1
|
Hu Y, Feng B, Wang F. Analysis of maternal effect genes from maternal mRNA in eggs of Sogatella furcifera. Heliyon 2024; 10:e34014. [PMID: 39055844 PMCID: PMC11269863 DOI: 10.1016/j.heliyon.2024.e34014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/07/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
To understand how many kinds of mRNAs in female adults can be transferred into the eggs and the molecular basis of embryonic axis specification in Sogatella furcifera, we performed de novo transcriptome sequencing of six cDNA libraries of female adults and unfertilized eggs. Total 60,306 unigenes were obtained, with an average length of 1114.51 bp and N50 length of 2112 bp. Total 2900 differentially expressed genes with 496 upregulated and 2404 downregulated were found in unfertilized egg compared to female adult. Most of mRNAs in female adult could be passed into its eggs. Total 65 maternal effect genes were identified, including many homologous genes involved in embryonic axis specialization of D. melanogaster. This study provide transcriptome resources to elucidate the functions of maternal effect genes and the molecular basis of embryonic axis specification in S. furcifera in the future.
Collapse
Affiliation(s)
- Yang Hu
- State Key Laboratory for Biocontrol and Institute of Entomology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Bo Feng
- State Key Laboratory for Biocontrol and Institute of Entomology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fanghai Wang
- State Key Laboratory for Biocontrol and Institute of Entomology, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
2
|
Meger AT, Spence MA, Sandhu M, Matthews D, Chen J, Jackson CJ, Raman S. Rugged fitness landscapes minimize promiscuity in the evolution of transcriptional repressors. Cell Syst 2024; 15:374-387.e6. [PMID: 38537640 PMCID: PMC11299162 DOI: 10.1016/j.cels.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 09/08/2023] [Accepted: 03/05/2024] [Indexed: 04/20/2024]
Abstract
How a protein's function influences the shape of its fitness landscape, smooth or rugged, is a fundamental question in evolutionary biochemistry. Smooth landscapes arise when incremental mutational steps lead to a progressive change in function, as commonly seen in enzymes and binding proteins. On the other hand, rugged landscapes are poorly understood because of the inherent unpredictability of how sequence changes affect function. Here, we experimentally characterize the entire sequence phylogeny, comprising 1,158 extant and ancestral sequences, of the DNA-binding domain (DBD) of the LacI/GalR transcriptional repressor family. Our analysis revealed an extremely rugged landscape with rapid switching of specificity, even between adjacent nodes. Further, the ruggedness arises due to the necessity of the repressor to simultaneously evolve specificity for asymmetric operators and disfavors potentially adverse regulatory crosstalk. Our study provides fundamental insight into evolutionary, molecular, and biophysical rules of genetic regulation through the lens of fitness landscapes.
Collapse
Affiliation(s)
- Anthony T Meger
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Matthew A Spence
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Mahakaran Sandhu
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Dana Matthews
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Jackie Chen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia; ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia; ARC Centre of Excellence for Innovations in Synthetic Biology, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| | - Srivatsan Raman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
3
|
Mulhair PO, Holland PWH. Evolution of the insect Hox gene cluster: Comparative analysis across 243 species. Semin Cell Dev Biol 2024; 152-153:4-15. [PMID: 36526530 PMCID: PMC10914929 DOI: 10.1016/j.semcdb.2022.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
The Hox gene cluster is an iconic example of evolutionary conservation between divergent animal lineages, providing evidence for ancient similarities in the genetic control of embryonic development. However, there are differences between taxa in gene order, gene number and genomic organisation implying conservation is not absolute. There are also examples of radical functional change of Hox genes; for example, the ftz, zen and bcd genes in insects play roles in segmentation, extraembryonic membrane formation and body polarity, rather than specification of anteroposterior position. There have been detailed descriptions of Hox genes and Hox gene clusters in several insect species, including important model systems, but a large-scale overview has been lacking. Here we extend these studies using the publicly-available complete genome sequences of 243 insect species from 13 orders. We show that the insect Hox cluster is characterised by large intergenic distances, consistently extreme in Odonata, Orthoptera, Hemiptera and Trichoptera, and always larger between the 'posterior' Hox genes. We find duplications of ftz and zen in many species and multiple independent cluster breaks, although certain modules of neighbouring genes are rarely broken apart suggesting some organisational constraints. As more high-quality genomes are obtained, a challenge will be to relate structural genomic changes to phenotypic change across insect phylogeny.
