that changes in meso- and metathoracic motor activity during curve walking are leg-joint- and thorax-segment-specific, can depend on the turning direction, and are mediated through changes in local CPG activity.
Collapse
|
3
|
Haberkorn A, Özbagci B, Gruhn M, Büschges A. Optical inactivation of a proprioceptor in an insect by non-genetic tools. J Neurosci Methods 2021; 363:109322. [PMID: 34391793 DOI: 10.1016/j.jneumeth.2021.109322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/12/2021] [Accepted: 08/10/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND The specific role of sensory organs in locomotor pattern generation is traditionally investigated by means of mechanical ablation in arthropods that currently do not allow genetic manipulation. Mechanical ablation is irreversible, and may lead to injury discharges and changes in the structural integrity of the cuticle. NEW METHOD Here, we present a new method to temporarily or permanently deprive parts of an insect nervous system of sensory feedback from leg proprioceptors by means of blue light application. We illuminated campaniform sensilla (CS) with a blue LED (420-480 nm) or a 473 nm laser at different light intensities to optically eliminate sensory and motor neuron responses to mechanical stimulation. RESULTS We were able to eliminate all stimulus-evoked responses of CS. Individual CS groups were precisely and selectively inactivated without affecting nearby proprioceptors, using an optical fiber (Ø 200 µm) to guide the light. Our results demonstrated that lower light intensities significantly increase the required exposure time, but also the chance for recovery, thus making the effect reversible. COMPARISON WITH EXISTING METHODS In contrast to mechanical ablation, optical inactivation of individual sensory organs is non-invasive and does not affect the behavioral state of the animal, nor does it induce escape behavior. This is especially relevant in non-model system experimental animals where optogenetic manipulation cannot be used, due to a lack of established methods of access. CONCLUSION Our results show that the proposed method is a reliable alternative to mechanical ablation and can be successfully applied to the CS, as it fulfills all requirements regarding selectivity, efficiency, and reproducibility.
Collapse
Affiliation(s)
- Anna Haberkorn
- Department for Animal Physiology, Institute for Zoology, Biocenter Cologne, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany
| | - Burak Özbagci
- Department for Animal Physiology, Institute for Zoology, Biocenter Cologne, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany
| | - Matthias Gruhn
- Department for Animal Physiology, Institute for Zoology, Biocenter Cologne, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany
| | - Ansgar Büschges
- Department for Animal Physiology, Institute for Zoology, Biocenter Cologne, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany
| |
Collapse
|
4
|
Neuromodulation Can Be Simple: Myoinhibitory Peptide, Contained in Dedicated Regulatory Pathways, Is the Only Neurally-Mediated Peptide Modulator of Stick Insect Leg Muscle. J Neurosci 2021; 41:2911-2929. [PMID: 33531417 DOI: 10.1523/jneurosci.0188-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 01/22/2023] Open
Abstract
In the best studied cases (Aplysia feeding, crustacean stomatogastric system), peptidergic modulation is mediated by large numbers of peptides. Furthermore, in Aplysia, excitatory motor neurons release the peptides, obligatorily coupling target activation and modulator release. Vertebrate nervous systems typically contain about a hundred peptide modulators. These data have created a belief that modulation is, in general, complex. The stick insect leg is a well-studied locomotory model system, and the complete stick insect neuropeptide inventory was recently described. We used multiple techniques to comprehensively examine stick insect leg peptidergic modulation. Single-cell mass spectrometry (MS) and immunohistochemistry showed that myoinhibitory peptide (MIP) is the only neuronal (as opposed to hemolymph-borne) peptide modulator of all leg muscles. Leg muscle excitatory motor neurons contained no neuropeptides. Only the common inhibitor (CI) and dorsal unpaired median (DUM) neuron groups, each neuron of which innervates a group of functionally-related leg muscles, contained MIP. We described MIP transport to, and receptor presence in, one leg muscle, the extensor tibiae (ExtTi). MIP application reduced ExtTi slow fiber force and shortening by about half, increasing the muscle's ability to contract and relax rapidly. These data show neuromodulation does not need to be complex. Excitation and modulation do not need to be obligatorily coupled (Aplysia feeding). Modulation does not need to involve large numbers of peptides, with the attendant possibility of combinatorial explosion (stomatogastric system). Modulation can be simple, mediated by dedicated regulatory neurons, each innervating a single group of functionally-related targets, and all using the same neuropeptide.SIGNIFICANCE STATEMENT Vertebrate and invertebrate nervous systems contain large numbers (around a hundred in human brain) of peptide neurotransmitters. In prior work, neuropeptide modulation has been complex, either obligatorily coupling postsynaptic excitation and modulation, or large numbers of peptides modulating individual neural networks. The complete stick insect neuropeptide inventory was recently described. We comprehensively describe here peptidergic modulation in the stick insect leg. Surprisingly, out of the large number of potential peptide transmitters, only myoinhibitory peptide (MIP) was present in neurons innervating leg muscles. Furthermore, the peptide was present only in dedicated regulatory neurons, not in leg excitatory motor neurons. Peptidergic modulation can thus be simple, neither obligatorily coupling target activation and modulation nor involving so many peptides that combinatorial explosion can occur.
