1
|
Bajpai G, Safran S. Mesoscale, long-time mixing of chromosomes and its connection to polymer dynamics. PLoS Comput Biol 2023; 19:e1011142. [PMID: 37228178 DOI: 10.1371/journal.pcbi.1011142] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/01/2023] [Indexed: 05/27/2023] Open
Abstract
Chromosomes are arranged in distinct territories within the nucleus of animal cells. Recent experiments have shown that these territories overlap at their edges, suggesting partial mixing during interphase. Experiments that knock-down of condensin II proteins during interphase indicate increased chromosome mixing, which demonstrates control of the mixing. In this study, we use a generic polymer simulation to quantify the dynamics of chromosome mixing over time. We introduce the chromosome mixing index, which quantifies the mixing of distinct chromosomes in the nucleus. We find that the chromosome mixing index in a small confinement volume (as a model of the nucleus), increases as a power-law of the time, with the scaling exponent varying non-monotonically with self-interaction and volume fraction. By comparing the chromosome mixing index with both monomer subdiffusion due to (non-topological) intermingling of chromosomes as well as even slower reptation, we show that for relatively large volume fractions, the scaling exponent of the chromosome mixing index is related to Rouse dynamics for relatively weak chromosome attractions and to reptation for strong attractions. In addition, we extend our model to more realistically account for the situation of the Drosophila chromosome by including the heterogeneity of the polymers and their lengths to account for microphase separation of euchromatin and heterochromatin and their interactions with the nuclear lamina. We find that the interaction with the lamina further impedes chromosome mixing.
Collapse
Affiliation(s)
- Gaurav Bajpai
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Samuel Safran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
2
|
Torres DE, Reckard AT, Klocko AD, Seidl MF. Nuclear genome organization in fungi: from gene folding to Rabl chromosomes. FEMS Microbiol Rev 2023; 47:fuad021. [PMID: 37197899 PMCID: PMC10246852 DOI: 10.1093/femsre/fuad021] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023] Open
Abstract
Comparative genomics has recently provided unprecedented insights into the biology and evolution of the fungal lineage. In the postgenomics era, a major research interest focuses now on detailing the functions of fungal genomes, i.e. how genomic information manifests into complex phenotypes. Emerging evidence across diverse eukaryotes has revealed that the organization of DNA within the nucleus is critically important. Here, we discuss the current knowledge on the fungal genome organization, from the association of chromosomes within the nucleus to topological structures at individual genes and the genetic factors required for this hierarchical organization. Chromosome conformation capture followed by high-throughput sequencing (Hi-C) has elucidated how fungal genomes are globally organized in Rabl configuration, in which centromere or telomere bundles are associated with opposite faces of the nuclear envelope. Further, fungal genomes are regionally organized into topologically associated domain-like (TAD-like) chromatin structures. We discuss how chromatin organization impacts the proper function of DNA-templated processes across the fungal genome. Nevertheless, this view is limited to a few fungal taxa given the paucity of fungal Hi-C experiments. We advocate for exploring genome organization across diverse fungal lineages to ensure the future understanding of the impact of nuclear organization on fungal genome function.
Collapse
Affiliation(s)
- David E Torres
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Laboratory of Phytopathology, Wageningen University and Research,Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands
| | - Andrew T Reckard
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 234 Centennial Hall, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918 USA
| | - Andrew D Klocko
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 234 Centennial Hall, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918 USA
| | - Michael F Seidl
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
3
|
Huang YF, Liu L, Wang F, Yuan XW, Chen HC, Liu ZF. High-Resolution 3D Genome Map of Brucella Chromosomes in Exponential and Stationary Phases. Microbiol Spectr 2023; 11:e0429022. [PMID: 36847551 PMCID: PMC10100373 DOI: 10.1128/spectrum.04290-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/02/2023] [Indexed: 03/01/2023] Open
Abstract
The three-dimensional (3D) genome structure of an organism or cell is highly relevant to its biological activities, but the availability of 3D genome information for bacteria, especially intracellular pathogens, is still limited. Here, we used Hi-C (high-throughput chromosome conformation capture) technology to determine the 3D chromosome structures of exponential- and stationary-phase Brucella melitensis at a 1-kb resolution. We observed that the contact heat maps of the two B. melitensis chromosomes contain a prominent diagonal and a secondary diagonal. Then, 79 chromatin interaction domains (CIDs) were detected at an optical density at 600 nm (OD600) of 0.4 (exponential phase), with the longest CID being 106 kb and the shortest being 12 kb. Moreover, we obtained 49,363 significant cis-interaction loci and 59,953 significant trans-interaction loci. Meanwhile, 82 CIDs of B. melitensis at an OD600 of 1.5 (stationary phase) were detected, with the longest CID being 94 kb and the shortest being 16 kb. In addition, 25,965 significant cis-interaction loci and 35,938 significant trans-interaction loci were obtained in this phase. Furthermore, we found that as the B. melitensis cells grew from the logarithmic to the plateau phase, the frequency of short-range interactions increased, while that of long-range interactions decreased. Finally, combined analysis of 3D genome and whole-genome transcriptome (RNA-seq) data revealed that the strength of short-range interactions in Chr1 is specifically and strongly correlated with gene expression. Overall, our study provides a global view of the chromatin interactions in the B. melitensis chromosomes, which will serve as a resource for further study of the spatial regulation of gene expression in Brucella. IMPORTANCE The spatial structure of chromatin plays important roles in normal cell functions and in the regulation of gene expression. Three-dimensional genome sequencing has been performed in many mammals and plants, but the availability of such data for bacteria, especially intracellular pathogens, is still limited. Approximately 10% of sequenced bacterial genomes contain more than one replicon. However, how multiple replicons are organized within bacterial cells, how they interact, and whether these interactions help to maintain or segregate these multipartite genomes are unresolved issues. Brucella is a Gram-negative, facultative intracellular, and zoonotic bacterium. Except for Brucella suis biovar 3, Brucella species have two chromosomes. Here, we applied Hi-C technology to determine the 3D genome structures of exponential- and stationary-phase Brucella melitensis chromosomes at a 1-kb resolution. Combined analysis of the 3D genome and RNA-seq data indicated that the strength of short-range interactions in B. melitensis Chr1 is specifically and strongly correlated with gene expression. Our study provides a resource to achieve a deeper understanding of the spatial regulation of gene expression in Brucella.
Collapse
Affiliation(s)
- Yong-Fang Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lin Liu
- Wuhan Frasergen Bioinformatics Co., Ltd., Wuhan, Hubei, China
| | - Fei Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xin-Wei Yuan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huan-Chun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zheng-Fei Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
4
|
Chauhan N, Karanastasis A, Ullal CK, Wang X. Homologous pairing in short double-stranded DNA-grafted colloidal microspheres. Biophys J 2022; 121:4819-4829. [PMID: 36196058 PMCID: PMC9811663 DOI: 10.1016/j.bpj.2022.09.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/04/2022] [Accepted: 09/28/2022] [Indexed: 01/07/2023] Open
Abstract
Homologous pairing (HP), i.e., the pairing of similar or identical double-stranded DNA, is an insufficiently understood fundamental biological process. HP is now understood to also occur without protein mediation, but crucial mechanistic details remain poorly established. Unfortunately, systematic studies of sequence dependence are not practical due to the enormous number of nucleotide permutations and multiple possible conformations involved in existing biophysical strategies even when using as few as 150 basepairs. Here, we show that HP can occur in DNA as short as 18 basepairs in a colloidal microparticle-based system. Exemplary systematic studies include resolving opposing reports of the impact of % AT composition, validating the impact of nucleotide order and triplet framework and revealing isotropic bendability to be crucial for HP. These studies are enabled by statistical analysis of crystal size and fraction within coexisting fluid-crystal phases of double-stranded DNA-grafted colloidal microspheres, where crystallization is predicated by HP.