Collapse
Affiliation(s)
- Peter O Mulhair
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK.
| | - Peter W H Holland
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK.
| |
Collapse
|
4
|
King SB, Singh M. Primate protein-ligand interfaces exhibit significant conservation and unveil human-specific evolutionary drivers. PLoS Comput Biol 2023; 19:e1010966. [PMID: 36952575 PMCID: PMC10035887 DOI: 10.1371/journal.pcbi.1010966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/22/2023] [Indexed: 03/25/2023] Open
Abstract
Despite the vast phenotypic differences observed across primates, their protein products are largely similar to each other at the sequence level. We hypothesized that, since proteins accomplish all their functions via interactions with other molecules, alterations in the sites that participate in these interactions may be of critical importance. To uncover the extent to which these sites evolve across primates, we built a structurally-derived dataset of ~4,200 one-to-one orthologous sequence groups across 18 primate species, consisting of ~68,000 ligand-binding sites that interact with DNA, RNA, small molecules, ions, or peptides. Using this dataset, we identify functionally important patterns of conservation and variation within the amino acid residues that facilitate protein-ligand interactions across the primate phylogeny. We uncover that interaction sites are significantly more conserved than other sites, and that sites binding DNA and RNA further exhibit the lowest levels of variation. We also show that the subset of ligand-binding sites that do vary are enriched in components of gene regulatory pathways and uncover several instances of human-specific ligand-binding site changes within transcription factors. Altogether, our results suggest that ligand-binding sites have experienced selective pressure in primates and propose that variation in these sites may have an outsized effect on phenotypic variation in primates through pleiotropic effects on gene regulation.
Collapse
Affiliation(s)
- Sean B. King
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Mona Singh
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
5
|
Nicolini F, Martelossi J, Forni G, Savojardo C, Mantovani B, Luchetti A. Comparative genomics of Hox and ParaHox genes among major lineages of Branchiopoda with emphasis on tadpole shrimps. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1046960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Hox and ParaHox genes (HPHGs) are key developmental genes that pattern regional identity along the anterior–posterior body axis of most animals. Here, we identified HPHGs in tadpole shrimps (Pancrustacea, Branchiopoda, Notostraca), an iconic example of the so-called “living fossils” and performed a comparative genomics analysis of HPHGs and the Hox cluster among major branchiopod lineages. Notostraca possess the entire Hox complement, and the Hox cluster seems to be split into two different subclusters, although we were not able to support this finding with chromosome-level assemblies. However, the genomic structure of Hox genes in Notostraca appears more derived than that of Daphnia spp., which instead retains the plesiomorphic condition of a single compact cluster. Spinicaudata and Artemia franciscana show instead a Hox cluster subdivided across two or more genomic scaffolds with some orthologs either duplicated or missing. Yet, branchiopod HPHGs are similar among the various clades in terms of both intron length and number, as well as in their pattern of molecular evolution. Sequence substitution rates are in fact generally similar for most of the branchiopod Hox genes and the few differences we found cannot be traced back to natural selection, as they are not associated with any signals of diversifying selection or substantial switches in selective modes. Altogether, these findings do not support a significant stasis in the Notostraca Hox cluster and further confirm how morphological evolution is not tightly associated with genome dynamics.