Collapse
|
5
|
Schmitz J, Gruhn M, Büschges A. Body side-specific changes in sensorimotor processing of movement feedback in a walking insect. J Neurophysiol 2019; 122:2173-2186. [PMID: 31553676 PMCID: PMC6879953 DOI: 10.1152/jn.00436.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/29/2019] [Accepted: 09/14/2019] [Indexed: 01/19/2023] Open
Abstract
Feedback from load and movement sensors can modify timing and magnitude of the motor output in the stepping stick insect. One source of feedback is stretch reception by the femoral chordotonal organ (fCO), which encodes such parameters as the femorotibial (FTi) joint angle, the angular velocity, and its acceleration. Stimulation of the fCO causes a postural resistance reflex, during quiescence, and can elicit the opposite, so-called active reaction (AR), which assists ongoing flexion during active movements. In the present study, we investigated the role of fCO feedback for the difference in likelihood of generating ARs on the inside vs. the outside during curve stepping. We analyzed the effects of fCO stimulation on the motor output to the FTi and the neighboring coxa-trochanter and thorax-coxa joints of the middle leg. In inside and outside turns, the probability for ARs increases with increasing starting angle and decreasing stimulus velocity; furthermore, it is independent of the total angular excursion. However, the transition between stance and swing motor activity always occurs after a specific angular excursion, independent of the turning direction. Feedback from the fCO also has an excitatory influence on levator trochanteris motoneurons (MNs) during inside and outside turns, whereas the same feedback affects protractor coxae MNs only during outside steps. Our results suggest joint- and body side-dependent processing of fCO feedback. A shift in gain may be responsible for different AR probabilities between inside and outside turning, whereas the general control mechanism for ARs is unchanged.NEW & NOTEWORTHY We show that parameters of movement feedback from the tibia in an insect during curve walking are processed in a body side-specific manner, and how. From our results it is highly conceivable that the difference in motor response to the feedback supports the body side-specific leg kinematics during turning. Future studies will need to determine the source for the inputs that determine the local changes in sensory-motor processing.
Collapse
Affiliation(s)
- Joscha Schmitz
- Department for Animal Physiology, Institute for Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Matthias Gruhn
- Department for Animal Physiology, Institute for Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Ansgar Büschges
- Department for Animal Physiology, Institute for Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
6
|
DeAngelis BD, Zavatone-Veth JA, Clark DA. The manifold structure of limb coordination in walking Drosophila. eLife 2019; 8:e46409. [PMID: 31250807 PMCID: PMC6598772 DOI: 10.7554/elife.46409] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 06/15/2019] [Indexed: 12/19/2022] Open
Abstract
Terrestrial locomotion requires animals to coordinate their limb movements to efficiently traverse their environment. While previous studies in hexapods have reported that limb coordination patterns can vary substantially, the structure of this variability is not yet well understood. Here, we characterized the symmetric and asymmetric components of variation in walking kinematics in the genetic model organism Drosophila. We found that Drosophila use a single continuum of coordination patterns without evidence for preferred configurations. Spontaneous symmetric variability was associated with modulation of a single control parameter-stance duration-while asymmetric variability consisted of small, limb-specific modulations along multiple dimensions of the underlying symmetric pattern. Commands that modulated walking speed, originating from artificial neural activation or from the visual system, evoked modulations consistent with spontaneous behavior. Our findings suggest that Drosophila employ a low-dimensional control architecture, which provides a framework for understanding the neural circuits that regulate hexapod legged locomotion.