Collapse
Affiliation(s)
- Neha Chauhan
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Apostolos Karanastasis
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Chaitanya K Ullal
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Xing Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois; Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
5
|
Wang X, Yang B, Zhao W, Cao W, Shen Y, Li Z, Bao X. Capture Hi-C reveals the influence on dynamic three-dimensional chromosome organization perturbed by genetic variation or vanillin stress in Saccharomyces cerevisiae. Front Microbiol 2022; 13:1012377. [DOI: 10.3389/fmicb.2022.1012377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
Abstract
Studying the mechanisms of resistance to vanillin in microorganisms, which is derived from lignin and blocks a major pathway of DNA double-strand break repair in yeast, will benefit the design of robust cell factories that produce biofuels and chemicals using lignocellulosic materials. A high vanillin-tolerant Saccharomyces cerevisiae strain EMV-8 carrying site mutations compared to its parent strain NAN-27 was selected for the analyses. The dynamics of the chromatin structure of eukaryotic cells play a critical role in transcription and the regulation of gene expression and thus the phenotype. Consequently, Hi-C and transcriptome analyses were conducted in EMV-8 and NAN-27 in the log phase with or without vanillin stress to determine the effects of mutations and vanillin disturbance on the dynamics of three-dimensional chromosome organization and the influence of the organization on the transcriptome. The outcomes indicated that the chromosome interaction pattern disturbed by vanillin stress or genetic mutations in the log phase was similar to that in mouse cells. The short chromosomes contact the short chromosomes, and the long chromosomes contact the long chromosomes. In response to vanillin stress, the boundaries of the topologically associating domain (TAD) in the vanillin-tolerant strain EMV-8 were more stable than those in its parent strain NAN-27. The motifs of SFL1, STB3, and NHP6A/B were enriched at TAD boundaries in both EMV-8 and NAN-27 with or without vanillin, indicating that these four genes were probably related to TAD formation. The Indel mutation of YRR1, whose absence was confirmed to benefit vanillin tolerance in EMV-8, caused two new interaction sites that contained three genes, WTM2, PUP1, and ALE1, whose overexpression did not affect vanillin resistance in yeast. Overall, our results revealed that in the log phase, genetic mutations and vanillin disturbance have a negligible effect on three-dimensional chromosome organization, and the reformation or disappearance of TAD boundaries did not show an association with gene expression, which provides an example for studying yeast chromatin structure during stress tolerance using Hi-C technology.
Collapse
|
6
|
Exogenous artificial DNA forms chromatin structure with active transcription in yeast. SCIENCE CHINA. LIFE SCIENCES 2022; 65:851-860. [PMID: 34970711 DOI: 10.1007/s11427-021-2044-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/10/2021] [Indexed: 12/25/2022]
Abstract
Yeast artificial chromosomes (YACs) are important tools for sequencing, gene cloning, and transferring large quantities of genetic information. However, the structure and activity of YAC chromatin, as well as the unintended impacts of introducing foreign DNA sequences on DNA-associated biochemical events, have not been widely explored. Here, we showed that abundant genetic elements like TATA box and transcription factor-binding motifs occurred unintentionally in a previously reported data-carrying chromosome (dChr). In addition, we used state-of-the-art sequencing technologies to comprehensively profile the genetic, epigenetic, transcriptional, and proteomic characteristics of the exogenous dChr. We found that the data-carrying DNA formed active chromatin with high chromatin accessibility and H3K4 tri-methylation levels. The dChr also displayed highly pervasive transcriptional ability and transcribed hundreds of noncoding RNAs. The results demonstrated that exogenous artificial chromosomes formed chromatin structures and did not remain as naked or loose plasmids. A better understanding of the YAC chromatin nature will improve our ability to design better data-storage chromosomes.
Collapse
|
7
|
Komachi K, Burgess SM. The Nup2 meiotic-autonomous region relieves inhibition of Nup60 to promote progression of meiosis and sporulation in Saccharomyces cerevisiae. Genetics 2022; 221:6550504. [PMID: 35302609 PMCID: PMC9071577 DOI: 10.1093/genetics/iyac045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/10/2022] [Indexed: 11/22/2022] Open
Abstract
During meiosis, chromosomes undergo dramatic changes in structural organization, nuclear positioning, and motion. Although the nuclear pore complex has been shown to affect genome organization and function in vegetative cells, its role in meiotic chromosome dynamics has remained largely unexplored. Recent work in the budding yeast Saccharomyces cerevisiae demonstrated that the mobile nucleoporin Nup2 is required for normal progression through meiosis I prophase and sporulation in strains where telomere-led chromosome movement has been compromised. The meiotic-autonomous region, a short fragment of Nup2 responsible for its role in meiosis, was shown to localize to the nuclear envelope via Nup60 and to bind to meiotic chromosomes. To understand the relative contribution these 2 activities have on meiotic-autonomous region function, we first carried out a screen for meiotic-autonomous region mutants defective in sporulation and found that all the mutations disrupt interaction with both Nup60 and meiotic chromosomes. Moreover, nup60 mutants phenocopy nup2 mutants, exhibiting similar nuclear division kinetics, sporulation efficiencies, and genetic interactions with mutations that affect the telomere bouquet. Although full-length Nup60 requires Nup2 for function, removal of Nup60's C-terminus allows Nup60 to bind meiotic chromosomes and promotes sporulation without Nup2. In contrast, binding of the meiotic-autonomous region to meiotic chromosomes is completely dependent on Nup60. Our findings uncover an inhibitory function for the Nup60 C-terminus and suggest that Nup60 mediates recruitment of meiotic chromosomes to the nuclear envelope, while Nup2 plays a secondary role counteracting the inhibitory function in Nup60's C-terminus.
Collapse
Affiliation(s)
- Kelly Komachi
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Sean M Burgess
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA,Corresponding author: Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
8
|
Yildirir G, Sperschneider J, Malar C M, Chen ECH, Iwasaki W, Cornell C, Corradi N. Long reads and Hi-C sequencing illuminate the two-compartment genome of the model arbuscular mycorrhizal symbiont Rhizophagus irregularis. THE NEW PHYTOLOGIST 2022; 233:1097-1107. [PMID: 34747029 DOI: 10.1111/nph.17842] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Chromosome folding links genome structure with gene function by generating distinct nuclear compartments and topologically associating domains. In mammals, these undergo preferential interactions and regulate gene expression. However, their role in fungal genome biology is unclear. Here, we combine Nanopore (ONT) sequencing with chromatin conformation capture sequencing (Hi-C) to reveal chromosome and epigenetic diversity in a group of obligate plant symbionts: the arbuscular mycorrhizal fungi (AMF). We find that five phylogenetically distinct strains of the model AMF Rhizophagus irregularis carry 33 chromosomes with substantial within-species variability in size, as well as in gene and repeat content. Strain-specific Hi-C contact maps reveal a 'checkerboard' pattern that underline two dominant euchromatin (A) and heterochromatin (B) compartments. Each compartment differs in the level of gene transcription, regulation of candidate effectors and methylation frequencies. The A-compartment is more gene-dense and contains most core genes, while the B-compartment is more repeat-rich and has higher rates of chromosomal rearrangement. While the B-compartment is transcriptionally repressed, it has significantly more secreted proteins and in planta upregulated candidate effectors, suggesting a possible host-induced change in chromosome conformation. Overall, this study provides a fine-scale view into the genome biology and evolution of model plant symbionts, and opens avenues to study the epigenetic mechanisms that modify chromosome folding during host-microbe interactions.
Collapse
Affiliation(s)
- Gökalp Yildirir
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Jana Sperschneider
- Biological Data Science Institute, The Australian National University, Canberra, ACT, 260, Australia
| | - Mathu Malar C
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Eric C H Chen
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, 1113-0033, Japan
| | - Wataru Iwasaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, 1113-0033, Japan
| | - Calvin Cornell
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
9
|
Cliff ER, Kirkpatrick RL, Cunningham-Bryant D, Fernandez B, Harman JL, Zalatan JG. CRISPR-Cas-Mediated Tethering Recruits the Yeast HMR Mating-Type Locus to the Nuclear Periphery but Fails to Silence Gene Expression. ACS Synth Biol 2021; 10:2870-2877. [PMID: 34723510 DOI: 10.1021/acssynbio.1c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To investigate the relationship between genome structure and function, we have developed a programmable CRISPR-Cas system for nuclear peripheral recruitment in yeast. We benchmarked this system at the HMR and GAL2 loci, both of which are well-characterized model systems for localization to the nuclear periphery. Using microscopy and gene silencing assays, we demonstrate that CRISPR-Cas-mediated tethering can recruit the HMR locus but does not detectably silence reporter gene expression. A previously reported Gal4-mediated tethering system does silence gene expression, and we demonstrate that the silencing effect has an unexpected dependence on the properties of the protein tether. The CRISPR-Cas system was unable to recruit GAL2 to the nuclear periphery. Our results reveal potential challenges for synthetic genome structure perturbations and suggest that distinct functional effects can arise from subtle structural differences in how genes are recruited to the periphery.
Collapse
|
10
|
Carlier F, Nguyen TS, Mazur AK, Gladyshev E. Modulation of C-to-T mutation by recombination-independent pairing of closely positioned DNA repeats. Biophys J 2021; 120:4325-4336. [PMID: 34509507 DOI: 10.1016/j.bpj.2021.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/14/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022] Open
Abstract
Repeat-induced point mutation is a genetic process that creates cytosine-to-thymine (C-to-T) transitions in duplicated genomic sequences in fungi. Repeat-induced point mutation detects duplications (irrespective of their origin, specific sequence, coding capacity, and genomic positions) by a recombination-independent mechanism that likely matches intact DNA double helices directly, without relying on the annealing of complementary single strands. In the fungus Neurospora crassa, closely positioned repeats can induce mutation of the adjoining nonrepetitive regions. This process is related to heterochromatin assembly and requires the cytosine methyltransferase DIM-2. Using DIM-2-dependent mutation as a readout of homologous pairing, we find that GC-rich repeats produce a much stronger response than AT-rich repeats, independently of their intrinsic propensity to become mutated. We also report that direct repeats trigger much stronger DIM-2-dependent mutation than inverted repeats. These results can be rationalized in the light of a recently proposed model of homologous DNA pairing, in which DNA double helices associate by forming sequence-specific quadruplex-based contacts with a concomitant release of supercoiling. A similar process featuring pairing-induced supercoiling may initiate epigenetic silencing of repetitive DNA in other organisms, including humans.