Collapse
|
6
|
Abrams MB, Brem RB. Temperature-dependent genetics of thermotolerance between yeast species. Front Ecol Evol 2022; 10:859904. [PMID: 36911365 PMCID: PMC10004143 DOI: 10.3389/fevo.2022.859904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many traits of industrial and basic biological interest arose long ago, and manifest now as fixed differences between a focal species and its reproductively isolated relatives. In these systems, extant individuals can hold clues to the mechanisms by which phenotypes evolved in their ancestors. We harnessed yeast thermotolerance as a test case for such molecular-genetic inferences. In viability experiments, we showed that extant Saccharomyces cerevisiae survived at temperatures where cultures of its sister species S. paradoxus died out. Then, focusing on loci that contribute to this difference, we found that the genetic mechanisms of high-temperature growth changed with temperature. We also uncovered an enrichment of low-frequency variants at thermotolerance loci in S. cerevisiae population sequences, suggestive of a history of non-neutral selective forces acting at these genes. We interpret these results in light of models of the evolutionary mechanisms by which the thermotolerance trait arose in the S. cerevisiae lineage. Together, our results and interpretation underscore the power of genetic approaches to explore how an ancient trait came to be.
Collapse
Affiliation(s)
- Melanie B. Abrams
- UC Berkeley, Department of Plant and Microbial Biology, Berkeley, CA, USA
| | - Rachel B. Brem
- UC Berkeley, Department of Plant and Microbial Biology, Berkeley, CA, USA
| |
Collapse
|
7
|
Schmidt-Ott U, Yoon Y. Evolution and loss of ß-catenin and TCF-dependent axis specification in insects. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100877. [PMID: 35104659 PMCID: PMC9133022 DOI: 10.1016/j.cois.2022.100877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Mechanisms and evolution of primary axis specification in insects are discussed in the context of the roles of ß-catenin and TCF in polarizing metazoan embryos. Three hypotheses are presented. First, insects with sequential segmentation and posterior growth use cell-autonomous mechanisms for establishing embryo polarity via the nuclear ratio of ß-catenin and TCF. Second, TCF homologs establish competence for anterior specification. Third, the evolution of simultaneous segmentation mechanisms, also known as long-germ development, resulted in primary axis specification mechanisms that are independent of ß-catenin but reliant on TCF, a condition that preceded the frequent replacement of anterior determinants in long germ insects.
Collapse
Affiliation(s)
- Urs Schmidt-Ott
- University of Chicago, Dept. of Organismal Biology and Anatomy, 1027 East 57th Street, Chicago, IL 60637, USA.
| | - Yoseop Yoon
- University of California, Irvine, Dept. of Microbiology and Molecular Genetics, School of Medicine, 811 Health Sciences Rd., Med Sci B262, CA 92617, USA
| |
Collapse
|
8
|
Levin N, Yamakawa S, Morino Y, Wada H. Perspectives on divergence of early developmental regulatory pathways: Insight from the evolution of echinoderm double negative gate. Curr Top Dev Biol 2022; 146:1-24. [PMID: 35152980 DOI: 10.1016/bs.ctdb.2021.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Evolution of gene regulatory networks (GRN) that orchestrate the highly coordinated course of development, is made possible by the network's robust nature for incorporating change without detrimental developmental outcome. It can be considered that the upstream network regulating early development, has immense influence over succeeding pathways thus may be less subjected to evolutionary modification. However, recent studies show incorporation of novel genes in such early developmental pathways such as the echinoderm pmar1 as evidence for drastic change occurring high in the GRN hierarchy. Here we discuss the mechanisms that underlie divergence of early developmental pathways utilizing promising insights from the evolution of echinoderm early mesoderm specification pathway of Pmar1-HesC double negative gate found solely in the euechinoid sea urchin lineage, as well as examples from other groups such as Spiralia and Drosophila.
