1
|
Buenrostro-Muñoz J, Jarmusch SA, Souza V, Martínez-Cárdenas A, Fajardo-Hernández CA, Yeverino IR, Eguiarte LE, Figueroa M. Metabolomic Diversity in Microbial Mats Under Different Environmental Conditions: A Tool to Test Microbial Ecosystem Chemical Change. Chem Biodivers 2024; 21:e202300829. [PMID: 37721179 DOI: 10.1002/cbdv.202300829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/19/2023]
Abstract
Microbial mats are microbial communities capable of recycling the essential elements of life and considered to be the oldest evidence of microbial communities on Earth. Due to their uniqueness and limited sampling material, analyzing their metabolomic profile in different seasons or conditions is challenging. In this study, microbial mats from a small pond in the Cuatro Cienegas Basin in Coahuila, Mexico, were collected in wet and dry seasons. In addition to these samples, mesocosm experiments from the wet samples were set. These mats are elastic and rise after heavy rainfall by forming gas domes structures known as "Archean domes", by the outgassing of methanogenic bacteria, archaea, and sulfur bacteria. Extracts from all mats and mesocosms were subjected to untargeted mass spectrometry-based metabolomics and molecular networking analysis. Interestingly, each mat showed high chemical diversity that may be explained by the temporal dynamic processes in which they were sampled.
Collapse
Affiliation(s)
- Jhoselinne Buenrostro-Muñoz
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, 04530, México
- Posgrado de Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, 04530, México
| | - Scott A Jarmusch
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, DK-2800, Kongens Lyngby, Denmark
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, 04530, México
- Centro de Estudios del Cuaternario de Fuego-Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| | - Anahí Martínez-Cárdenas
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04530, México
| | | | - Itzel R Yeverino
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04530, México
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, 04530, México
| | - Mario Figueroa
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04530, México
| |
Collapse
|
2
|
Rodríguez-Cruz UE, Castelán-Sánchez HG, Madrigal-Trejo D, Eguiarte LE, Souza V. Uncovering novel bacterial and archaeal diversity: genomic insights from metagenome-assembled genomes in Cuatro Cienegas, Coahuila. Front Microbiol 2024; 15:1369263. [PMID: 38873164 PMCID: PMC11169877 DOI: 10.3389/fmicb.2024.1369263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/03/2024] [Indexed: 06/15/2024] Open
Abstract
A comprehensive study was conducted in the Cuatro Ciénegas Basin (CCB) in Coahuila, Mexico, which is known for its diversity of microorganisms and unique physicochemical properties. The study focused on the "Archaean Domes" (AD) site in the CCB, which is characterized by an abundance of hypersaline, non-lithifying microbial mats. In AD, we analyzed the small domes and circular structures using metagenome assembly genomes (MAGs) with the aim of expanding our understanding of the prokaryotic tree of life by uncovering previously unreported lineages, as well as analyzing the diversity of bacteria and archaea in the CCB. A total of 325 MAGs were identified, including 48 Archaea and 277 Bacteria. Remarkably, 22 archaea and 104 bacteria could not be classified even at the genus level, highlighting the remarkable novel diversity of the CCB. Besides, AD site exhibited significant diversity at the phylum level, with Proteobacteria being the most abundant, followed by Desulfobacteria, Spirochaetes, Bacteroidetes, Nanoarchaeota, Halobacteriota, Cyanobacteria, Planctomycetota, Verrucomicrobiota, Actinomycetes and Chloroflexi. In Archaea, the monophyletic groups of MAGs belonged to the Archaeoglobi, Aenigmarchaeota, Candidate Nanoarchaeota, and Halobacteriota. Among Bacteria, monophyletic groups were also identified, including Spirochaetes, Proteobacteria, Planctomycetes, Actinobacteria, Verrucomicrobia, Bacteroidetes, Candidate Bipolaricaulota, Desulfobacteria, and Cyanobacteria. These monophyletic groups were possibly influenced by geographic isolation, as well as the extreme and fluctuating environmental conditions in the pond AD, such as stoichiometric imbalance of C:N:P of 122:42:1, fluctuating pH (5-9.8) and high salinity (5.28% to saturation).
Collapse
Affiliation(s)
- Ulises E. Rodríguez-Cruz
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - David Madrigal-Trejo
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Estudios del Cuaternario de Fuego, Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| |
Collapse
|
3
|
Cisneros-Martínez AM, Rodriguez-Cruz UE, Alcaraz LD, Becerra A, Eguiarte LE, Souza V. Comparative evaluation of bioinformatic tools for virus-host prediction and their application to a highly diverse community in the Cuatro Ciénegas Basin, Mexico. PLoS One 2024; 19:e0291402. [PMID: 38300968 PMCID: PMC10833507 DOI: 10.1371/journal.pone.0291402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
Due to the enormous diversity of non-culturable viruses, new viruses must be characterized using culture-independent techniques. The associated host is an important phenotypic feature that can be inferred from metagenomic viral contigs thanks to the development of several bioinformatic tools. Here, we compare the performance of recently developed virus-host prediction tools on a dataset of 1,046 virus-host pairs and then apply the best-performing tools to a metagenomic dataset derived from a highly diverse transiently hypersaline site known as the Archaean Domes (AD) within the Cuatro Ciénegas Basin, Coahuila, Mexico. Among host-dependent methods, alignment-based approaches had a precision of 66.07% and a sensitivity of 24.76%, while alignment-free methods had an average precision of 75.7% and a sensitivity of 57.5%. RaFAH, a virus-dependent alignment-based tool, had the best overall performance (F1_score = 95.7%). However, when predicting the host of AD viruses, methods based on public reference databases (such as RaFAH) showed lower inter-method agreement than host-dependent methods run against custom databases constructed from prokaryotes inhabiting AD. Methods based on custom databases also showed the greatest agreement between the source environment and the predicted host taxonomy, habitat, lifestyle, or metabolism. This highlights the value of including custom data when predicting hosts on a highly diverse metagenomic dataset, and suggests that using a combination of methods and qualitative validations related to the source environment and predicted host biology can increase the number of correct predictions. Finally, these predictions suggest that AD viruses infect halophilic archaea as well as a variety of bacteria that may be halophilic, halotolerant, alkaliphilic, thermophilic, oligotrophic, sulfate-reducing, or marine, which is consistent with the specific environment and the known geological and biological evolution of the Cuatro Ciénegas Basin and its microorganisms.