Collapse
Affiliation(s)
- Florian Carlier
- Group "Fungal Epigenomics", Department of Mycology, Institut Pasteur, Paris, France
| | - Tinh-Suong Nguyen
- Group "Fungal Epigenomics", Department of Mycology, Institut Pasteur, Paris, France
| | - Alexey K Mazur
- Group "Fungal Epigenomics", Department of Mycology, Institut Pasteur, Paris, France; CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France.
| | - Eugene Gladyshev
- Group "Fungal Epigenomics", Department of Mycology, Institut Pasteur, Paris, France.
| |
Collapse
|
11
|
Erdmann PS, Hou Z, Klumpe S, Khavnekar S, Beck F, Wilfling F, Plitzko JM, Baumeister W. In situ cryo-electron tomography reveals gradient organization of ribosome biogenesis in intact nucleoli. Nat Commun 2021; 12:5364. [PMID: 34508074 PMCID: PMC8433212 DOI: 10.1038/s41467-021-25413-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 08/09/2021] [Indexed: 02/08/2023] Open
Abstract
Ribosomes comprise a large (LSU) and a small subunit (SSU) which are synthesized independently in the nucleolus before being exported into the cytoplasm, where they assemble into functional ribosomes. Individual maturation steps have been analyzed in detail using biochemical methods, light microscopy and conventional electron microscopy (EM). In recent years, single particle analysis (SPA) has yielded molecular resolution structures of several pre-ribosomal intermediates. It falls short, however, of revealing the spatiotemporal sequence of ribosome biogenesis in the cellular context. Here, we present our study on native nucleoli in Chlamydomonas reinhardtii, in which we follow the formation of LSU and SSU precursors by in situ cryo-electron tomography (cryo-ET) and subtomogram averaging (STA). By combining both positional and molecular data, we reveal gradients of ribosome maturation within the granular component (GC), offering a new perspective on how the liquid-liquid-phase separation of the nucleolus supports ribosome biogenesis.
Collapse
Affiliation(s)
- Philipp S Erdmann
- Max Planck Institute of Biochemistry, Martinsried, Germany.
- Fondazione Human Technopole, Milano, Italy.
| | - Zhen Hou
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sven Klumpe
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Florian Beck
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Florian Wilfling
- Max Planck Institute of Biochemistry, Martinsried, Germany
- Max Planck Institute of Biophysics, Frankfurt, Germany
| | | | | |
Collapse
|
12
|
Huang C, Ying H, Yang X, Gao Y, Li T, Wu B, Ren M, Zhang Z, Ding J, Gao J, Wen D, Ye X, Liu L, Wang H, Sun G, Zou Y, Chen N, Wang L. The Cardamine enshiensis genome reveals whole genome duplication and insight into selenium hyperaccumulation and tolerance. Cell Discov 2021; 7:62. [PMID: 34373445 PMCID: PMC8352907 DOI: 10.1038/s41421-021-00286-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/26/2021] [Indexed: 02/05/2023] Open
Abstract
Cardamine enshiensis is a well-known selenium (Se)-hyperaccumulating plant. Se is an essential trace element associated with many health benefits. Despite its critical importance, genomic information of this species is limited. Here, we report a chromosome-level genome assembly of C. enshiensis, which consists of 443.4 Mb in 16 chromosomes with a scaffold N50 of 24 Mb. To elucidate the mechanism of Se tolerance and hyperaccumulation in C. enshiensis, we generated and analyzed a dataset encompassing genomes, transcriptomes, and metabolomes. The results reveal that flavonoid, glutathione, and lignin biosynthetic pathways may play important roles in protecting C. enshiensis from stress induced by Se. Hi-C analysis of chromatin interaction patterns showed that the chromatin of C. enshiensis is partitioned into A and B compartments, and strong interactions between the two telomeres of each chromosome were correlated with histone modifications, epigenetic markers, DNA methylation, and RNA abundance. Se supplementation could affect the 3D chromatin architecture of C. enshiensis at the compartment level. Genes with compartment changes after Se treatment were involved in selenocompound metabolism, and genes in regions with topologically associated domain insulation participated in cellular responses to Se, Se binding, and flavonoid biosynthesis. This multiomics research provides molecular insight into the mechanism underlying Se tolerance and hyperaccumulation in C. enshiensis.
Collapse
Affiliation(s)
- Chuying Huang
- Hubei Minzu University Affiliated Enshi Clinical Medical School, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China. .,Hubei Selenium and Human Health Institute, Enshi, Hubei, China.
| | - Hongqin Ying
- Hubei Selenium Industrial Technology Research Institute, Enshi Autonomous Prefecture Academy of Agriculture Sciences, Enshi, Hubei, China
| | - Xibiao Yang
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yuan Gao
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE 405 30, Gothenburg, Sweden
| | - Tuo Li
- Hubei Minzu University Affiliated Enshi Clinical Medical School, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China.,Hubei Selenium and Human Health Institute, Enshi, Hubei, China
| | - Bo Wu
- Hubei Minzu University Affiliated Enshi Clinical Medical School, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China.,Hubei Selenium and Human Health Institute, Enshi, Hubei, China
| | - Meng Ren
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zixiong Zhang
- Hubei Minzu University Affiliated Enshi Clinical Medical School, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China.,Hubei Selenium and Human Health Institute, Enshi, Hubei, China
| | - Jun Ding
- Hubei Minzu University Affiliated Enshi Clinical Medical School, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China.,Hubei Selenium and Human Health Institute, Enshi, Hubei, China
| | - Jianhua Gao
- South China Potato Research Center, Enshi Autonomous Prefecture Academy of Agricultural Sciences, Enshi, Hubei, China
| | - Dan Wen
- Bureau of Agricultural & Rural Affairs of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Xingzhi Ye
- South China Potato Research Center, Enshi Autonomous Prefecture Academy of Agricultural Sciences, Enshi, Hubei, China
| | - Ling Liu
- Wuhan Frasergen Bioinformatics Co., Ltd., Wuhan, Hubei, China
| | - Huan Wang
- Wuhan Frasergen Bioinformatics Co., Ltd., Wuhan, Hubei, China
| | - Guogen Sun
- Hubei Minzu University Affiliated Enshi Clinical Medical School, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China.,Hubei Selenium and Human Health Institute, Enshi, Hubei, China
| | - Yi Zou
- Hubei Minzu University Affiliated Enshi Clinical Medical School, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China.,Hubei Selenium and Human Health Institute, Enshi, Hubei, China
| | - Nansheng Chen
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Li Wang
- Hubei Minzu University Affiliated Enshi Clinical Medical School, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China.,Hubei Selenium and Human Health Institute, Enshi, Hubei, China
| |
Collapse
|
13
|
Van Dam MH, Cabras AA, Henderson JB, Rominger AJ, Pérez Estrada C, Omer AD, Dudchenko O, Lieberman Aiden E, Lam AW. The Easter Egg Weevil (Pachyrhynchus) genome reveals syntenic patterns in Coleoptera across 200 million years of evolution. PLoS Genet 2021; 17:e1009745. [PMID: 34460814 PMCID: PMC8432895 DOI: 10.1371/journal.pgen.1009745] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 09/10/2021] [Accepted: 07/27/2021] [Indexed: 01/01/2023] Open
Abstract
Patterns of genomic architecture across insects remain largely undocumented or decoupled from a broader phylogenetic context. For instance, it is unknown whether translocation rates differ between insect orders. We address broad scale patterns of genome architecture across Insecta by examining synteny in a phylogenetic framework from open-source insect genomes. To accomplish this, we add a chromosome level genome to a crucial lineage, Coleoptera. Our assembly of the Pachyrhynchus sulphureomaculatus genome is the first chromosome scale genome for the hyperdiverse Phytophaga lineage and currently the largest insect genome assembled to this scale. The genome is significantly larger than those of other weevils, and this increase in size is caused by repetitive elements. Our results also indicate that, among beetles, there are instances of long-lasting (>200 Ma) localization of genes to a particular chromosome with few translocation events. While some chromosomes have a paucity of translocations, intra-chromosomal synteny was almost absent, with gene order thoroughly shuffled along a chromosome. This large amount of reshuffling within chromosomes with few inter-chromosomal events contrasts with patterns seen in mammals in which the chromosomes tend to exchange larger blocks of material more readily. To place our findings in an evolutionary context, we compared syntenic patterns across Insecta in a phylogenetic framework. For the first time, we find that synteny decays at an exponential rate relative to phylogenetic distance. Additionally, there are significant differences in decay rates between insect orders, this pattern was not driven by Lepidoptera alone which has a substantially different rate.