Collapse
Affiliation(s)
- Nina Levin
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shumpei Yamakawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshiaki Morino
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroshi Wada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
9
|
AlZaben F, Chuong JN, Abrams MB, Brem RB. Joint effects of genes underlying a temperature specialization tradeoff in yeast. PLoS Genet 2021; 17:e1009793. [PMID: 34520469 PMCID: PMC8462698 DOI: 10.1371/journal.pgen.1009793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 09/24/2021] [Accepted: 08/26/2021] [Indexed: 12/02/2022] Open
Abstract
A central goal of evolutionary genetics is to understand, at the molecular level, how organisms adapt to their environments. For a given trait, the answer often involves the acquisition of variants at unlinked sites across the genome. Genomic methods have achieved landmark successes in pinpointing these adaptive loci. To figure out how a suite of adaptive alleles work together, and to what extent they can reconstitute the phenotype of interest, requires their transfer into an exogenous background. We studied the joint effect of adaptive, gain-of-function thermotolerance alleles at eight unlinked genes from Saccharomyces cerevisiae, when introduced into a thermosensitive sister species, S. paradoxus. Although the loci damped each other’s beneficial impact (that is, they were subject to negative epistasis), most boosted high-temperature growth alone and in combination, and none was deleterious. The complete set of eight genes was sufficient to confer ~15% of the S. cerevisiae thermotolerance phenotype in the S. paradoxus background. The same loci also contributed to a heretofore unknown advantage in cold growth by S. paradoxus. Together, our data establish temperature resistance in yeasts as a model case of a genetically complex evolutionary tradeoff, which can be partly reconstituted from the sequential assembly of unlinked underlying loci. Organisms adapt to threats in the environment by acquiring DNA sequence variants that tweak traits to improve fitness. Experimental studies of this process have proven to be a particular challenge when they involve manipulation of a suite of genes, all on different chromosomes. We set out to understand how so many loci could work together to confer a trait. We used as a model system eight genes that govern the ability of the unicellular yeast Saccharomyces cerevisiae to grow at high temperature. We introduced these variant loci stepwise into a non-thermotolerant sister species, and found that the more S. cerevisiae alleles we added, the better the phenotype. We saw no evidence for toxic interactions between the genes as they were combined. We also used the eight-fold transgenic to dissect the biological mechanism of thermotolerance. And we discovered a tradeoff: the same alleles that boosted growth at high temperature eroded the organism’s ability to deal with cold conditions. These results serve as a case study of modular construction of a trait from nature, by assembling the genes together in one genome.
Collapse
Affiliation(s)
- Faisal AlZaben
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California, United States of America
| | - Julie N. Chuong
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California, United States of America
| | - Melanie B. Abrams
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California, United States of America
| | - Rachel B. Brem
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Onal P, Gunasinghe HI, Umezawa KY, Zheng M, Ling J, Azeez L, Dalmeus A, Tazin T, Small S. Suboptimal Intermediates Underlie Evolution of the Bicoid Homeodomain. Mol Biol Evol 2021; 38:2179-2190. [PMID: 33599280 PMCID: PMC8136501 DOI: 10.1093/molbev/msab051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Changes in regulatory networks generate materials for evolution to create phenotypic diversity. For transcription networks, multiple studies have shown that alterations in binding sites of cis-regulatory elements correlate well with the gain or loss of specific features of the body plan. Less is known about alterations in the amino acid sequences of the transcription factors (TFs) that bind these elements. Here we study the evolution of Bicoid (Bcd), a homeodomain (HD) protein that is critical for anterior embryo patterning in Drosophila. The ancestor of Bcd (AncBcd) emerged after a duplication of a Zerknullt (Zen)-like ancestral protein (AncZB) in a suborder of flies. AncBcd diverged from AncZB, gaining novel transcriptional and translational activities. We focus on the evolution of the HD of AncBcd, which binds to DNA and RNA, and is comprised of four subdomains: an N-terminal arm (NT) and three helices; H1, H2, and Recognition Helix (RH). Using chimeras of subdomains and gene rescue assays in Drosophila, we show that robust patterning activity of the Bcd HD (high frequency rescue to adulthood) is achieved only when amino acid substitutions in three separate subdomains (NT, H1, and RH) are combined. Other combinations of subdomains also yield full rescue, but with lower penetrance, suggesting alternative suboptimal activities. Our results suggest a multistep pathway for the evolution of the Bcd HD that involved intermediate HD sequences with suboptimal activities, which constrained and enabled further evolutionary changes. They also demonstrate critical epistatic forces that contribute to the robust function of a DNA-binding domain.