Collapse
Affiliation(s)
- Brian D DeAngelis
- Interdepartmental Neuroscience ProgramYale UniversityNew HavenUnited States
| | | | - Damon A Clark
- Interdepartmental Neuroscience ProgramYale UniversityNew HavenUnited States
- Department of PhysicsYale UniversityNew HavenUnited States
- Department of Molecular, Cellular, and Developmental BiologyYale UniversityNew HavenUnited States
- Department of NeuroscienceYale UniversityNew HavenUnited States
| |
Collapse
|
7
|
Haberkorn A, Gruhn M, Zill SN, Büschges A. Identification of the origin of force-feedback signals influencing motor neurons of the thoraco-coxal joint in an insect. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:253-270. [DOI: 10.1007/s00359-019-01334-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/23/2019] [Accepted: 03/25/2019] [Indexed: 11/28/2022]
|
8
|
Dallmann CJ, Dürr V, Schmitz J. Motor control of an insect leg during level and incline walking. ACTA ACUST UNITED AC 2019; 222:222/7/jeb188748. [PMID: 30944163 DOI: 10.1242/jeb.188748] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 03/04/2019] [Indexed: 01/16/2023]
Abstract
During walking, the leg motor system must continually adjust to changes in mechanical conditions, such as the inclination of the ground. To understand the underlying control, it is important to know how changes in leg muscle activity relate to leg kinematics (movements) and leg dynamics (forces, torques). Here, we studied these parameters in hindlegs of stick insects (Carausius morosus) during level and uphill/downhill (±45 deg) walking, using a combination of electromyography, 3D motion capture and ground reaction force measurements. We find that some kinematic parameters including leg joint angles and body height vary across walking conditions. However, kinematics vary little compared with dynamics: horizontal leg forces and torques at the thorax-coxa joint (leg protraction/retraction) and femur-tibia joint (leg flexion/extension) tend to be stronger during uphill walking and are reversed in sign during downhill walking. At the thorax-coxa joint, the different mechanical demands are met by adjustments in the timing and magnitude of antagonistic muscle activity. Adjustments occur primarily in the first half of stance after the touch-down of the leg. When insects transition from level to incline walking, the characteristic adjustments in muscle activity occur with the first step of the leg on the incline, but not in anticipation. Together, these findings indicate that stick insects adjust leg muscle activity on a step-by-step basis so as to maintain a similar kinematic pattern under different mechanical demands. The underlying control might rely primarily on feedback from leg proprioceptors signaling leg position and movement.
Collapse
Affiliation(s)
- Chris J Dallmann
- Department of Biological Cybernetics, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany .,Cognitive Interaction Technology Center of Excellence, Bielefeld University, Inspiration 1, 33619 Bielefeld, Germany
| | - Volker Dürr
- Department of Biological Cybernetics, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.,Cognitive Interaction Technology Center of Excellence, Bielefeld University, Inspiration 1, 33619 Bielefeld, Germany
| | - Josef Schmitz
- Department of Biological Cybernetics, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany .,Cognitive Interaction Technology Center of Excellence, Bielefeld University, Inspiration 1, 33619 Bielefeld, Germany
| |
Collapse
|
9
|
Duan Şahbaz B, Birgül Iyison N. Prediction and expression analysis of G protein-coupled receptors in the laboratory stick insect, Carausius morosus. ACTA ACUST UNITED AC 2019; 43:77-88. [PMID: 30930638 PMCID: PMC6426647 DOI: 10.3906/biy-1809-27] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
G protein-coupled receptors (GPCRs) are 7-transmembrane proteins that transduce various extracellular signals into intracellular pathways. They are the major target of neuropeptides, which regulate the development, feeding behavior, mating behavior, circadian rhythm, and many other physiological functions of insects. In the present study, we performed RNA sequencing and de novo transcriptome assembly to uncover the GPCRs expressed in the stick insect Carausius morosus. The transcript assemblies were predicted for the presence of 7-transmembrane GPCR domains. As a result, 430 putative GPCR transcripts were obtained and 43 of these revealed full-length sequences with highly significant similarity to known GPCR sequences in the databases. Thirteen different GPCRs were chosen for tissue expression analysis. Some of these receptors, such as calcitonin, inotocin, and tyramine receptors, showed specific expression in some of the tissues. Additionally, GPCR prediction yielded a novel uncharacterized GPCR sequence, which was specifically expressed in the central nervous system and ganglia. Previously, the only information about the anatomy of the stick insect was on its gastrointestinal system. This study provides complete anatomical information about the adult insect.