Collapse
Affiliation(s)
- Matthew H. Van Dam
- Entomology Department, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, California, United States of America
- Center for Comparative Genomics, Institute for Biodiversity Science and Sustainability, California Academy of Science, San Francisco, California, United States of America
| | - Analyn Anzano Cabras
- Coleoptera Research Center, Institute for Biodiversity and Environment, University of Mindanao, Matina, Davao City, Philippines
| | - James B. Henderson
- Center for Comparative Genomics, Institute for Biodiversity Science and Sustainability, California Academy of Science, San Francisco, California, United States of America
| | - Andrew J. Rominger
- School of Biology and Ecology, University of Maine, Orono, Maine, United States of America
| | - Cynthia Pérez Estrada
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Arina D. Omer
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Athena W. Lam
- Center for Comparative Genomics, Institute for Biodiversity Science and Sustainability, California Academy of Science, San Francisco, California, United States of America
| |
Collapse
|
14
|
Li J, Lin Y, Tang Q, Li M. Understanding three-dimensional chromatin organization in diploid genomes. Comput Struct Biotechnol J 2021; 19:3589-3598. [PMID: 34257838 PMCID: PMC8246089 DOI: 10.1016/j.csbj.2021.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 11/17/2022] Open
Abstract
The three-dimensional (3D) organization of chromatin in the nucleus of diploid eukaryotic organisms has fascinated biologists for many years. Despite major progress in chromatin conformation studies, current knowledge regarding the spatial organization of diploid (maternal and paternal) genomes is still limited. Recent advances in Hi-C technology and data processing approaches have enabled construction of diploid Hi-C contact maps. These maps greatly accelerated the pace of novel discoveries in haplotype-resolved 3D genome studies, revealing the role of allele biased chromatin conformation in transcriptional regulation. Here, we review emerging concepts and haplotype phasing strategies of Hi-C data in 3D diploid genome studies. We discuss new insights on homologous chromosomal organization and the interplay between allelic biased chromatin architecture and several nuclear functions, explaining how haplotype-resolved Hi-C technologies have been used to resolve important biological questions.
Collapse
Affiliation(s)
- Jing Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu Lin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
15
|
Hoencamp C, Dudchenko O, Elbatsh AMO, Brahmachari S, Raaijmakers JA, van Schaik T, Sedeño Cacciatore Á, Contessoto VG, van Heesbeen RGHP, van den Broek B, Mhaskar AN, Teunissen H, St Hilaire BG, Weisz D, Omer AD, Pham M, Colaric Z, Yang Z, Rao SSP, Mitra N, Lui C, Yao W, Khan R, Moroz LL, Kohn A, St Leger J, Mena A, Holcroft K, Gambetta MC, Lim F, Farley E, Stein N, Haddad A, Chauss D, Mutlu AS, Wang MC, Young ND, Hildebrandt E, Cheng HH, Knight CJ, Burnham TLU, Hovel KA, Beel AJ, Mattei PJ, Kornberg RD, Warren WC, Cary G, Gómez-Skarmeta JL, Hinman V, Lindblad-Toh K, Di Palma F, Maeshima K, Multani AS, Pathak S, Nel-Themaat L, Behringer RR, Kaur P, Medema RH, van Steensel B, de Wit E, Onuchic JN, Di Pierro M, Lieberman Aiden E, Rowland BD. 3D genomics across the tree of life reveals condensin II as a determinant of architecture type. Science 2021; 372:984-989. [PMID: 34045355 PMCID: PMC8172041 DOI: 10.1126/science.abe2218] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 04/16/2021] [Indexed: 01/01/2023]
Abstract
We investigated genome folding across the eukaryotic tree of life. We find two types of three-dimensional (3D) genome architectures at the chromosome scale. Each type appears and disappears repeatedly during eukaryotic evolution. The type of genome architecture that an organism exhibits correlates with the absence of condensin II subunits. Moreover, condensin II depletion converts the architecture of the human genome to a state resembling that seen in organisms such as fungi or mosquitoes. In this state, centromeres cluster together at nucleoli, and heterochromatin domains merge. We propose a physical model in which lengthwise compaction of chromosomes by condensin II during mitosis determines chromosome-scale genome architecture, with effects that are retained during the subsequent interphase. This mechanism likely has been conserved since the last common ancestor of all eukaryotes.
Collapse
Affiliation(s)
- Claire Hoencamp
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Olga Dudchenko
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Ahmed M O Elbatsh
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | | | - Jonne A Raaijmakers
- Division of Cell Biology, Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Tom van Schaik
- Division of Gene Regulation, Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | | | - Vinícius G Contessoto
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
- Department of Physics, Institute of Biosciences, Letters and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto - SP, 15054-000, Brazil
| | - Roy G H P van Heesbeen
- Division of Cell Biology, Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Bram van den Broek
- BioImaging Facility, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Aditya N Mhaskar
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Hans Teunissen
- Division of Gene Regulation, Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Brian Glenn St Hilaire
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Weisz
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arina D Omer
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
| | - Melanie Pham
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zane Colaric
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhenzhen Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech, Pudong 201210, China
| | - Suhas S P Rao
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Namita Mitra
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christopher Lui
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
| | - Weijie Yao
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ruqayya Khan
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Leonid L Moroz
- Whitney Laboratory and Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Andrea Kohn
- Whitney Laboratory and Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Judy St Leger
- Department of Biosciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | | | | | | | - Fabian Lim
- Department of Medicine and Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emma Farley
- Department of Medicine and Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), 06466 Seeland, Germany
- Center of Integrated Breeding Research (CiBreed), Department of Crop Sciences, Georg-August-University Göttingen, 37075 Göttingen, Germany
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | - Alexander Haddad
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel Chauss
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ayse Sena Mutlu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meng C Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Neil D Young
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Evin Hildebrandt
- Avian Diseases and Oncology Laboratory, US Department of Agriculture, Agricultural Research Service, East Lansing, MI 48823, USA
| | - Hans H Cheng
- Avian Diseases and Oncology Laboratory, US Department of Agriculture, Agricultural Research Service, East Lansing, MI 48823, USA
| | | | - Theresa L U Burnham
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA 95616, USA
- Coastal and Marine Institute and Department of Biology, San Diego State University, San Diego, CA 92106, USA
| | - Kevin A Hovel
- Coastal and Marine Institute and Department of Biology, San Diego State University, San Diego, CA 92106, USA
| | - Andrew J Beel
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pierre-Jean Mattei
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Roger D Kornberg
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wesley C Warren
- Department of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Gregory Cary
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo CSIC, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Veronica Hinman
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Federica Di Palma
- Department of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| | - Asha S Multani
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sen Pathak
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Liesl Nel-Themaat
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Richard R Behringer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Parwinder Kaur
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | - René H Medema
- Division of Cell Biology, Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Bas van Steensel
- Division of Gene Regulation, Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Elzo de Wit
- Division of Gene Regulation, Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
- Departments of Physics and Astronomy, Chemistry, and Biosciences, Rice University, Houston, TX 77005, USA
| | - Michele Di Pierro
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech, Pudong 201210, China
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Benjamin D Rowland
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands.
| |
Collapse
|
16
|
Abstract
Determining the effect of DNA methylation on chromatin structure and function in higher organisms is challenging due to the extreme complexity of epigenetic regulation. We studied a simpler model system, budding yeast, that lacks DNA methylation machinery making it a perfect model system to study the intrinsic role of DNA methylation in chromatin structure and function. We expressed the murine DNA methyltransferases in Saccharomyces cerevisiae and analyzed the correlation between DNA methylation, nucleosome positioning, gene expression and 3D genome organization. Despite lacking the machinery for positioning and reading methylation marks, induced DNA methylation follows a conserved pattern with low methylation levels at the 5’ end of the gene increasing gradually toward the 3’ end, with concentration of methylated DNA in linkers and nucleosome free regions, and with actively expressed genes showing low and high levels of methylation at transcription start and terminating sites respectively, mimicking the patterns seen in mammals. We also see that DNA methylation increases chromatin condensation in peri-centromeric regions, decreases overall DNA flexibility, and favors the heterochromatin state. Taken together, these results demonstrate that methylation intrinsically modulates chromatin structure and function even in the absence of cellular machinery evolved to recognize and process the methylation signal. Multi-layered epigenetic regulation in higher eukaryotes makes it challenging to disentangle the individual effects of modifications on chromatin structure and function. Here, the authors expressed mammalian DNA methyltransferases in yeast, which have no DNA methylation, to show that methylation has intrinsic effects on chromatin structure.