Collapse
Affiliation(s)
- Pinar Onal
- Department of Biology, New York University, New York, NY, USA
| | | | | | - Michael Zheng
- Department of Biology, New York University, New York, NY, USA
| | - Jia Ling
- Department of Biology, New York University, New York, NY, USA
| | - Leen Azeez
- Department of Biology, New York University, New York, NY, USA
| | - Anecine Dalmeus
- Department of Biology, New York University, New York, NY, USA
| | - Tasmima Tazin
- Department of Biology, New York University, New York, NY, USA
| | - Stephen Small
- Department of Biology, New York University, New York, NY, USA
| |
Collapse
|
11
|
Abrams MB, Dubin CA, AlZaben F, Bravo J, Joubert PM, Weiss CV, Brem RB. Population and comparative genetics of thermotolerance divergence between yeast species. G3 (BETHESDA, MD.) 2021; 11:jkab139. [PMID: 33914073 PMCID: PMC8495929 DOI: 10.1093/g3journal/jkab139] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/20/2021] [Indexed: 12/04/2022]
Abstract
Many familiar traits in the natural world-from lions' manes to the longevity of bristlecone pine trees-arose in the distant past, and have long since fixed in their respective species. A key challenge in evolutionary genetics is to figure out how and why species-defining traits have come to be. We used the thermotolerance growth advantage of the yeast Saccharomyces cerevisiae over its sister species Saccharomyces paradoxus as a model for addressing these questions. Analyzing loci at which the S. cerevisiae allele promotes thermotolerance, we detected robust evidence for positive selection, including amino acid divergence between the species and conservation within S. cerevisiae populations. Because such signatures were particularly strong at the chromosome segregation gene ESP1, we used this locus as a case study for focused mechanistic follow-up. Experiments revealed that, in culture at high temperature, the S. paradoxus ESP1 allele conferred a qualitative defect in biomass accumulation and cell division relative to the S. cerevisiae allele. Only genetic divergence in the ESP1 coding region mattered phenotypically, with no functional impact detectable from the promoter. Our data support a model in which an ancient ancestor of S. cerevisiae, under selection to boost viability at high temperature, acquired amino acid variants at ESP1 and many other loci, which have been constrained since then. Complex adaptations of this type hold promise as a paradigm for interspecies genetics, especially in deeply diverged traits that may have taken millions of years to evolve.
Collapse
Affiliation(s)
- Melanie B Abrams
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Claire A Dubin
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Faisal AlZaben
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Juan Bravo
- Graduate Program in the Biology of Aging, University of Southern California, Los Angeles, CA 90095, USA
| | - Pierre M Joubert
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Carly V Weiss
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Rachel B Brem
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| |
Collapse
|
12
|
Spence MA, Kaczmarski JA, Saunders JW, Jackson CJ. Ancestral sequence reconstruction for protein engineers. Curr Opin Struct Biol 2021; 69:131-141. [PMID: 34023793 DOI: 10.1016/j.sbi.2021.04.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/22/2021] [Accepted: 04/07/2021] [Indexed: 12/11/2022]
Abstract
In addition to its value in the study of molecular evolution, ancestral sequence reconstruction (ASR) has emerged as a useful methodology for engineering proteins with enhanced properties. Proteins generated by ASR often exhibit unique or improved activity, stability, and/or promiscuity, all of which are properties that are valued by protein engineers. Comparison between extant proteins and evolutionary intermediates generated by ASR also allows protein engineers to identify substitutions that have contributed to functional innovation or diversification within protein families. As ASR becomes more widely adopted as a protein engineering approach, it is important to understand the applications, limitations, and recent developments of this technique. This review highlights recent exemplifications of ASR, as well as technical aspects of the reconstruction process that are relevant to protein engineering.