Collapse
Affiliation(s)
- Alejandro Miguel Cisneros-Martínez
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Ulises E. Rodriguez-Cruz
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Luis D. Alcaraz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Arturo Becerra
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Centro de Estudios del Cuaternario de Fuego-Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| |
Collapse
|
4
|
Medina-Chávez NO, Torres-Cerda A, Chacón JM, Harcombe WR, De la Torre-Zavala S, Travisano M. Disentangling a metabolic cross-feeding in a halophilic archaea-bacteria consortium. Front Microbiol 2023; 14:1276438. [PMID: 38179456 PMCID: PMC10764424 DOI: 10.3389/fmicb.2023.1276438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
Microbial syntrophy, a cooperative metabolic interaction among prokaryotes, serves a critical role in shaping communities, due to the auxotrophic nature of many microorganisms. Syntrophy played a key role in the evolution of life, including the hypothesized origin of eukaryotes. In a recent exploration of the microbial mats within the exceptional and uniquely extreme Cuatro Cienegas Basin (CCB), a halophilic isolate, designated as AD140, emerged as a standout due to its distinct growth pattern. Subsequent genome sequencing revealed AD140 to be a co-culture of a halophilic archaeon from the Halorubrum genus and a marine halophilic bacterium, Marinococcus luteus, both occupying the same ecological niche. This intriguing coexistence hints at an early-stage symbiotic relationship that thrives on adaptability. By delving into their metabolic interdependence through genomic analysis, this study aims to uncover shared characteristics that enhance their symbiotic association, offering insights into the evolution of halophilic microorganisms and their remarkable adaptations to high-salinity environments.
Collapse
Affiliation(s)
- Nahui Olin Medina-Chávez
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States
- BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
| | - Abigail Torres-Cerda
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, San Nicolás de los Garza, San Nicolás de los Garza, Mexico
| | - Jeremy M. Chacón
- Minnesota Supercomputing Institute, Minneapolis, MN, United States
| | - William R. Harcombe
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States
- BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
| | - Susana De la Torre-Zavala
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, San Nicolás de los Garza, San Nicolás de los Garza, Mexico
| | - Michael Travisano
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States
- BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
- Minnesota Center for the Philosophy of Science, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
5
|
Souza V, Travisano M, Eguiarte LE. The Cuatro Ciénegas Basin. Curr Biol 2023; 33:R1214-R1216. [PMID: 38052166 DOI: 10.1016/j.cub.2023.10.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
In the state of Coahuila, Mexico, there is a very special place, just 290 km from the border with Texas: the oasis in the Cuatro Ciénegas Basin. Souza et al. describe how the geology of the basin has given rise to a unique chemistry and a community of organisms that have survived for eons and are found nowhere else on Earth.
Collapse
Affiliation(s)
- Valeria Souza
- Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico.
| | - Michael Travisano
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - Luis E Eguiarte
- Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico
| |
Collapse
|
6
|
Escudero-Agudelo J, Martínez-Villalobos J, Arocha-Garza H, Galán-Wong LJ, Avilés-Arnaut H, De la Torre-Zavala S. Systematic bioprospection for cellulolytic actinomycetes in the Chihuahuan Desert: isolation and enzymatic profiling. PeerJ 2023; 11:e16119. [PMID: 37790635 PMCID: PMC10542393 DOI: 10.7717/peerj.16119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 08/27/2023] [Indexed: 10/05/2023] Open
Abstract
The quest for microbial cellulases has intensified as a response to global challenges in biofuel production. The efficient deconstruction of lignocellulosic biomass holds promise for generating valuable products in various industries such as food, textile, and detergents. This article presents a systematic bioprospection aimed at isolating actinomycetes with exceptional cellulose deconstruction capabilities. Our methodology explored the biodiverse oligotrophic region of Cuatro Cienegas, Coahuila, within the Chihuahuan Desert. Among the evaluated actinomycetes collection, 78% exhibited cellulolytic activity. Through a meticulous screening process based on enzymatic index evaluation, we identified a highly cellulolytic Streptomyces strain for further investigation. Submerged fermentation of this strain revealed an endoglucanase enzymatic activity of 149 U/mg. Genomic analysis of strain Streptomyces sp. STCH565-A revealed unique configurations of carbohydrate-active enzyme (CAZyme) genes, underscoring its potential for lignocellulosic bioconversion applications. These findings not only highlight the significance of the Chihuahuan Desert as a rich source of cellulolytic microorganisms but also offer insights into the systematic exploration and selection of high-performing cellulolytic microorganisms for application in diverse environmental contexts. In conclusion, our bioprospecting study lays a foundation for harnessing the cellulolytic potential of actinomycetes from the Chihuahuan Desert, with implications for advancing cellulose deconstruction processes in various industries. The findings can serve as a blueprint for future bioprospecting efforts in different regions, facilitating the targeted discovery of microorganisms with exceptional cellulosic deconstruction capabilities.
Collapse
Affiliation(s)
- Janneth Escudero-Agudelo
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, San Nicolás de los Garza, Nuevo León, México
| | - Juan Martínez-Villalobos
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, San Nicolás de los Garza, Nuevo León, México
| | - Hector Arocha-Garza
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, San Nicolás de los Garza, Nuevo León, México
| | - Luis Jesús Galán-Wong
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, San Nicolás de los Garza, Nuevo León, México
| | - Hamlet Avilés-Arnaut
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, San Nicolás de los Garza, Nuevo León, México
| | - Susana De la Torre-Zavala
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, San Nicolás de los Garza, Nuevo León, México
| |
Collapse
|
7
|
Cisneros-Martínez AM, Eguiarte LE, Souza V. Metagenomic comparisons reveal a highly diverse and unique viral community in a seasonally fluctuating hypersaline microbial mat. Microb Genom 2023; 9:mgen001063. [PMID: 37459167 PMCID: PMC10438804 DOI: 10.1099/mgen.0.001063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 06/15/2023] [Indexed: 07/20/2023] Open
Abstract
In spring 2016, a shallow hypersaline pond (50×25 m) was found in the Cuatro Cienegas Basin (CCB). This pond, known as Archaean Domes (AD) because of its elastic microbial mats that form dome-shaped structures due to the production of reducing gases reminiscent of the Archaean eon, such as methane and hydrogen sulfide, harbour a highly diverse microbial community, rich in halophilic and methanogenic archaea. AD is a seasonally fluctuating hypersaline site, with salinity ranging from low hypersaline (5.3%) during the wet season to high hypersaline (saturation) during the dry season. To characterize the viral community and to test whether it resembles those of other hypersaline sites (whose diversity is conditioned by salinity), or if it is similar to other CCB sites (with which it shares a common geological history), we generated 12 metagenomes from different seasons and depths over a 4 year period and compared them to 35 metagenomes from varied environments. Haloarchaeaviruses were detected, but were never dominant (average of 15.37 % of the total viral species), and the viral community structure and diversity were not affected by environmental fluctuations. In fact, unlike other viral communities at hypersaline sites, AD remained more diverse than other environments regardless of season. β-Diversity analyses show that AD is closely related to other CCB sites, although it has a unique viral community that forms a cluster of its own. The similarity of two surface samples to the 30 and 50 cm depth samples, as well as the observed increase in diversity at greater depths, supports the hypothesis that the diversity of CCB has evolved as a result of a long time environmental stability of a deep aquifer that functions as a 'seed bank' of great microbial diversity that is transported to the surface by sporadic groundwater upwelling events.
