1
|
Zhang D, Dai J, Cao Y, Wang Z, Qiao Z, Qiao Z. Nicotine exposure of male mice protects offspring against carbon tetrachloride-induced acute liver injury. J Biochem Mol Toxicol 2022; 36:e23069. [PMID: 35411647 DOI: 10.1002/jbt.23069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/19/2021] [Accepted: 03/23/2022] [Indexed: 11/09/2022]
Abstract
Paternal nicotine exposure can cause a phenotypic change in offspring. To study whether paternal nicotine exposure influences acute liver injury and repair of the offspring, we established a paternal nicotine exposure model in mice and treated the offspring mice with carbon tetrachloride (CCl4 ) to induce acute liver injury. After the treatment of CCl4 , the levels of alanine aminotransferase and aspartate aminotransferase in offspring serum of paternal nicotine exposed mice are about 37.44%, and 30.21% lower than the control mice, respectively. Transcription profiling screen and bioinformatics analysis of differently expressed genes in F1 mice liver revealed that the Wnt pathway was altered. The results demonstrate that nicotine exposure in male mice could enhance the activation of the Wnt pathway in F1 mice liver. The Wnt pathway facilitates cell proliferation and tissue repair. In conclusion, our findings showed that nicotine exposure of male mice protects hepatic against CCl4 -induced acute injury in offspring by activating the Wnt pathway in the F1 liver.
Collapse
Affiliation(s)
- Dong Zhang
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingbo Dai
- Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, Illinois, USA
| | - Yong Cao
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaoxia Wang
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiguang Qiao
- Renji Hospital
- South Campus, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongdong Qiao
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Rutkowska J, Lagisz M, Bonduriansky R, Nakagawa S. Mapping the past, present and future research landscape of paternal effects. BMC Biol 2020; 18:183. [PMID: 33246472 PMCID: PMC7694421 DOI: 10.1186/s12915-020-00892-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although in all sexually reproducing organisms an individual has a mother and a father, non-genetic inheritance has been predominantly studied in mothers. Paternal effects have been far less frequently studied, until recently. In the last 5Â years, research on environmentally induced paternal effects has grown rapidly in the number of publications and diversity of topics. Here, we provide an overview of this field using synthesis of evidence (systematic map) and influence (bibliometric analyses). RESULTS We find that motivations for studies into paternal effects are diverse. For example, from the ecological and evolutionary perspective, paternal effects are of interest as facilitators of response to environmental change and mediators of extended heredity. Medical researchers track how paternal pre-fertilization exposures to factors, such as diet or trauma, influence offspring health. Toxicologists look at the effects of toxins. We compare how these three research guilds design experiments in relation to objects of their studies: fathers, mothers and offspring. We highlight examples of research gaps, which, in turn, lead to future avenues of research. CONCLUSIONS The literature on paternal effects is large and disparate. Our study helps in fostering connections between areas of knowledge that develop in parallel, but which could benefit from the lateral transfer of concepts and methods.
Collapse
Affiliation(s)
- Joanna Rutkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Russell Bonduriansky
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| |
Collapse
|
3
|
Hashimoto M, Ho G, Sugama S, Takamatsu Y, Shimizu Y, Takenouchi T, Waragai M, Masliah E. Evolvability of Amyloidogenic Proteins in Human Brain. J Alzheimers Dis 2018; 62:73-83. [PMID: 29439348 PMCID: PMC5817905 DOI: 10.3233/jad-170894] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2017] [Indexed: 12/29/2022]
Abstract
Currently, the physiological roles of amyloidogenic proteins (APs) in human brain, such as amyloid-β and α-synuclein, are elusive. Given that many APs arose by gene duplication and have been resistant against the pressures of natural selection, APs may be associated with some functions that are advantageous for survival of offspring. Nonetheless, evolvability is the sole physiological quality of APs that has been characterized in microorganisms such as yeast. Since yeast and human brain may share similar strategies in coping with diverse range of critical environmental stresses, the objective of this paper was to discuss the potential role of evolvability of APs in aging-associated neurodegenerative disorders, including Alzheimer's disease and Parkinson's disease. Given the heterogeneity of APs in terms of structure and cytotoxicity, it is argued that APs might be involved in preconditioning against diverse stresses in human brain. It is further speculated that these stress-related APs, most likely protofibrillar forms, might be transmitted to offspring via the germline, conferring preconditioning against forthcoming stresses. Thus, APs might represent a vehicle for the inheritance of the acquired characteristics against environmental stresses. Curiously, such a characteristic of APs is reminiscent of Charles Darwin's 'gemmules', imagined molecules of heritability described in his pangenesis theory. We propose that evolvability might be a physiological function of APs during the reproductive stage and neurodegenerative diseases could be a by-product effect manifested later in aging. Collectively, our evolvability hypothesis may play a complementary role in the pathophysiology of APs with the conventional amyloid cascade hypothesis.
Collapse
Affiliation(s)
- Makoto Hashimoto
- Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Gilbert Ho
- PCND Neuroscience Research Institute, Poway, CA, USA
| | - Shuei Sugama
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Yoshiki Takamatsu
- Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Yuka Shimizu
- Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Takato Takenouchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Masaaki Waragai
- Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Eliezer Masliah
- Division of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Hashimoto M, Ho G, Takamatsu Y, Wada R, Sugama S, Takenouchi T, Masliah E, Waragai M. Possible Role of the Polyglutamine Elongation in Evolution of Amyloid-Related Evolvability. J Huntingtons Dis 2018; 7:297-307. [PMID: 30372687 PMCID: PMC6294593 DOI: 10.3233/jhd-180309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The polyglutamine (polyQ) diseases, such as Huntington's disease and the spinocerebellar ataxias, are characterized by the accumulation of elongated polyQ sequences (epolyQ) and mostly occur during midlife. Considering that polyQ disorders have not been selected out in evolution, there might be important physiological functions of epolyQ during development and/or reproduction. In a similar context, the physiological functions of neurodegeneration-associated amyloidogenic proteins (APs), such as β-amyloid in Alzheimer's disease and α-synuclein in Parkinson's disease, remain elusive. In this regard, we recently proposed that evolvability for coping with diverse stressors in the brain, which is beneficial for offspring, might be relevant to the physiological functions of APs. Given analogous properties of APs and epolyQ in terms of neurotoxic amyloid-fibril formation, the objective of this paper is to determine whether evolvability could also be applied to the physiological functions of epolyQ. Indeed, APs and epolyQ are similar in many ways, including functional redundancy of non-amyloidogenic homologues, hormesis conferred by the heterogeneity of the stress-induced protein aggregates, the transgenerational prion-like transmission of the protein aggregates via germ cells, and the antagonistic pleiotropy relationship between evolvability and neurodegenerative disease. Given that epolyQ is widely expressed from microorganisms to human brain, whereas APs are only identified in vertebrates, evolvability of epolyQ is considered to be much more primitive compared to those of APs during evolution. Collectively, epolyQ may be not only be important in the pathophysiology of polyQ diseases, but also in the evolution of amyloid-related evolvability.
Collapse
Affiliation(s)
- Makoto Hashimoto
- Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, Japan
| | - Gilbert Ho
- PCND Neuroscience Research Institute, Poway, CA, USA
| | - Yoshiki Takamatsu
- Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, Japan
| | - Ryoko Wada
- Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, Japan
| | - Shuei Sugama
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Takato Takenouchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Eliezer Masliah
- Division of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Masaaki Waragai
- Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, Japan
| |
Collapse
|