Collapse
|
17
|
Sumner MC, Torrisi SB, Brickner DG, Brickner JH. Random sub-diffusion and capture of genes by the nuclear pore reduces dynamics and coordinates inter-chromosomal movement. eLife 2021; 10:66238. [PMID: 34002694 PMCID: PMC8195609 DOI: 10.7554/elife.66238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Hundreds of genes interact with the yeast nuclear pore complex (NPC), localizing at the nuclear periphery and clustering with co-regulated genes. Dynamic tracking of peripheral genes shows that they cycle on and off the NPC and that interaction with the NPC slows their sub-diffusive movement. Furthermore, NPC-dependent inter-chromosomal clustering leads to coordinated movement of pairs of loci separated by hundreds of nanometers. We developed fractional Brownian motion simulations for chromosomal loci in the nucleoplasm and interacting with NPCs. These simulations predict the rate and nature of random sub-diffusion during repositioning from nucleoplasm to periphery and match measurements from two different experimental models, arguing that recruitment to the nuclear periphery is due to random sub-diffusion and transient capture by NPCs. Finally, the simulations do not lead to inter-chromosomal clustering or coordinated movement, suggesting that interaction with the NPC is necessary, but not sufficient, to cause clustering.
Collapse
Affiliation(s)
- Michael Chas Sumner
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Steven B Torrisi
- Department of Physics, Harvard University, Cambridge, United States
| | - Donna G Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| |
Collapse
|
18
|
Rácz HV, Mukhtar F, Imre A, Rádai Z, Gombert AK, Rátonyi T, Nagy J, Pócsi I, Pfliegler WP. How to characterize a strain? Clonal heterogeneity in industrial Saccharomyces influences both phenotypes and heterogeneity in phenotypes. Yeast 2021; 38:453-470. [PMID: 33844327 DOI: 10.1002/yea.3562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/15/2021] [Accepted: 04/01/2021] [Indexed: 12/15/2022] Open
Abstract
Populations of microbes are constantly evolving heterogeneity that selection acts upon, yet heterogeneity is nontrivial to assess methodologically. The necessary practice of isolating single-cell colonies and thus subclone lineages for establishing, transferring, and using a strain results in single-cell bottlenecks with a generally neglected effect on the characteristics of the strain itself. Here, we present evidence that various subclone lineages for industrial yeasts sequenced for recent genomic studies show considerable differences, ranging from loss of heterozygosity to aneuploidies. Subsequently, we assessed whether phenotypic heterogeneity is also observable in industrial yeast, by individually testing subclone lineages obtained from products. Phenotyping of industrial yeast samples and their newly isolated subclones showed that single-cell bottlenecks during isolation can indeed considerably influence the observable phenotype. Next, we decoupled fitness distributions on the level of individual cells from clonal interference by plating single-cell colonies and quantifying colony area distributions. We describe and apply an approach using statistical modeling to compare the heterogeneity in phenotypes across samples and subclone lineages. One strain was further used to show how individual subclonal lineages are remarkably different not just in phenotype but also in the level of heterogeneity in phenotype. With these observations, we call attention to the fact that choosing an initial clonal lineage from an industrial yeast strain may vastly influence downstream performances and observations on karyotype, on phenotype, and also on heterogeneity.
Collapse
Affiliation(s)
- Hanna Viktória Rácz
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary.,Doctoral School of Nutrition and Food Sciences, University of Debrecen, Debrecen, Hungary
| | - Fezan Mukhtar
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary
| | - Alexandra Imre
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary.,Kálmán Laki Doctoral School of Biomedical and Clinical Sciences, University of Debrecen, Debrecen, Hungary
| | - Zoltán Rádai
- MTA-ÖK Lendület Seed Ecology Research Group, Institute of Ecology and Botany, Centre for Ecological Research, Vácrátót, Hungary
| | | | - Tamás Rátonyi
- Institute of Land Use, Technology and Regional Development, University of Debrecen, Debrecen, Hungary
| | - János Nagy
- Institute of Land Use, Technology and Regional Development, University of Debrecen, Debrecen, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary
| | - Walter P Pfliegler
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
19
|
Hundreds of thousands of cell generations reveal a treasure chest of genome alterations. Proc Natl Acad Sci U S A 2020; 117:31567-31569. [PMID: 33199644 DOI: 10.1073/pnas.2021185117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
20
|
Zhu H, Wang Z. SCL: a lattice-based approach to infer 3D chromosome structures from single-cell Hi-C data. Bioinformatics 2020; 35:3981-3988. [PMID: 30865261 PMCID: PMC6792089 DOI: 10.1093/bioinformatics/btz181] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/31/2019] [Accepted: 03/12/2019] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION In contrast to population-based Hi-C data, single-cell Hi-C data are zero-inflated and do not indicate the frequency of proximate DNA segments. There are a limited number of computational tools that can model the 3D structures of chromosomes based on single-cell Hi-C data. RESULTS We developed single-cell lattice (SCL), a computational method to reconstruct 3D structures of chromosomes based on single-cell Hi-C data. We designed a loss function and a 2 D Gaussian function specifically for the characteristics of single-cell Hi-C data. A chromosome is represented as beads-on-a-string and stored in a 3 D cubic lattice. Metropolis-Hastings simulation and simulated annealing are used to simulate the structure and minimize the loss function. We evaluated the SCL-inferred 3 D structures (at both 500 and 50 kb resolutions) using multiple criteria and compared them with the ones generated by another modeling software program. The results indicate that the 3 D structures generated by SCL closely fit single-cell Hi-C data. We also found similar patterns of trans-chromosomal contact beads, Lamin-B1 enriched topologically associating domains (TADs), and H3K4me3 enriched TADs by mapping data from previous studies onto the SCL-inferred 3 D structures. AVAILABILITY AND IMPLEMENTATION The C++ source code of SCL is freely available at http://dna.cs.miami.edu/SCL/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hao Zhu
- School of Computing Sciences and Computer Engineering, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Zheng Wang
- Department of Computer Science, University of Miami, Coral Gables, FL, USA
| |
Collapse
|
21
|
Crickard JB, Moevus CJ, Kwon Y, Sung P, Greene EC. Rad54 Drives ATP Hydrolysis-Dependent DNA Sequence Alignment during Homologous Recombination. Cell 2020; 181:1380-1394.e18. [PMID: 32502392 DOI: 10.1016/j.cell.2020.04.056] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/07/2020] [Accepted: 04/29/2020] [Indexed: 12/30/2022]
Abstract
Homologous recombination (HR) helps maintain genome integrity, and HR defects give rise to disease, especially cancer. During HR, damaged DNA must be aligned with an undamaged template through a process referred to as the homology search. Despite decades of study, key aspects of this search remain undefined. Here, we use single-molecule imaging to demonstrate that Rad54, a conserved Snf2-like protein found in all eukaryotes, switches the search from the diffusion-based pathways characteristic of the basal HR machinery to an active process in which DNA sequences are aligned via an ATP-dependent molecular motor-driven mechanism. We further demonstrate that Rad54 disrupts the donor template strands, enabling the search to take place within a migrating DNA bubble-like structure that is bound by replication protein A (RPA). Our results reveal that Rad54, working together with RPA, fundamentally alters how DNA sequences are aligned during HR.
Collapse
Affiliation(s)
- J Brooks Crickard
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Corentin J Moevus
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
22
|
Chowdhary S, Kainth AS, Pincus D, Gross DS. Heat Shock Factor 1 Drives Intergenic Association of Its Target Gene Loci upon Heat Shock. Cell Rep 2020; 26:18-28.e5. [PMID: 30605674 PMCID: PMC6435272 DOI: 10.1016/j.celrep.2018.12.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/27/2018] [Accepted: 12/07/2018] [Indexed: 12/22/2022] Open
Abstract
Transcriptional induction of heat shock protein (HSP) genes is accompanied by dynamic changes in their 3D structure and spatial organization, yet the molecular basis for these phenomena remains unknown. Using chromosome conformation capture and single-cell imaging, we show that genes transcriptionally activated by Hsf1 specifically interact across chromosomes and coalesce into diffraction-limited intranuclear foci. Genes activated by the alternative stress regulators Msn2/Msn4, in contrast, do not interact among themselves nor with Hsf1 targets. Likewise, constitutively expressed genes, even those interposed between HSP genes, show no detectable interaction. Hsf1 forms discrete subnuclear puncta when stress activated, and these puncta dissolve in concert with transcriptional attenuation, paralleling the kinetics of HSP gene coalescence and dissolution. Nuclear Hsf1 and RNA Pol II are both necessary for intergenic HSP gene interactions, while DNA-bound Hsf1 is necessary and sufficient to drive heterologous gene coalescence. Our findings demonstrate that Hsf1 can dynamically restructure the yeast genome. While gene repositioning is thought to be a general feature of transcription, Chowdhary et al. provide evidence that argues against this concept. The authors demonstrate that Hsf1-regulated genes in Saccharomyces cerevisiae distinctively coalesce into intranuclear foci upon their transcriptional activation, while those activated by alternative transcription factors do not.