Collapse
Affiliation(s)
- Alejandro Miguel Cisneros-Martínez
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Centro de Estudios del Cuaternario de Fuego-Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| |
Collapse
|
8
|
Medina-Chávez NO, Viladomat-Jasso M, Zarza E, Islas-Robles A, Valdivia-Anistro J, Thalasso-Siret F, Eguiarte LE, Olmedo-Álvarez G, Souza V, De la Torre-Zavala S. A Transiently Hypersaline Microbial Mat Harbors a Diverse and Stable Archaeal Community in the Cuatro Cienegas Basin, Mexico. ASTROBIOLOGY 2023; 23:796-811. [PMID: 37279013 DOI: 10.1089/ast.2021.0047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Microbial mats are biologically diverse communities that are analogs to some of the earliest ecosystems on Earth. In this study, we describe a unique transiently hypersaline microbial mat uncovered in a shallow pond within the Cuatro Cienegas Basin (CCB) in northern México. The CCB is an endemism-rich site that harbors living stromatolites that have been studied to understand the conditions of the Precambrian Earth. These microbial mats form elastic domes filled with biogenic gas, and the mats have a relatively large and stable subpopulation of archaea. For this reason, this site has been termed archaean domes (AD). The AD microbial community was analyzed by metagenomics over three seasons. The mat exhibited a highly diverse prokaryotic community dominated by bacteria. Bacterial sequences are represented in 37 phyla, mainly Proteobacteria, Firmicutes, and Actinobacteria, that together comprised >50% of the sequences from the mat. Archaea represented up to 5% of the retrieved sequences, with up to 230 different archaeal species that belong to 5 phyla (Euryarchaeota, Crenarchaeota, Thaumarchaeota, Korarchaeota, and Nanoarchaeota). The archaeal taxa showed low variation despite fluctuations in water and nutrient availability. In addition, predicted functions highlight stress responses to extreme conditions present in the AD, including salinity, pH, and water/drought fluctuation. The observed complexity of the AD mat thriving in high pH and fluctuating water and salt conditions within the CCB provides an extant model of great value for evolutionary studies, as well as a suitable analog to the early Earth and Mars.
Collapse
Affiliation(s)
- Nahui-Olin Medina-Chávez
- Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, USA
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, San Nicolás de los Garza, México
| | | | - Eugenia Zarza
- Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur, Tapachula, Mexico
- Consejo Nacional de Ciencia y Tecnología, Ciudad de México, México
| | - Africa Islas-Robles
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del I.P.N. Campus Irapuato, Irapuato, México
| | - Jorge Valdivia-Anistro
- Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, UNAM, Ciudad de México, México
| | - Frédéric Thalasso-Siret
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, UNAM, Ciudad de México, México
- Centro de Estudios del Cuaternario de Fuego-Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| | - Gabriela Olmedo-Álvarez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del I.P.N. Campus Irapuato, Irapuato, México
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, UNAM, Ciudad de México, México
- Centro de Estudios del Cuaternario de Fuego-Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| | - Susana De la Torre-Zavala
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, San Nicolás de los Garza, México
| |
Collapse
|
9
|
Lian WH, Mohamad OAA, Dong L, Zhang LY, Wang D, Liu L, Han MX, Li S, Wang S, Antunes A, Fang BZ, Jiao JY, Li WJ. Culturomics- and metagenomics-based insights into the microbial community and function of rhizosphere soils in Sinai desert farming systems. ENVIRONMENTAL MICROBIOME 2023; 18:4. [PMID: 36639807 PMCID: PMC9840269 DOI: 10.1186/s40793-023-00463-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 01/08/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND The microbiome of the Sinai Desert farming system plays an important role in the adaptive strategy of growing crops in a harsh, poly-extreme, desert environment. However, the diversity and function of microbial communities under this unfavorable moisture and nutritional conditions have not yet been investigated. Based on culturomic and metagenomic methods, we analyzed the microbial diversity and function of a total of fourteen rhizosphere soil samples (collected from twelve plants in four farms of the Sinai desert), which may provide a valuable and meaningful guidance for the design of microbial inoculants. RESULTS The results revealed a wide range of microbial taxa, including a high proportion of novel undescribed lineages. The composition of the rhizosphere microbial communities differed according to the sampling sites, despite similarities or differences in floristics. Whereas, the functional features of rhizosphere microbiomes were significantly similar in different sampling sites, although the microbial communities and the plant hosts themselves were different. Importantly, microorganisms involved in ecosystem functions are different between the sampling sites, for example nitrogen fixation was prevalent in all sample sites while microorganisms responsible for this process were different. CONCLUSION Here, we provide the first characterization of microbial communities and functions of rhizosphere soil from the Sinai desert farming systems and highlight its unexpectedly high diversity. This study provides evidence that the key microorganisms involved in ecosystem functions are different between sampling sites with different environment conditions, emphasizing the importance of the functional microbiomes of rhizosphere microbial communities. Furthermore, we suggest that microbial inoculants to be used in future agricultural production should select microorganisms that can be involved in plant-microorganism interactions and are already adapted to a similar environmental setting.