Collapse
Affiliation(s)
- Matthew A Spence
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Joe A Kaczmarski
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Jake W Saunders
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia; ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia; ARC Centre of Excellence for Innovations in Synthetic Biology, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
13
|
Gurska D, Vargas Jentzsch IM, Panfilio KA. Unexpected mutual regulation underlies paralogue functional diversification and promotes epithelial tissue maturation in Tribolium. Commun Biol 2020; 3:552. [PMID: 33020571 PMCID: PMC7536231 DOI: 10.1038/s42003-020-01250-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 08/21/2020] [Indexed: 02/03/2023] Open
Abstract
Insect Hox3/zen genes represent an evolutionary hotspot for changes in function and copy number. Single orthologues are required either for early specification or late morphogenesis of the extraembryonic tissues, which protect the embryo. The tandemly duplicated zen paralogues of the beetle Tribolium castaneum present a unique opportunity to investigate both functions in a single species. We dissect the paralogues' expression dynamics (transcript and protein) and transcriptional targets (RNA-seq after RNAi) throughout embryogenesis. We identify an unexpected role of Tc-Zen2 in repression of Tc-zen1, generating a negative feedback loop that promotes developmental progression. Tc-Zen2 regulation is dynamic, including within co-expressed multigene loci. We also show that extraembryonic development is the major event within the transcriptional landscape of late embryogenesis and provide a global molecular characterization of the extraembryonic serosal tissue. Altogether, we propose that paralogue mutual regulation arose through multiple instances of zen subfunctionalization, leading to their complementary extant roles.
Collapse
Affiliation(s)
- Daniela Gurska
- Institute of Zoology: Developmental Biology, University of Cologne, 50674, Cologne, Germany
| | - Iris M Vargas Jentzsch
- Institute of Zoology: Developmental Biology, University of Cologne, 50674, Cologne, Germany
| | - Kristen A Panfilio
- Institute of Zoology: Developmental Biology, University of Cologne, 50674, Cologne, Germany.
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
14
|
Blank PN, Barnett AA, Ronnebaum TA, Alderfer KE, Gillott BN, Christianson DW, Himmelberger JA. Structural studies of geranylgeranylglyceryl phosphate synthase, a prenyltransferase found in thermophilic Euryarchaeota. Acta Crystallogr D Struct Biol 2020; 76:542-557. [PMID: 32496216 PMCID: PMC7271946 DOI: 10.1107/s2059798320004878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 04/05/2020] [Indexed: 12/26/2022] Open
Abstract
Archaea are uniquely adapted to thrive in harsh environments, and one of these adaptations involves the archaeal membrane lipids, which are characterized by their isoprenoid alkyl chains connected via ether linkages to glycerol 1-phosphate. The membrane lipids of the thermophilic and acidophilic euryarchaeota Thermoplasma volcanium are exclusively glycerol dibiphytanyl glycerol tetraethers. The first committed step in the biosynthetic pathway of these archaeal lipids is the formation of the ether linkage between glycerol 1-phosphate and geranylgeranyl diphosphate, and is catalyzed by the enzyme geranylgeranylglyceryl phosphate synthase (GGGPS). The 1.72 Å resolution crystal structure of GGGPS from T. volcanium (TvGGGPS) in complex with glycerol and sulfate is reported here. The crystal structure reveals TvGGGPS to be a dimer, which is consistent with the absence of the aromatic anchor residue in helix α5a that is required for hexamerization in other GGGPS homologs; the hexameric quaternary structure in GGGPS is thought to provide thermostability. A phylogenetic analysis of the Euryarchaeota and a parallel ancestral state reconstruction investigated the relationship between optimal growth temperature and the ancestral sequences. The presence of an aromatic anchor residue is not explained by temperature as an ecological parameter. An examination of the active site of the TvGGGPS dimer revealed that it may be able to accommodate longer isoprenoid substrates, supporting an alternative pathway of isoprenoid membrane-lipid synthesis.