Collapse
Affiliation(s)
- Surabhi Chowdhary
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Amoldeep S Kainth
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - David Pincus
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - David S Gross
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| |
Collapse
|
23
|
Brickner DG, Randise-Hinchliff C, Lebrun Corbin M, Liang JM, Kim S, Sump B, D'Urso A, Kim SH, Satomura A, Schmit H, Coukos R, Hwang S, Watson R, Brickner JH. The Role of Transcription Factors and Nuclear Pore Proteins in Controlling the Spatial Organization of the Yeast Genome. Dev Cell 2020; 49:936-947.e4. [PMID: 31211995 DOI: 10.1016/j.devcel.2019.05.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/18/2019] [Accepted: 05/10/2019] [Indexed: 12/15/2022]
Abstract
Loss of nuclear pore complex (NPC) proteins, transcription factors (TFs), histone modification enzymes, Mediator, and factors involved in mRNA export disrupts the physical interaction of chromosomal sites with NPCs. Conditional inactivation and ectopic tethering experiments support a direct role for the TFs Gcn4 and Nup2 in mediating interaction with the NPC but suggest an indirect role for factors involved in mRNA export or transcription. A conserved "positioning domain" within Gcn4 controls interaction with the NPC and inter-chromosomal clustering and promotes transcription of target genes. Such a function may be quite common; a comprehensive screen reveals that tethering of most yeast TFs is sufficient to promote targeting to the NPC. While some TFs require Nup100, others do not, suggesting two distinct targeting mechanisms. These results highlight an important and underappreciated function of TFs in controlling the spatial organization of the yeast genome through interaction with the NPC.
Collapse
Affiliation(s)
- Donna Garvey Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | | | - Marine Lebrun Corbin
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Julie Ming Liang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Stephanie Kim
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Bethany Sump
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Agustina D'Urso
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Seo Hyun Kim
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Atsushi Satomura
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Heidi Schmit
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Robert Coukos
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Subin Hwang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Raven Watson
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA.
| |
Collapse
|
24
|
Mizi A, Gade Gusmao E, Papantonis A. iHi-C 2.0: A simple approach for mapping native spatial chromatin organisation from low cell numbers. Methods 2020; 170:33-37. [DOI: 10.1016/j.ymeth.2019.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 07/04/2019] [Indexed: 01/05/2023] Open
|
25
|
Kempfer R, Pombo A. Methods for mapping 3D chromosome architecture. Nat Rev Genet 2019; 21:207-226. [PMID: 31848476 DOI: 10.1038/s41576-019-0195-2] [Citation(s) in RCA: 299] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
Determining how chromosomes are positioned and folded within the nucleus is critical to understanding the role of chromatin topology in gene regulation. Several methods are available for studying chromosome architecture, each with different strengths and limitations. Established imaging approaches and proximity ligation-based chromosome conformation capture (3C) techniques (such as DNA-FISH and Hi-C, respectively) have revealed the existence of chromosome territories, functional nuclear landmarks (such as splicing speckles and the nuclear lamina) and topologically associating domains. Improvements to these methods and the recent development of ligation-free approaches, including GAM, SPRITE and ChIA-Drop, are now helping to uncover new aspects of 3D genome topology that confirm the nucleus to be a complex, highly organized organelle.
Collapse
Affiliation(s)
- Rieke Kempfer
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany. .,Institute for Biology, Humboldt University of Berlin, Berlin, Germany.
| | - Ana Pombo
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany. .,Institute for Biology, Humboldt University of Berlin, Berlin, Germany.
| |
Collapse
|
26
|
Homouz D, Kudlicki AS. Maximum parsimony interpretation of chromatin capture experiments. PLoS One 2019; 14:e0225578. [PMID: 31765406 PMCID: PMC6876987 DOI: 10.1371/journal.pone.0225578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 11/08/2019] [Indexed: 11/18/2022] Open
Abstract
We present a new approach to characterizing the global geometric state of chromatin from HiC data. Chromatin conformation capture techniques (3C, and its variants: 4C, 5C, HiC, etc.) probe the spatial structure of the genome by identifying physical contacts between genomic loci within the nuclear space. In whole-genome conformation capture (HiC) experiments, the signal can be interpreted as spatial proximity between genomic loci and physical distances can be estimated from the data. However, observed spatial proximity signal does not directly translate into persistent contacts within the nuclear space. Attempts to infer a single conformation of the genome within the nuclear space lead to internal geometric inconsistencies, notoriously violating the triangle inequality. These inconsistencies have been attributed to the stochastic nature of chromatin conformation or to experimental artifacts. Here we demonstrate that it can be explained by a mixture of cells, each in one of only several conformational states, contained in the sample. We have developed and implemented a graph-theoretic approach that identifies the properties of such postulated subpopulations. We show that the geometrical conflicts in a standard yeast HiC dataset, can be explained by only a small number of homogeneous populations of cells (4 populations are sufficient to reconcile 95,000 most prominent impossible triangles, 8 populations can explain 375,000 top geometric conflicts). Finally, we analyze the functional annotations of genes differentially interacting between the populations, suggesting that each inferred subpopulation may be involved in a functionally different transcriptional program.
Collapse
Affiliation(s)
- Dirar Homouz
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, UAE
- Department of Physics, University of Houston, Houston, TX, United States of America
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States of America
- * E-mail: (ASK); (DH)
| | - Andrzej S. Kudlicki
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States of America
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States of America
- * E-mail: (ASK); (DH)
| |
Collapse
|
27
|
Mazur AK, Nguyen TS, Gladyshev E. Direct Homologous dsDNA-dsDNA Pairing: How, Where, and Why? J Mol Biol 2019; 432:737-744. [PMID: 31726060 DOI: 10.1016/j.jmb.2019.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/22/2019] [Accepted: 11/05/2019] [Indexed: 10/25/2022]
Abstract
The ability of homologous chromosomes (or selected chromosomal loci) to pair specifically in the apparent absence of DNA breakage and recombination represents a prominent feature of eukaryotic biology. The mechanism of homology recognition at the basis of such recombination-independent pairing has remained elusive. A number of studies have supported the idea that sequence homology can be sensed between intact DNA double helices in vivo. In particular, recent analyses of the two silencing phenomena in fungi, known as "repeat-induced point mutation" (RIP) and "meiotic silencing by unpaired DNA" (MSUD), have provided genetic evidence for the existence of the direct homologous dsDNA-dsDNA pairing. Both RIP and MSUD likely rely on the same search strategy, by which dsDNA segments are matched as arrays of interspersed base-pair triplets. This process is general and very efficient, yet it proceeds normally without the RecA/Rad51/Dmc1 proteins. Further studies of RIP and MSUD may yield surprising insights into the function of DNA in the cell.
Collapse
Affiliation(s)
- Alexey K Mazur
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 Rue Pierre et Marie Curie, F-75005 Paris, France; Group Fungal Epigenomics, Department of Mycology, Institut Pasteur, Paris 75015, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Tinh-Suong Nguyen
- Group Fungal Epigenomics, Department of Mycology, Institut Pasteur, Paris 75015, France
| | - Eugene Gladyshev
- Group Fungal Epigenomics, Department of Mycology, Institut Pasteur, Paris 75015, France.
| |
Collapse
|
28
|
Rieber L, Mahony S. Joint inference and alignment of genome structures enables characterization of compartment-independent reorganization across cell types. Epigenetics Chromatin 2019; 12:61. [PMID: 31594535 PMCID: PMC6784335 DOI: 10.1186/s13072-019-0308-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/25/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Comparisons of Hi-C data sets between cell types and conditions have revealed differences in topologically associated domains (TADs) and A/B compartmentalization, which are correlated with differences in gene regulation. However, previous comparisons have focused on known forms of 3D organization while potentially neglecting other functionally relevant differences. We aimed to create a method to quantify all locus-specific differences between two Hi-C data sets. RESULTS We developed MultiMDS to jointly infer and align 3D chromosomal structures from two Hi-C data sets, thereby enabling a new way to comprehensively quantify relocalization of genomic loci between cell types. We demonstrate this approach by comparing Hi-C data across a variety of cell types. We consistently find relocalization of loci with minimal difference in A/B compartment score. For example, we identify compartment-independent relocalizations between GM12878 and K562 cells that involve loci displaying enhancer-associated histone marks in one cell type and polycomb-associated histone marks in the other. CONCLUSIONS MultiMDS is the first tool to identify all loci that relocalize between two Hi-C data sets. Our method can identify 3D localization differences that are correlated with cell-type-specific regulatory activities and which cannot be identified using other methods.