Collapse
Affiliation(s)
- Wen-Hui Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Osama Abdalla Abdelshafy Mohamad
- Department of Environmental Protection, Faculty of Environmental Agricultural Sciences, Arish University, Arish, 45511, Egypt
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology (MUST), Macau, People's Republic of China
| | - Lei Dong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ling-Yu Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Dong Wang
- College of Life Science and Technology, Honghe University, Mengzi, 661199, People's Republic of China
| | - Lan Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ming-Xian Han
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Shuai Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Shuang Wang
- Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin, 150086, People's Republic of China
| | - André Antunes
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology (MUST), Macau, People's Republic of China
| | - Bao-Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| |
Collapse
|
10
|
González-Salazar LA, Quezada M, Rodríguez-Orduña L, Ramos-Aboites H, Capon RJ, Souza-Saldívar V, Barona-Gomez F, Licona-Cassani C. Biosynthetic novelty index reveals the metabolic potential of rare actinobacteria isolated from highly oligotrophic sediments. Microb Genom 2023; 9:mgen000921. [PMID: 36748531 PMCID: PMC9973853 DOI: 10.1099/mgen.0.000921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Calculations predict that testing of 5 000-10 000 molecules and >1 billion US dollars (£0.8 billion, £1=$1.2) are required for one single drug to come to the market. A solution to this problem is to establish more efficient protocols that reduce the high rate of re-isolation and continuous rediscovery of natural products during early stages of the drug development process. The study of 'rare actinobacteria' has emerged as a possible approach for increasing the discovery rate of drug leads from natural sources. Here, we define a simple genomic metric, defined as biosynthetic novelty index (BiNI), that can be used to rapidly rank strains according to the novelty of the subset of encoding biosynthetic clusters. By comparing a subset of high-quality genomes from strains of different taxonomic and ecological backgrounds, we used the BiNI score to support the notion that rare actinobacteria encode more biosynthetic gene cluster (BGC) novelty. In addition, we present the isolation and genomic characterization, focused on specialized metabolites and phenotypic screening, of two isolates belonging to genera Lentzea and Actinokineospora from a highly oligotrophic environment. Our results show that both strains harbour a unique subset of BGCs compared to other members of the genera Lentzea and Actinokineospora. These BGCs are responsible for potent antimicrobial and cytotoxic bioactivity. The experimental data and analysis presented in this study contribute to the knowledge of genome mining analysis in rare actinobacteria and, most importantly, can serve to direct sampling efforts to accelerate early stages of the drug discovery pipeline.
Collapse
Affiliation(s)
- Luz A González-Salazar
- Industrial Genomics Laboratory, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Nuevo León, Mexico
| | - Michelle Quezada
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Lorena Rodríguez-Orduña
- Industrial Genomics Laboratory, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Nuevo León, Mexico
| | - Hilda Ramos-Aboites
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanza (LANGEBIO), Cinvestav-IPN, Irapuato, Mexico
| | - Robert J Capon
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Valeria Souza-Saldívar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Francisco Barona-Gomez
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanza (LANGEBIO), Cinvestav-IPN, Irapuato, Mexico.,Present address: Microbial Diversity and Specialized Metabolism Laboratory, Institute of Biology, Leiden University, Leiden, Netherlands
| | - Cuauhtémoc Licona-Cassani
- Industrial Genomics Laboratory, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Nuevo León, Mexico.,Division of Integrative Biology, Institute for Obesity Research, Tecnológico de Monterrey, Nuevo León, Mexico
| |
Collapse
|
11
|
Espinosa-Asuar L, Monroy-Guzmán C, Madrigal-Trejo D, Navarro-Miranda M, Sánchez-Pérez J, Buenrostro Muñoz J, Villar J, Cifuentes Camargo JF, Kalambokidis M, Esquivel-Hernandez DA, Viladomat Jasso M, Escalante AE, Velez P, Figueroa M, Martinez-Cardenas A, Ramirez-Barahona S, Gasca-Pineda J, Eguiarte LE, Souza V. Diversity of an uncommon elastic hypersaline microbial mat along a small-scale transect. PeerJ 2022; 10:e13579. [PMID: 35757167 PMCID: PMC9220918 DOI: 10.7717/peerj.13579] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/22/2022] [Indexed: 01/17/2023] Open
Abstract
We evaluated the microbial diversity and metabolome profile of an uncommon hypersaline elastic microbial mat from Cuatro Ciénegas Basin (CCB) in the Chihuahuan Desert of Coahuila, México. We collected ten samples on a small scale transect (1.5-m) and described its microbial diversity through NGS-based ITS and 16S rDNA gene sequencing. A very low number of taxa comprised a considerable proportion of the mat and were shared across all sampling points, whereas the rare biosphere was more phylogenetically diverse (Faith's Phylogenetic Diversity (FPD) index) and phylogenetically disperse (using a null model distribution of Phylogenetic Species Clustering (nmdPSC)) than the abundant (high read count) taxa for both analyzed libraries. We also found a distinctive metabolome profile for each sample and were able to tentatively annotate several classes of compounds with relevant biological properties.
Collapse
Affiliation(s)
- Laura Espinosa-Asuar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, CdMx, México
| | - Camila Monroy-Guzmán
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, CdMx, México
| | - David Madrigal-Trejo
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, CdMx, México
| | - Marisol Navarro-Miranda
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, CdMx, México
| | - Jazmin Sánchez-Pérez
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, CdMx, México
| | - Jhoselinne Buenrostro Muñoz
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, CdMx, México
| | - Juan Villar
- Pontifica Universidad Javeriana, Bogotá D.C., Colombia
| | | | - Maria Kalambokidis
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, CdMx, México
| | - Diego A. Esquivel-Hernandez
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, CdMx, México
| | - Mariette Viladomat Jasso
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, CdMx, México
| | - Ana E. Escalante
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, CdMx, México
| | - Patricia Velez
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, CdMx, México
| | - Mario Figueroa
- Facultad de Química, Universidad Nacional Autónoma de México, CdMx, México
| | | | - Santiago Ramirez-Barahona
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, CdMx, México
| | - Jaime Gasca-Pineda
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, CdMx, México
| | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, CdMx, México
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, CdMx, México
| |
Collapse
|
12
|
García-Ulloa M, Souza V, Esquivel-Hernández DA, Sánchez-Pérez J, Espinosa-Asuar L, Viladomat M, Marroquín-Rodríguez M, Navarro-Miranda M, Ruiz-Padilla J, Monroy-Guzmán C, Madrigal-Trejo D, Rosas-Barrera M, Vázquez-Rosas-Landa M, Eguiarte LE. Recent Differentiation of Aquatic Bacterial Communities in a Hydrological System in the Cuatro Ciénegas Basin, After a Natural Perturbation. Front Microbiol 2022; 13:825167. [PMID: 35572686 PMCID: PMC9097865 DOI: 10.3389/fmicb.2022.825167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/25/2022] [Indexed: 11/25/2022] Open
Abstract
Pozas Rojas is a hydrological system comprising nine isolated shallow ponds and a deep lagoon, which were temporally merged in 2010 by increased rainfall due to a tropical cyclone. In this work, we assess which components, biotic interactions, or environment filtering effects, drive the assembly of microbial communities after a natural perturbation. Arsenic, pH, and temperature are among the most significant environmental variables between each pond, clustering the samples in two main groups, whereas microbial composition is diverse and unique to each site, with no core at the operational taxonomic unit level and only 150 core genera when studied at the genus level. Los Hundidos lagoon has the most differentiated community, which is highly similar to the epipelagic Mediterranean Sea communities. On the other hand, the shallow ponds at the Pozas Rojas system resemble more to epicontinental hydrological systems, such as some cold rivers of the world and the phreatic mantle from Iowa. Overall, despite being a sole of water body 2 years prior to the sampling, interspecific interactions, rather than environmental selection, seem to play a more important role in Pozas Rojas, bolstered by founder effects on each poza and subsequent isolation of each water body.