Collapse
Affiliation(s)
- P. N. Blank
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - A. A. Barnett
- Department of Biology, DeSales University, 2755 Station Avenue, Center Valley, PA 18034, USA
| | - T. A. Ronnebaum
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - K. E. Alderfer
- Department of Chemistry and Physics, DeSales University, 2755 Station Avenue, Center Valley, PA 18034, USA
| | - B. N. Gillott
- Department of Chemistry and Physics, DeSales University, 2755 Station Avenue, Center Valley, PA 18034, USA
| | - D. W. Christianson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - J. A. Himmelberger
- Department of Chemistry and Physics, DeSales University, 2755 Station Avenue, Center Valley, PA 18034, USA
| |
Collapse
|
15
|
Yamazaki A, Morino Y, Urata M, Yamaguchi M, Minokawa T, Furukawa R, Kondo M, Wada H. pmar1/ phb homeobox genes and the evolution of the double-negative gate for endomesoderm specification in echinoderms. Development 2020; 147:dev.182139. [PMID: 32001441 DOI: 10.1242/dev.182139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/20/2020] [Indexed: 12/18/2022]
Abstract
In several model animals, the earliest phases of embryogenesis are regulated by lineage-specific genes, such as Drosophila bicoid Sea urchin (echinoid) embryogenesis is initiated by zygotic expression of pmar1, a paired-class homeobox gene that has been considered to be present only in the lineage of modern urchins (euechinoids). In euechinoids, Pmar1 promotes endomesoderm specification by repressing the hairy and enhancer of split C (hesC) gene. Here, we have identified the basal echinoid (cidaroid) pmar1 gene, which also promotes endomesoderm specification but not by repressing hesC A further search for related genes demonstrated that other echinoderms have pmar1-related genes named phb Functional analyses of starfish Phb proteins indicated that, similar to cidaroid Pmar1, they promote activation of endomesoderm regulatory gene orthologs via an unknown repressor that is not HesC. Based on these results, we propose that Pmar1 may have recapitulated the regulatory function of Phb during the early diversification of echinoids and that the additional repressor HesC was placed under the control of Pmar1 in the euechinoid lineage. This case provides an exceptional model for understanding how early developmental processes diverge.
Collapse
Affiliation(s)
- Atsuko Yamazaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Yoshiaki Morino
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Makoto Urata
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-cho, Ishikawa 927-0553, Japan.,Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| | - Masaaki Yamaguchi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| | - Takuya Minokawa
- Research Center for Marine Biology, Tohoku University, Sakamoto 9, Asamushi, Aomori 039-3501, Japan
| | - Ryohei Furukawa
- Department of Biology, Research and Education Center for Natural Sciences, Keio University, Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa 223-8521, Japan
| | - Mariko Kondo
- Misaki Marine Biological Station, Graduate School of Science, The University of Tokyo, 1024 Koajiro, Misaki, Miura, Kanagawa 238-0225, Japan
| | - Hiroshi Wada
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
16
|
Evolutionary Dynamics of the SKN-1 → MED → END-1,3 Regulatory Gene Cascade in Caenorhabditis Endoderm Specification. G3-GENES GENOMES GENETICS 2020; 10:333-356. [PMID: 31740453 PMCID: PMC6945043 DOI: 10.1534/g3.119.400724] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gene regulatory networks and their evolution are important in the study of animal development. In the nematode, Caenorhabditis elegans, the endoderm (gut) is generated from a single embryonic precursor, E. Gut is specified by the maternal factor SKN-1, which activates the MED → END-1,3 → ELT-2,7 cascade of GATA transcription factors. In this work, genome sequences from over two dozen species within the Caenorhabditis genus are used to identify MED and END-1,3 orthologs. Predictions are validated by comparison of gene structure, protein conservation, and putative cis-regulatory sites. All three factors occur together, but only within the Elegans supergroup, suggesting they originated at its base. The MED factors are the most diverse and exhibit an unexpectedly extensive gene amplification. In contrast, the highly conserved END-1 orthologs are unique in nearly all species and share extended regions of conservation. The END-1,3 proteins share a region upstream of their zinc finger and an unusual amino-terminal poly-serine domain exhibiting high codon bias. Compared with END-1, the END-3 proteins are otherwise less conserved as a group and are typically found as paralogous duplicates. Hence, all three factors are under different evolutionary constraints. Promoter comparisons identify motifs that suggest the SKN-1, MED, and END factors function in a similar gut specification network across the Elegans supergroup that has been conserved for tens of millions of years. A model is proposed to account for the rapid origin of this essential kernel in the gut specification network, by the upstream intercalation of duplicate genes into a simpler ancestral network.