Collapse
Affiliation(s)
- Burçin Duan Şahbaz
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Boğaziçi University , İstanbul , Turkey
| | - Necla Birgül Iyison
- Center for Life Sciences and Technologies, Boğaziçi University , İstanbul , Turkey.,Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Boğaziçi University , İstanbul , Turkey
| |
Collapse
|
10
|
Zill SN, Dallmann CJ, Büschges A, Chaudhry S, Schmitz J. Force dynamics and synergist muscle activation in stick insects: the effects of using joint torques as mechanical stimuli. J Neurophysiol 2018; 120:1807-1823. [PMID: 30020837 DOI: 10.1152/jn.00371.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Many sensory systems are tuned to specific parameters of behaviors and have effects that are task-specific. We have studied how force feedback contributes to activation of synergist muscles in serially homologous legs of stick insects. Forces were applied using conventional half-sine or ramp and hold functions. We also utilized waveforms of joint torques calculated from experiments in freely walking animals. In all legs, forces applied to either the tarsus (foot) or proximal leg segment (trochanter) activated synergist muscles that generate substrate grip and support, but coupling of the depressor muscle to tarsal forces was weak in the front legs. Activation of trochanteral receptors using ramp and hold functions generated positive feedback to the depressor muscle in all legs when animals were induced to seek substrate grip. However, discharges of the synergist flexor muscle showed adaptation at moderate force levels. In contrast, application of forces using torque waveforms, which do not have a static hold phase, produced sustained discharges in muscle synergies with little adaptation. Firing frequencies reflected the magnitude of ground reaction forces, were graded to changes in force amplitude, and could also be modulated by transient force perturbations added to the waveforms. Comparison of synergist activation by torques and ramp and hold functions revealed a strong influence of force dynamics (dF/d t). These studies support the idea that force receptors can act to tune muscle synergies synchronously to the range of force magnitudes and dynamics that occur in each leg according to their specific use in behavior. NEW & NOTEWORTHY The effects of force receptors (campaniform sensilla) on leg muscles and synergies were characterized in stick insects using both ramp and hold functions and waveforms of joint torques calculated by inverse dynamics. Motor responses were sustained and showed reduced adaptation to the more "natural" and nonlinear torque stimuli. Calculation of the first derivative (dF/d t) of the torque waveforms demonstrated that this difference was correlated with the dynamic sensitivities of the system.
Collapse
Affiliation(s)
- Sasha N Zill
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Chris J Dallmann
- Department of Biological Cybernetics, Bielefeld University , Bielefeld , Germany
| | - Ansgar Büschges
- Department of Animal Physiology, Institute of Zoology, Biocenter, University of Cologne , Cologne , Germany
| | - Sumaiya Chaudhry
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Josef Schmitz
- Department of Biological Cybernetics, Bielefeld University , Bielefeld , Germany
| |
Collapse
|
11
|
Bidaye SS, Bockemühl T, Büschges A. Six-legged walking in insects: how CPGs, peripheral feedback, and descending signals generate coordinated and adaptive motor rhythms. J Neurophysiol 2017; 119:459-475. [PMID: 29070634 DOI: 10.1152/jn.00658.2017] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Walking is a rhythmic locomotor behavior of legged animals, and its underlying mechanisms have been the subject of neurobiological research for more than 100 years. In this article, we review relevant historical aspects and contemporary studies in this field of research with a particular focus on the role of central pattern generating networks (CPGs) and their contribution to the generation of six-legged walking in insects. Aspects of importance are the generation of single-leg stepping, the generation of interleg coordination, and how descending signals influence walking. We first review how CPGs interact with sensory signals from the leg in the generation of leg stepping. Next, we summarize how these interactions are modified in the generation of motor flexibility for forward and backward walking, curve walking, and speed changes. We then review the present state of knowledge with regard to the role of CPGs in intersegmental coordination and how CPGs might be involved in mediating descending influences from the brain for the initiation, maintenance, modification, and cessation of the motor output for walking. Throughout, we aim to specifically address gaps in knowledge, and we describe potential future avenues and approaches, conceptual and methodological, with the latter emphasizing in particular options arising from the advent of neurogenetic approaches to this field of research and its combination with traditional approaches.