Collapse
Affiliation(s)
- Manuel García-Ulloa
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Centro de Estudios del Cuaternario de Fuego-Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| | - Diego A Esquivel-Hernández
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jazmín Sánchez-Pérez
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Laura Espinosa-Asuar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Mariette Viladomat
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Montserrat Marroquín-Rodríguez
- Facultad de Medicina, Licenciatura en Investigación Biomédica Básica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Marisol Navarro-Miranda
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jair Ruiz-Padilla
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Camila Monroy-Guzmán
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - David Madrigal-Trejo
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Manuel Rosas-Barrera
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Mirna Vázquez-Rosas-Landa
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
13
|
Medina-Chávez NO, Travisano M. Archaeal Communities: The Microbial Phylogenomic Frontier. Front Genet 2022; 12:693193. [PMID: 35154237 PMCID: PMC8826477 DOI: 10.3389/fgene.2021.693193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Archaea are a unique system for investigating the diversity of life. There are the most diverse group of organisms with the longest evolutionary history of life on Earth. Phylogenomic investigations reveal the complex evolutionary history of Archaea, overturning longstanding views of the history of life. They exist in the harshest environments and benign conditions, providing a system to investigate the basis for living in extreme environments. They are frequently members of microbial communities, albeit generally rare. Archaea were central in the evolution of Eukaryotes and can be used as a proxy for studying life on other planets. Future advances will depend not only upon phylogenomic studies but also on a better understanding of isolation and cultivation techniques.
Collapse
Affiliation(s)
- Nahui Olin Medina-Chávez
- Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States.,BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
| | - Michael Travisano
- Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States.,BioTechnology Institute, University of Minnesota, St. Paul, MN, United States.,Minnesota Center for the Philosophy of Science, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
14
|
Abstract
There is an increasing interest in phage therapy as an alternative to antibiotics for treating bacterial infections, especially using phages that select for evolutionary trade-offs between increased phage resistance and decreased fitness traits, such as virulence, in target bacteria. A vast repertoire of virulence factors allows the opportunistic bacterial pathogen Shigella flexneri to invade human gut epithelial cells, replicate intracellularly, and evade host immunity through intercellular spread. It has been previously shown that OmpA is necessary for the intercellular spread of S. flexneri. We hypothesized that a phage which uses OmpA as a receptor to infect S. flexneri should select for phage-resistant mutants with attenuated intercellular spread. Here, we show that phage A1-1 requires OmpA as a receptor and selects for reduced virulence in S. flexneri. We characterized five phage-resistant mutants by measuring phenotypic changes in various traits: cell-membrane permeability, total lipopolysaccharide (LPS), sensitivity to antibiotics, and susceptibility to other phages. The results separated the mutants into two groups: R1 and R2 phenotypically resembled ompA knockouts, whereas R3, R4, and R5 were similar to LPS-deficient strains. Whole-genome sequencing confirmed that R1 and R2 had mutations in ompA, while R3, R4, and R5 had mutations in the LPS inner-core biosynthesis genes gmhA and gmhC. Bacterial plaque assays confirmed that all the phage-resistant mutants were incapable of intercellular spread. We concluded that selection for S. flexneri resistance to phage A1-1 generally reduced virulence (i.e., intercellular spread), but this trade-off could be mediated by mutations either in ompA or in LPS-core genes that likely altered OmpA conformation. IMPORTANCEShigella flexneri is a facultative intracellular pathogen of humans and a leading cause of bacillary dysentery. With few effective treatments and rising antibiotic resistance in these bacteria, there is increasing interest in alternatives to classical infection management of S. flexneri infections. Phage therapy poses an attractive alternative, particularly if a therapeutic phage can be found that results in an evolutionary trade-off between phage resistance and bacterial virulence. Here, we isolate a novel lytic phage from water collected in Cuatro Cienegas, Mexico, which uses the OmpA porin of S. flexneri as a receptor. We use phenotypic assays and genome sequencing to show that phage A1-1 selects for phage-resistant mutants which can be grouped into two categories: OmpA-deficient mutants and LPS-deficient mutants. Despite these underlying mechanistic differences, we confirmed that naturally occurring phage A1-1 selected for evolved phage resistance which coincided with impaired intercellular spread of S. flexneri in a eukaryotic infection model.