Collapse
|
17
|
Yoon Y, Klomp J, Martin-Martin I, Criscione F, Calvo E, Ribeiro J, Schmidt-Ott U. Embryo polarity in moth flies and mosquitoes relies on distinct old genes with localized transcript isoforms. eLife 2019; 8:e46711. [PMID: 31591963 PMCID: PMC6783274 DOI: 10.7554/elife.46711] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 09/06/2019] [Indexed: 01/07/2023] Open
Abstract
Unrelated genes establish head-to-tail polarity in embryos of different fly species, raising the question of how they evolve this function. We show that in moth flies (Clogmia, Lutzomyia), a maternal transcript isoform of odd-paired (Zic) is localized in the anterior egg and adopted the role of anterior determinant without essential protein change. Additionally, Clogmia lost maternal germ plasm, which contributes to embryo polarity in fruit flies (Drosophila). In culicine (Culex, Aedes) and anopheline mosquitoes (Anopheles), embryo polarity rests on a previously unnamed zinc finger gene (cucoid), or pangolin (dTcf), respectively. These genes also localize an alternative transcript isoform at the anterior egg pole. Basal-branching crane flies (Nephrotoma) also enrich maternal pangolin transcript at the anterior egg pole, suggesting that pangolin functioned as ancestral axis determinant in flies. In conclusion, flies evolved an unexpected diversity of anterior determinants, and alternative transcript isoforms with distinct expression can adopt fundamentally distinct developmental roles.
Collapse
Affiliation(s)
- Yoseop Yoon
- Department of Organismal Biology and AnatomyUniversity of ChicagoChicagoUnited States
| | - Jeff Klomp
- Department of Organismal Biology and AnatomyUniversity of ChicagoChicagoUnited States
| | - Ines Martin-Martin
- Laboratory of Malaria and Vector ResearchNational Institute of Allergy and Infectious DiseasesRockvilleUnited States
| | - Frank Criscione
- Laboratory of Malaria and Vector ResearchNational Institute of Allergy and Infectious DiseasesRockvilleUnited States
| | - Eric Calvo
- Laboratory of Malaria and Vector ResearchNational Institute of Allergy and Infectious DiseasesRockvilleUnited States
| | - Jose Ribeiro
- Laboratory of Malaria and Vector ResearchNational Institute of Allergy and Infectious DiseasesRockvilleUnited States
| | - Urs Schmidt-Ott
- Department of Organismal Biology and AnatomyUniversity of ChicagoChicagoUnited States
| |
Collapse
|
18
|
Abstract
ABSTRACT
There is now compelling evidence that many arthropods pattern their segments using a clock-and-wavefront mechanism, analogous to that operating during vertebrate somitogenesis. In this Review, we discuss how the arthropod segmentation clock generates a repeating sequence of pair-rule gene expression, and how this is converted into a segment-polarity pattern by ‘timing factor’ wavefronts associated with axial extension. We argue that the gene regulatory network that patterns segments may be relatively conserved, although the timing of segmentation varies widely, and double-segment periodicity appears to have evolved at least twice. Finally, we describe how the repeated evolution of a simultaneous (Drosophila-like) mode of segmentation within holometabolan insects can be explained by heterochronic shifts in timing factor expression plus extensive pre-patterning of the pair-rule genes.
Collapse
Affiliation(s)
- Erik Clark
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Andrew D. Peel
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Michael Akam
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| |
Collapse
|
19
|
Dissecting Trait Variation across Species Barriers. Trends Ecol Evol 2019; 34:1131-1136. [PMID: 31443904 DOI: 10.1016/j.tree.2019.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/16/2019] [Accepted: 07/23/2019] [Indexed: 11/20/2022]
Abstract
Dissecting the basis of naturally occurring trait variation is one of the central goals of modern genetics. For eukaryotes, classic methods for this purpose rely on screens of recombinants from matings between distinct parents. These tools cannot be used in studies of species that cannot mate to form recombinant progeny in the first place. However, new approaches are coming online to shuffle the genomes of otherwise incompatible species. With them, geneticists can elucidate how evolution built a new trait, even if it happened millions of years ago, in a lineage that is now reproductively cutoff from its closest relatives.
Collapse
|