Collapse
Affiliation(s)
- Lila Rieber
- Department of Biochemistry and Molecular Biology and Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802 USA
| | - Shaun Mahony
- Department of Biochemistry and Molecular Biology and Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802 USA
| |
Collapse
|
29
|
AlHaj Abed J, Erceg J, Goloborodko A, Nguyen SC, McCole RB, Saylor W, Fudenberg G, Lajoie BR, Dekker J, Mirny LA, Wu CT. Highly structured homolog pairing reflects functional organization of the Drosophila genome. Nat Commun 2019; 10:4485. [PMID: 31582763 PMCID: PMC6776532 DOI: 10.1038/s41467-019-12208-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 08/27/2019] [Indexed: 01/14/2023] Open
Abstract
Trans-homolog interactions have been studied extensively in Drosophila, where homologs are paired in somatic cells and transvection is prevalent. Nevertheless, the detailed structure of pairing and its functional impact have not been thoroughly investigated. Accordingly, we generated a diploid cell line from divergent parents and applied haplotype-resolved Hi-C, showing that homologs pair with varying precision genome-wide, in addition to establishing trans-homolog domains and compartments. We also elucidate the structure of pairing with unprecedented detail, observing significant variation across the genome and revealing at least two forms of pairing: tight pairing, spanning contiguous small domains, and loose pairing, consisting of single larger domains. Strikingly, active genomic regions (A-type compartments, active chromatin, expressed genes) correlated with tight pairing, suggesting that pairing has a functional implication genome-wide. Finally, using RNAi and haplotype-resolved Hi-C, we show that disruption of pairing-promoting factors results in global changes in pairing, including the disruption of some interaction peaks.
Collapse
Affiliation(s)
- Jumana AlHaj Abed
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Jelena Erceg
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Anton Goloborodko
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
| | - Son C Nguyen
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6145, USA
| | - Ruth B McCole
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Wren Saylor
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Geoffrey Fudenberg
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
- Gladstone Institutes of Data Science and Biotechnology, San Francisco, CA, 94158, USA
| | - Bryan R Lajoie
- Howard Hughes Medical Institute and Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605-0103, USA
- Illumina, San Diego, CA, USA
| | - Job Dekker
- Howard Hughes Medical Institute and Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605-0103, USA
| | - Leonid A Mirny
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA.
- Department of Physics, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA.
| | - C-Ting Wu
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
30
|
Erceg J, AlHaj Abed J, Goloborodko A, Lajoie BR, Fudenberg G, Abdennur N, Imakaev M, McCole RB, Nguyen SC, Saylor W, Joyce EF, Senaratne TN, Hannan MA, Nir G, Dekker J, Mirny LA, Wu CT. The genome-wide multi-layered architecture of chromosome pairing in early Drosophila embryos. Nat Commun 2019; 10:4486. [PMID: 31582744 PMCID: PMC6776651 DOI: 10.1038/s41467-019-12211-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022] Open
Abstract
Genome organization involves cis and trans chromosomal interactions, both implicated in gene regulation, development, and disease. Here, we focus on trans interactions in Drosophila, where homologous chromosomes are paired in somatic cells from embryogenesis through adulthood. We first address long-standing questions regarding the structure of embryonic homolog pairing and, to this end, develop a haplotype-resolved Hi-C approach to minimize homolog misassignment and thus robustly distinguish trans-homolog from cis contacts. This computational approach, which we call Ohm, reveals pairing to be surprisingly structured genome-wide, with trans-homolog domains, compartments, and interaction peaks, many coinciding with analogous cis features. We also find a significant genome-wide correlation between pairing, transcription during zygotic genome activation, and binding of the pioneer factor Zelda. Our findings reveal a complex, highly structured organization underlying homolog pairing, first discovered a century ago in Drosophila. Finally, we demonstrate the versatility of our haplotype-resolved approach by applying it to mammalian embryos.
Collapse
Affiliation(s)
- Jelena Erceg
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Jumana AlHaj Abed
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Anton Goloborodko
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
| | - Bryan R Lajoie
- Howard Hughes Medical Institute and Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605-0103, USA
- Illumina, San Diego, CA, USA
| | - Geoffrey Fudenberg
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
- Gladstone Institutes of Data Science and Biotechnology, San Francisco, CA, 94158, USA
| | - Nezar Abdennur
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
| | - Maxim Imakaev
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
| | - Ruth B McCole
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Son C Nguyen
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6145, USA
| | - Wren Saylor
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Eric F Joyce
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6145, USA
| | - T Niroshini Senaratne
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Mohammed A Hannan
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Guy Nir
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Job Dekker
- Howard Hughes Medical Institute and Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605-0103, USA
| | - Leonid A Mirny
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA.
- Department of Physics, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA.
| | - C-Ting Wu
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
31
|
Mechanisms of Interplay between Transcription Factors and the 3D Genome. Mol Cell 2019; 76:306-319. [PMID: 31521504 DOI: 10.1016/j.molcel.2019.08.010] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/20/2019] [Accepted: 08/09/2019] [Indexed: 12/31/2022]
Abstract
Transcription factors (TFs) bind DNA in a sequence-specific manner and thereby serve as the protein anchors and determinants of 3D genome organization. Conversely, chromatin conformation shapes TF activity, for example, by looping TF-bound enhancers to distally located target genes. Despite considerable effort, our understanding of the mechanistic relation between TFs and 3D genome organization remains limited, in large part due to this interdependency. In this review, we summarize the evidence for the diverse mechanisms by which TFs and their activity shape the 3D genome and vice versa. We further highlight outstanding questions and potential approaches for untangling the complex relation between TF activity and the 3D genome.
Collapse
|
32
|
Eres IE, Luo K, Hsiao CJ, Blake LE, Gilad Y. Reorganization of 3D genome structure may contribute to gene regulatory evolution in primates. PLoS Genet 2019; 15:e1008278. [PMID: 31323043 PMCID: PMC6668850 DOI: 10.1371/journal.pgen.1008278] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 07/31/2019] [Accepted: 06/28/2019] [Indexed: 12/22/2022] Open
Abstract
A growing body of evidence supports the notion that variation in gene regulation plays a crucial role in both speciation and adaptation. However, a comprehensive functional understanding of the mechanisms underlying regulatory evolution remains elusive. In primates, one of the crucial missing pieces of information towards a better understanding of regulatory evolution is a comparative annotation of interactions between distal regulatory elements and promoters. Chromatin conformation capture technologies have enabled genome-wide quantifications of such distal 3D interactions. However, relatively little comparative research in primates has been done using such technologies. To address this gap, we used Hi-C to characterize 3D chromatin interactions in induced pluripotent stem cells (iPSCs) from humans and chimpanzees. We also used RNA-seq to collect gene expression data from the same lines. We generally observed that lower-order, pairwise 3D genomic interactions are conserved in humans and chimpanzees, but higher order genomic structures, such as topologically associating domains (TADs), are not as conserved. Inter-species differences in 3D genomic interactions are often associated with gene expression differences between the species. To provide additional functional context to our observations, we considered previously published chromatin data from human stem cells. We found that inter-species differences in 3D genomic interactions, which are also associated with gene expression differences between the species, are enriched for both active and repressive marks. Overall, our data demonstrate that, as expected, an understanding of 3D genome reorganization is key to explaining regulatory evolution. The way in which a genome folds affects the regulation of gene expression. This is often due to loops in the three-dimensional structure that bring linearly distant genes and regulatory elements into close proximity. Most studies examining three-dimensional structure genome-wide are limited to a single species. In this study, we compared three-dimensional structure in the genomes of induced pluripotent stem cells from humans and chimpanzees. We collected gene expression data from the same samples, which allowed us to assess the contribution of three-dimensional chromatin conformation to gene regulatory evolution in primates. Our results demonstrate that gene expression differences between the species may often be mediated by differences in three-dimensional genomic interactions. Our data also suggest that large-scale chromatin structures (i.e. topologically associating domains, TADs) are not well conserved in their placement across species. We hope the analytical paradigms we present here could serve as a basis for future comparative studies of three-dimensional genome organization, elucidating the putative functional regulatory loci driving speciation.
Collapse
Affiliation(s)
- Ittai E. Eres
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Kaixuan Luo
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Chiaowen Joyce Hsiao
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Lauren E. Blake
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Yoav Gilad
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
33
|
Chromosome conformation capture that detects novel cis- and trans-interactions in budding yeast. Methods 2019; 170:4-16. [PMID: 31252061 DOI: 10.1016/j.ymeth.2019.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 11/22/2022] Open
Abstract
Chromosome Conformation Capture (3C) has emerged as a powerful approach for revealing the conformation and features of three-dimensional (3D) genomic organization. Yet attainment of higher resolution in organisms with compact genomes presents a challenge. Here, we describe modifications in the 3C technique that substantially enhance its resolution and sensitivity when applied to the 3D genome of budding yeast. Keys to our approach include use of a 4 bp cutter, Taq I, for cleaving the genome and quantitative PCR for measuring the frequency of ligation. Most importantly, we normalize the percent digestion at each restriction site to account for variation in accessibility of local chromatin structure under a given physiological condition. This strategy has led to the detection of physical interactions between regulatory elements and gene coding regions as well as intricate, stimulus-specific interchromosomal interactions between activated genes. We provide an algorithm that incorporates these and other modifications and allows quantitative determination of chromatin interaction frequencies in yeast under any physiological condition.