Collapse
|
15
|
Hurtado-Bautista E, Pérez Sánchez LF, Islas-Robles A, Santoyo G, Olmedo-Alvarez G. Phenotypic plasticity and evolution of thermal tolerance in bacteria from temperate and hot spring environments. PeerJ 2021; 9:e11734. [PMID: 34386300 PMCID: PMC8312496 DOI: 10.7717/peerj.11734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 06/16/2021] [Indexed: 01/02/2023] Open
Abstract
Phenotypic plasticity allows individuals to respond to the selective forces of a new environment, followed by adaptive evolution. We do not know to what extent phenotypic plasticity allows thermal tolerance evolution in bacteria at the border of their physiological limits. We analyzed growth and reaction norms to temperature of strains of two bacterial lineages, Bacillus cereus sensu lato and Bacillus subtilis sensu lato, that evolved in two contrasting environments, a temperate lagoon (T) and a hot spring (H). Our results showed that despite the co-occurrence of members of both lineages in the two contrasting environments, norms of reactions to temperature exhibited a similar pattern only in strains within the lineages, suggesting fixed phenotypic plasticity. Additionally, strains from the H environment showed only two to three degrees centigrade more heat tolerance than strains from the T environment. Their viability decreased at temperatures above their optimal for growth, particularly for the B. cereus lineage. However, sporulation occurred at all temperatures, consistent with the known cell population heterogeneity that allows the Bacillus to anticipate adversity. We suggest that these mesophilic strains survive in the hot-spring as spores and complete their life cycle of germination and growth during intermittent opportunities of moderate temperatures. The limited evolutionary changes towards an increase in heat tolerance in bacteria should alert us of the negative impact of climate change on all biological cycles in the planet, which at its most basic level depends on microorganisms.
Collapse
Affiliation(s)
- Enrique Hurtado-Bautista
- Departamento de Ingeniería Genética, Unidad Irapuato, de (Centro de Investigación y de Estudios Avanzados) del IPN, Irapuato, Guanajuato, México
| | - Laura F Pérez Sánchez
- Departamento de Ingeniería Genética, Unidad Irapuato, de (Centro de Investigación y de Estudios Avanzados) del IPN, Irapuato, Guanajuato, México
| | - Africa Islas-Robles
- Departamento de Ingeniería Genética, Unidad Irapuato, de (Centro de Investigación y de Estudios Avanzados) del IPN, Irapuato, Guanajuato, México
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Gabriela Olmedo-Alvarez
- Departamento de Ingeniería Genética, Unidad Irapuato, de (Centro de Investigación y de Estudios Avanzados) del IPN, Irapuato, Guanajuato, México
| |
Collapse
|
16
|
Baquero F, Coque TM, Galán JC, Martinez JL. The Origin of Niches and Species in the Bacterial World. Front Microbiol 2021; 12:657986. [PMID: 33815348 PMCID: PMC8010147 DOI: 10.3389/fmicb.2021.657986] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
Niches are spaces for the biological units of selection, from cells to complex communities. In a broad sense, "species" are biological units of individuation. Niches do not exist without individual organisms, and every organism has a niche. We use "niche" in the Hutchinsonian sense as an abstraction of a multidimensional environmental space characterized by a variety of conditions, both biotic and abiotic, whose quantitative ranges determine the positive or negative growth rates of the microbial individual, typically a species, but also parts of the communities of species contained in this space. Microbial organisms ("species") constantly diversify, and such diversification (radiation) depends on the possibility of opening up unexploited or insufficiently exploited niches. Niche exploitation frequently implies "niche construction," as the colonized niche evolves with time, giving rise to new potential subniches, thereby influencing the selection of a series of new variants in the progeny. The evolution of niches and organisms is the result of reciprocal interacting processes that form a single unified process. Centrifugal microbial diversification expands the limits of the species' niches while a centripetal or cohesive process occurs simultaneously, mediated by horizontal gene transfers and recombinatorial events, condensing all of the information recovered during the diversifying specialization into "novel organisms" (possible future species), thereby creating a more complex niche, where the selfishness of the new organism(s) establishes a "homeostatic power" limiting the niche's variation. Once the niche's full carrying capacity has been reached, reproductive isolation occurs, as no foreign organisms can outcompete the established population/community, thereby facilitating speciation. In the case of individualization-speciation of the microbiota, its contribution to the animal' gut structure is a type of "niche construction," the result of crosstalk between the niche (host) and microorganism(s). Lastly, there is a parallelism between the hierarchy of niches and that of microbial individuals. The increasing anthropogenic effects on the biosphere (such as globalization) might reduce the diversity of niches and bacterial individuals, with the potential emergence of highly transmissible multispecialists (which are eventually deleterious) resulting from the homogenization of the microbiosphere, a possibility that should be explored and prevented.
Collapse
Affiliation(s)
- Fernando Baquero
- Division of Biology and Evolution of Microorganisms, Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain
| | - Teresa M Coque
- Division of Biology and Evolution of Microorganisms, Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain
| | - Juan Carlos Galán
- Division of Biology and Evolution of Microorganisms, Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain
| | | |
Collapse
|
17
|
García-Ulloa MI, Escalante AE, Moreno-Letelier A, Eguiarte LE, Souza V. Evolutionary Rescue of an Environmental Pseudomonas otitidis in Response to Anthropogenic Perturbation. Front Microbiol 2021; 11:563885. [PMID: 33552002 PMCID: PMC7856823 DOI: 10.3389/fmicb.2020.563885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022] Open
Abstract
Anthropogenic perturbations introduce novel selective pressures to natural environments, impacting the genomic variability of organisms and thus altering the evolutionary trajectory of populations. Water overexploitation for agricultural purposes and defective policies in Cuatro Cienegas, Coahuila, Mexico, have strongly impacted its water reservoir, pushing entire hydrological systems to the brink of extinction along with their native populations. Here, we studied the effects of continuous water overexploitation on an environmental aquatic lineage of Pseudomonas otitidis over a 13-year period which encompasses three desiccation events. By comparing the genomes of a population sample from 2003 (original state) and 2015 (perturbed state), we analyzed the demographic history and evolutionary response to perturbation of this lineage. Through coalescent simulations, we obtained a demographic model of contraction-expansion-contraction which points to the occurrence of an evolutionary rescue event. Loss of genomic and nucleotide variation alongside an increment in mean and variance of Tajima’s D, characteristic of sudden population expansions, support this observation. In addition, a significant increase in recombination rate (R/θ) was observed, pointing to horizontal gene transfer playing a role in population recovery. Furthermore, the gain of phosphorylation, DNA recombination, small-molecule metabolism and transport and loss of biosynthetic and regulatory genes suggest a functional shift in response to the environmental perturbation. Despite subsequent sampling events in the studied site, no pseudomonad was found until the lagoon completely dried in 2017. We speculate about the causes of P. otitidis final decline or possible extinction. Overall our results are evidence of adaptive responses at the genomic level of bacterial populations in a heavily exploited aquifer.