Collapse
Affiliation(s)
- Salil S Bidaye
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California
| | - Till Bockemühl
- Department of Animal Physiology, Zoological Institute, University of Cologne , Cologne , Germany
| | - Ansgar Büschges
- Department of Animal Physiology, Zoological Institute, University of Cologne , Cologne , Germany
| |
Collapse
|
12
|
Godlewska-Hammel E, Büschges A, Gruhn M. Fiber-type distribution in insect leg muscles parallels similarities and differences in the functional role of insect walking legs. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:773-790. [PMID: 28597315 DOI: 10.1007/s00359-017-1190-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/26/2017] [Accepted: 05/30/2017] [Indexed: 11/30/2022]
Abstract
Previous studies have demonstrated that myofibrillar ATPase (mATPase) enzyme activity in muscle fibers determines their contraction properties. We analyzed mATPase activities in muscles of the front, middle and hind legs of the orthopteran stick insect (Carausius morosus) to test the hypothesis that differences in muscle fiber types and distributions reflected differences in their behavioral functions. Our data show that all muscles are composed of at least three fiber types, fast, intermediate and slow, and demonstrate that: (1) in the femoral muscles (extensor and flexor tibiae) of all legs, the number of fast fibers decreases from proximal to distal, with a concomitant increase in the number of slow fibers. (2) The swing phase muscles protractor coxae and levator trochanteris, have smaller percentages of slow fibers compared to the antagonist stance muscles retractor coxae and depressor trochanteris. (3) The percentage of slow fibers in the retractor coxae and depressor trochanteris increases significantly from front to hind legs. These results suggest that fiber-type distribution in leg muscles of insects is not identical across leg muscles but tuned towards the specific function of a given muscle in the locomotor system.
Collapse
Affiliation(s)
- Elzbieta Godlewska-Hammel
- Department for Animal Physiology, Biocenter Cologne, Zoological Institute, Zülpicher Strasse 47b, 50674, Cologne, Germany
| | - Ansgar Büschges
- Department for Animal Physiology, Biocenter Cologne, Zoological Institute, Zülpicher Strasse 47b, 50674, Cologne, Germany
| | - Matthias Gruhn
- Department for Animal Physiology, Biocenter Cologne, Zoological Institute, Zülpicher Strasse 47b, 50674, Cologne, Germany.
| |
Collapse
|
13
|
Szczecinski NS, Quinn RD. Template for the neural control of directed stepping generalized to all legs of MantisBot. BIOINSPIRATION & BIOMIMETICS 2017; 12:045001. [PMID: 28422047 DOI: 10.1088/1748-3190/aa6dd9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We previously developed a neural controller for one leg of our six-legged robot, MantisBot, that could direct locomotion toward a goal by modulating leg-local reflexes with simple descending commands from a head sensor. In this work, we successfully apply an automated method to tune the control network for all three pairs of legs of our hexapod robot MantisBot in only 90 s with a desktop computer. Each foot's motion changes appropriately as the body's intended direction of travel changes. In addition, several results from studies of walking insects are captured by this model. This paper both demonstrates the broad applicability of this control method for robots, and suggests neural mechanisms underlying observations from walking insects.
Collapse
Affiliation(s)
- Nicholas S Szczecinski
- Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| | | |
Collapse
|