Collapse
|
34
|
Kim S, Dunham MJ, Shendure J. A combination of transcription factors mediates inducible interchromosomal contacts. eLife 2019; 8:e42499. [PMID: 31081754 PMCID: PMC6548505 DOI: 10.7554/elife.42499] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 05/11/2019] [Indexed: 12/30/2022] Open
Abstract
The genome forms specific three-dimensional contacts in response to cellular or environmental conditions. However, it remains largely unknown which proteins specify and mediate such contacts. Here we describe an assay, MAP-C (Mutation Analysis in Pools by Chromosome conformation capture), that simultaneously characterizes the effects of hundreds of cis or trans-acting mutations on a chromosomal contact. Using MAP-C, we show that inducible interchromosomal pairing between HAS1pr-TDA1pr alleles in saturated cultures of Saccharomyces yeast is mediated by three transcription factors, Leu3, Sdd4 (Ypr022c), and Rgt1. The coincident, combined binding of all three factors is strongest at the HAS1pr-TDA1pr locus and is also specific to saturated conditions. We applied MAP-C to further explore the biochemical mechanism of these contacts, and find they require the structured regulatory domain of Rgt1, but no known interaction partners of Rgt1. Altogether, our results demonstrate MAP-C as a powerful method for dissecting the mechanistic basis of chromosome conformation.
Collapse
Affiliation(s)
- Seungsoo Kim
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
| | - Maitreya J Dunham
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
| | - Jay Shendure
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
- Howard Hughes Medical InstituteSeattleUnited States
- Brotman Baty Institute for Precision MedicineSeattleUnited States
| |
Collapse
|
35
|
Ohno M, Ando T, Priest DG, Kumar V, Yoshida Y, Taniguchi Y. Sub-nucleosomal Genome Structure Reveals Distinct Nucleosome Folding Motifs. Cell 2019; 176:520-534.e25. [DOI: 10.1016/j.cell.2018.12.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 10/16/2018] [Accepted: 12/09/2018] [Indexed: 12/11/2022]
|
36
|
Lin D, Bonora G, Yardımcı GG, Noble WS. Computational methods for analyzing and modeling genome structure and organization. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2019; 11:e1435. [PMID: 30022617 PMCID: PMC6294685 DOI: 10.1002/wsbm.1435] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/07/2018] [Accepted: 06/16/2018] [Indexed: 12/31/2022]
Abstract
Recent advances in chromosome conformation capture technologies have led to the discovery of previously unappreciated structural features of chromatin. Computational analysis has been critical in detecting these features and thereby helping to uncover the building blocks of genome architecture. Algorithms are being developed to integrate these architectural features to construct better three-dimensional (3D) models of the genome. These computational methods have revealed the importance of 3D genome organization to essential biological processes. In this article, we review the state of the art in analytic and modeling techniques with a focus on their application to answering various biological questions related to chromatin structure. We summarize the limitations of these computational techniques and suggest future directions, including the importance of incorporating multiple sources of experimental data in building a more comprehensive model of the genome. This article is categorized under: Analytical and Computational Methods > Computational Methods Laboratory Methods and Technologies > Genetic/Genomic Methods Models of Systems Properties and Processes > Mechanistic Models.
Collapse
Affiliation(s)
- Dejun Lin
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Giancarlo Bonora
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - William S. Noble
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
37
|
Partition of Repeat-Induced Point Mutations Reveals Structural Aspects of Homologous DNA-DNA Pairing. Biophys J 2018; 115:605-615. [PMID: 30086830 DOI: 10.1016/j.bpj.2018.06.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/28/2018] [Indexed: 11/21/2022] Open
Abstract
In some fungi, a premeiotic process known as repeat-induced point mutation (RIP) can accurately identify and mutate nearly all gene-sized DNA repeats present in the haploid germline nuclei. Studies in Neurospora crassa have suggested that RIP detects sequence homology directly between intact DNA double helices, without strand separation and without the participation of RecA-like proteins. Those studies used the aggregated number of RIP mutations as a simple quantitative measure of RIP activity. Additional structural information about homologous DNA-DNA pairing during RIP can be extracted by analyzing spatial distributions of RIP mutations converted into profiles of partitioned RIP propensity (PRP). Further analysis shows that PRP is strongly affected by the topological configuration and the relative positioning of the participating DNA segments. Most notably, pairs of closely positioned repeats produce very distinct PRP profiles depending on whether these repeats are present in the direct or the inverted orientation. Such an effect can be attributed to a topology-dependent redistribution of the supercoiling stress created by the predicted limited untwisting of the DNA segments during pairing. This and other results raise a possibility that such pairing-induced fluctuations in DNA supercoiling can modulate the overall structure and properties of repetitive DNA. Such effects can be particularly strong in the context of long tandem-repeat arrays that are typically present in the pericentromeric and centromeric regions of chromosomes in many species of plants, fungi, and animals, including humans.
Collapse
|
38
|
Rada-Iglesias A, Grosveld FG, Papantonis A. Forces driving the three-dimensional folding of eukaryotic genomes. Mol Syst Biol 2018; 14:e8214. [PMID: 29858282 PMCID: PMC6024091 DOI: 10.15252/msb.20188214] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The last decade has radically renewed our understanding of higher order chromatin folding in the eukaryotic nucleus. As a result, most current models are in support of a mostly hierarchical and relatively stable folding of chromosomes dividing chromosomal territories into A‐ (active) and B‐ (inactive) compartments, which are then further partitioned into topologically associating domains (TADs), each of which is made up from multiple loops stabilized mainly by the CTCF and cohesin chromatin‐binding complexes. Nonetheless, the structure‐to‐function relationship of eukaryotic genomes is still not well understood. Here, we focus on recent work highlighting the biophysical and regulatory forces that contribute to the spatial organization of genomes, and we propose that the various conformations that chromatin assumes are not so much the result of a linear hierarchy, but rather of both converging and conflicting dynamic forces that act on it.
Collapse
Affiliation(s)
- Alvaro Rada-Iglesias
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany .,CECAD, University of Cologne, Cologne, Germany
| | - Frank G Grosveld
- Department of Cell Biology, Erasmus Medical Center, GE Rotterdam, Netherlands
| | - Argyris Papantonis
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
39
|
Sharp NP, Sandell L, James CG, Otto SP. The genome-wide rate and spectrum of spontaneous mutations differ between haploid and diploid yeast. Proc Natl Acad Sci U S A 2018; 115:E5046-E5055. [PMID: 29760081 PMCID: PMC5984525 DOI: 10.1073/pnas.1801040115] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
By altering the dynamics of DNA replication and repair, alternative ploidy states may experience different rates and types of new mutations, leading to divergent evolutionary outcomes. We report a direct comparison of the genome-wide spectrum of spontaneous mutations arising in haploids and diploids following a mutation-accumulation experiment in the budding yeast Saccharomyces cerevisiae Characterizing the number, types, locations, and effects of thousands of mutations revealed that haploids were more prone to single-nucleotide mutations (SNMs) and mitochondrial mutations, while larger structural changes were more common in diploids. Mutations were more likely to be detrimental in diploids, even after accounting for the large impact of structural changes, contrary to the prediction that mutations would have weaker effects, due to masking, in diploids. Haploidy is expected to reduce the opportunity for conservative DNA repair involving homologous chromosomes, increasing the insertion-deletion rate, but we found little support for this idea. Instead, haploids were more susceptible to SNMs in late-replicating genomic regions, resulting in a ploidy difference in the spectrum of substitutions. In diploids, we detect mutation rate variation among chromosomes in association with centromere location, a finding that is supported by published polymorphism data. Diploids are not simply doubled haploids; instead, our results predict that the spectrum of spontaneous mutations will substantially shape the dynamics of genome evolution in haploid and diploid populations.
Collapse
Affiliation(s)
- Nathaniel P Sharp
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Linnea Sandell
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Christopher G James
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Sarah P Otto
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
40
|
Sazer S, Schiessel H. The biology and polymer physics underlying large-scale chromosome organization. Traffic 2018; 19:87-104. [PMID: 29105235 PMCID: PMC5846894 DOI: 10.1111/tra.12539] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 12/21/2022]
Abstract
Chromosome large-scale organization is a beautiful example of the interplay between physics and biology. DNA molecules are polymers and thus belong to the class of molecules for which physicists have developed models and formulated testable hypotheses to understand their arrangement and dynamic properties in solution, based on the principles of polymer physics. Biologists documented and discovered the biochemical basis for the structure, function and dynamic spatial organization of chromosomes in cells. The underlying principles of chromosome organization have recently been revealed in unprecedented detail using high-resolution chromosome capture technology that can simultaneously detect chromosome contact sites throughout the genome. These independent lines of investigation have now converged on a model in which DNA loops, generated by the loop extrusion mechanism, are the basic organizational and functional units of the chromosome.
Collapse
Affiliation(s)
- Shelley Sazer
- Verna and Marrs McLean Department of Biochemistry and Molecular BiologyBaylor College of MedicineHoustonTexas
| | - Helmut Schiessel
- Institute Lorentz for Theoretical PhysicsLeiden UniversityLeidenThe Netherlands
| |
Collapse
|