Collapse
Affiliation(s)
- Manuel Ii García-Ulloa
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Ana Elena Escalante
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Alejandra Moreno-Letelier
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| |
Collapse
|
18
|
Population genomics of Vibrionaceae isolated from an endangered oasis reveals local adaptation after an environmental perturbation. BMC Genomics 2020; 21:418. [PMID: 32571204 PMCID: PMC7306931 DOI: 10.1186/s12864-020-06829-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
Background In bacteria, pan-genomes are the result of an evolutionary “tug of war” between selection and horizontal gene transfer (HGT). High rates of HGT increase the genetic pool and the effective population size (Ne), resulting in open pan-genomes. In contrast, selective pressures can lead to local adaptation by purging the variation introduced by HGT and mutation, resulting in closed pan-genomes and clonal lineages. In this study, we explored both hypotheses, elucidating the pan-genome of Vibrionaceae isolates after a perturbation event in the endangered oasis of Cuatro Ciénegas Basin (CCB), Mexico, and looking for signals of adaptation to the environments in their genomes. Results We obtained 42 genomes of Vibrionaceae distributed in six lineages, two of them did not showed any close reference strain in databases. Five of the lineages showed closed pan-genomes and were associated to either water or sediment environment; their high Ne estimates suggest that these lineages are not from a recent origin. The only clade with an open pan-genome was found in both environments and was formed by ten genetic groups with low Ne, suggesting a recent origin. The recombination and mutation estimators (r/m) ranged from 0.005 to 2.725, which are similar to oceanic Vibrionaceae estimations. However, we identified 367 gene families with signals of positive selection, most of them found in the core genome; suggesting that despite recombination, natural selection moves the Vibrionaceae CCB lineages to local adaptation, purging the genomes and keeping closed pan-genome patterns. Moreover, we identify 598 SNPs associated with an unstructured environment; some of the genes associated with these SNPs were related to sodium transport. Conclusions Different lines of evidence suggest that the sampled Vibrionaceae, are part of the rare biosphere usually living under famine conditions. Two of these lineages were reported for the first time. Most Vibrionaceae lineages of CCB are adapted to their micro-habitats rather than to the sampled environments. This pattern of adaptation is concordant with the association of closed pan-genomes and local adaptation.
Collapse
|
19
|
Draft Genome Sequence of
Streptomyces
sp. Strain C8S0, Isolated from a Highly Oligotrophic Sediment. Microbiol Resour Announc 2020; 9:9/14/e01441-19. [PMID: 32241863 PMCID: PMC7118189 DOI: 10.1128/mra.01441-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Streptomyces spp. are prolific bacteria producing bioactive metabolites. We present the draft genome sequence of Streptomyces sp. strain C8S0, which was isolated from a highly oligotrophic sediment from the Cuatro Cienegas Basin (Mexico). The whole-genome assembly comprised 6,898,902 bp, with 18 biosynthetic gene clusters, including those for nonconventional terpenes, nonribosomal peptides, and polyketides. Streptomyces spp. are prolific bacteria producing bioactive metabolites. We present the draft genome sequence of Streptomyces sp. strain C8S0, which was isolated from a highly oligotrophic sediment from the Cuatro Cienegas Basin (Mexico). The whole-genome assembly comprised 6,898,902 bp, with 18 biosynthetic gene clusters, including those for nonconventional terpenes, nonribosomal peptides, and polyketides.
Collapse
|
20
|
Tavares-Carreón F, De la Torre-Zavala S, Arocha-Garza HF, Souza V, Galán-Wong LJ, Avilés-Arnaut H. In vitro anticancer activity of methanolic extract of Granulocystopsis sp., a microalgae from an oligotrophic oasis in the Chihuahuan desert. PeerJ 2020; 8:e8686. [PMID: 32201642 PMCID: PMC7073244 DOI: 10.7717/peerj.8686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/05/2020] [Indexed: 12/16/2022] Open
Abstract
With the purpose of discovering new anticancer molecules that might have fewer side effects or reduce resistance to current antitumor drugs, a bioprospecting study of the microalgae of the Cuatro Cienegas Basin (CCB), an oasis in the Chihuahuan desert in Mexico was conducted. A microalgae was identified as Granulocystopsis sp. through sequencing the rbcL gene and reconstruction of a phylogenetic tree, and its anticancer activities were assessed using various in vitro assays and different cell lines of human cancers, including lung, skin melanoma, colorectal, breast and prostatic cancers, as well as a normal cell line. The values of IC50 of the microalgae methanolic extract using the MTT assay were lower than 20 μg/ml, except that in the lung cancer line and the normal cell line. In vitro, the microalgae extract caused the loss of membrane integrity, monitored by the trypan blue exclusion test and exhibited marked inhibition of adhesion and cell proliferation in cancer cell lines, through the evaluation of the clonogenic assay. Also, typical nuclear changes of apoptotic processes were observed under the microscope, using the dual acridine orange/ethidium bromide fluorescent staining. Finally, the microalgae extract increased the activity of caspases 3 and 7 in skin melanoma, colon, breast and prostate cancer cells, in the same way as the apoptotic inductor and powerful antitumoral drug, doxorubicin. This study shows the anticancer activity from Granulocystopsis sp., a microalgae isolated from the CCB.
Collapse
Affiliation(s)
- Faviola Tavares-Carreón
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Susana De la Torre-Zavala
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Hector Fernando Arocha-Garza
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, Mexico
| | - Luis J Galán-Wong
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Hamlet Avilés-Arnaut
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| |
Collapse
|
21
|
Okie JG, Poret-Peterson AT, Lee ZM, Richter A, Alcaraz LD, Eguiarte LE, Siefert JL, Souza V, Dupont CL, Elser JJ. Genomic adaptations in information processing underpin trophic strategy in a whole-ecosystem nutrient enrichment experiment. eLife 2020; 9:49816. [PMID: 31989922 PMCID: PMC7028357 DOI: 10.7554/elife.49816] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/27/2020] [Indexed: 01/03/2023] Open
Abstract
Several universal genomic traits affect trade-offs in the capacity, cost, and efficiency of the biochemical information processing that underpins metabolism and reproduction. We analyzed the role of these traits in mediating the responses of a planktonic microbial community to nutrient enrichment in an oligotrophic, phosphorus-deficient pond in Cuatro Ciénegas, Mexico. This is one of the first whole-ecosystem experiments to involve replicated metagenomic assessment. Mean bacterial genome size, GC content, total number of tRNA genes, total number of rRNA genes, and codon usage bias in ribosomal protein sequences were all higher in the fertilized treatment, as predicted on the basis of the assumption that oligotrophy favors lower information-processing costs whereas copiotrophy favors higher processing rates. Contrasting changes in trait variances also suggested differences between traits in mediating assembly under copiotrophic versus oligotrophic conditions. Trade-offs in information-processing traits are apparently sufficiently pronounced to play a role in community assembly because the major components of metabolism-information, energy, and nutrient requirements-are fine-tuned to an organism's growth and trophic strategy.
Collapse
Affiliation(s)
- Jordan G Okie
- School of Earth and Space Exploration, Arizona State University, Tempe, United States
| | | | - Zarraz Mp Lee
- School of Life Sciences, Arizona State University, Tempe, United States
| | | | - Luis D Alcaraz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Janet L Siefert
- Department of Statistics, Rice University, Houston, United States
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - James J Elser
- School of Life Sciences, Arizona State University, Tempe, United States.,Flathead Lake Biological Station, University of Montana, Polson, United States
| |
Collapse
|
22
|
García-Ulloa M, Ponce-Soto GY, González-Valdez A, González-Pedrajo B, Díaz-Guerrero M, Souza V, Soberón-Chávez G. Two Pseudomonas aeruginosa clonal groups belonging to the PA14 clade are indigenous to the Churince system in Cuatro Ciénegas Coahuila, México. Environ Microbiol 2019; 21:2964-2976. [PMID: 31112340 DOI: 10.1111/1462-2920.14692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 02/05/2023]
Abstract
Pseudomonas aeruginosa is a widely distributed environmental bacterium but is also an opportunistic pathogen that represents an important health hazard due to its high intrinsic antibiotic resistance and its production of virulence factors. The genetic structure of P. aeruginosa populations using whole genome sequences shows the existence of three clades, one of which (PA7 clade) has a higher genetic diversity. These three clades include clinical and environmental isolates that are very diverse in terms of geographical origins and isolation date. Here, we report the characterization of two distinct clonal P. aeruginosa groups that form a part of the PA14 clade (clade 2) sampled from the Churince system in Cuatro Ciénegas Basin (CCB). One of the clonal groups that we report here was isolated in 2011 (group 2A) and was displaced by the other clonal group (2B) in 2015. Both Churince groups are unable to produce pyoverdine but can produce other virulence-associated traits. The existence of these unique P. aeruginosa clonal groups in the Churince system is of ecological and evolutionary significance since the microbiota of this site is generally very distinct from other lineages, and this is the first time that a population of P. aeruginosa has been found in CCB.
Collapse
Affiliation(s)
- Manuel García-Ulloa
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, CDMX, Mexico
| | - Gabriel-Yaxal Ponce-Soto
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, Wilhelm Johnen Straße, Jülich, Germany
| | - Abigail González-Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, CDMX, Mexico
| | - Bertha González-Pedrajo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, CDMX, Mexico
| | - Miguel Díaz-Guerrero
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, CDMX, Mexico
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, CDMX, Mexico
| | - Gloria Soberón-Chávez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, CDMX, Mexico
| |
Collapse
|
23
|
Aguirrezabala-Campano T, Gerardo-Nieto O, Gonzalez-Valencia R, Souza V, Thalasso F. Methane dynamics in the subsaline ponds of the Chihuahuan Desert: A first assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:1255-1264. [PMID: 30970490 DOI: 10.1016/j.scitotenv.2019.02.163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/07/2019] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
The Cuatro Cienegas Basin (CCB) in the Chihuahuan desert is characterized by the presence of over 500 ponds located in an endorheic basin. These ponds are subsaline ecosystems characterized by a low productivity and a particularly high sulfate concentration, comparable to marine environments. This study focused on assessing the main physicochemical parameters in these ponds along with the characterization of the CH4 dynamics through the determination of fluxes, dissolved CH4 concentrations, and net methanotrophic and methanogenic activity. Despite a sulfate concentration ranging from 1.06 to 4.73 g L-1, the studied ponds showed moderate but clear CH4 production and emission, which suggests that methanogenesis is not completely outcompeted by sulfate reduction. CH4 fluxes ranged from 0.12 to 0.98 mg m-2 d-1, which falls within the higher range of marine emissions and within the lower range reported for coastal saline lagoons and saline ponds. During summer, significant CH4 production in the oxic water column was observed. In addition to CH4, CO2 fluxes were determined at levels from 0.2 to 53 g m-2 d-1, which is within the range recorded for saline lakes in other parts of the world. Our results provide additional evidence that subsaline/saline aquatic ecosystems play an important role in the emission of greenhouse gases to the atmosphere.
Collapse
Affiliation(s)
| | - Oscar Gerardo-Nieto
- Cinvestav, Department of Biotechnology and Bioengineering, Mexico City, Mexico
| | | | - Valeria Souza
- Universidad Nacional Autónoma de México, Departamento de Ecología Evolutiva, Mexico City, Mexico
| | - Frederic Thalasso
- Cinvestav, Department of Biotechnology and Bioengineering, Mexico City, Mexico.
| |
Collapse
|
24
|
De Anda V, Zapata-Peñasco I, Blaz J, Poot-Hernández AC, Contreras-Moreira B, González-Laffitte M, Gámez-Tamariz N, Hernández-Rosales M, Eguiarte LE, Souza V. Understanding the Mechanisms Behind the Response to Environmental Perturbation in Microbial Mats: A Metagenomic-Network Based Approach. Front Microbiol 2018; 9:2606. [PMID: 30555424 PMCID: PMC6280815 DOI: 10.3389/fmicb.2018.02606] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 10/11/2018] [Indexed: 12/26/2022] Open
Abstract
To date, it remains unclear how anthropogenic perturbations influence the dynamics of microbial communities, what general patterns arise in response to disturbance, and whether it is possible to predict them. Here, we suggest the use of microbial mats as a model of study to reveal patterns that can illuminate the ecological processes underlying microbial dynamics in response to stress. We traced the responses to anthropogenic perturbation caused by water depletion in microbial mats from Cuatro Cienegas Basin (CCB), Mexico, by using a time-series spatially resolved analysis in a novel combination of three computational approaches. First, we implemented MEBS (Multi-genomic Entropy-Based Score) to evaluate the dynamics of major biogeochemical cycles across spatio-temporal scales with a single informative value. Second, we used robust Time Series-Ecological Networks (TS-ENs) to evaluate the total percentage of interactions at different taxonomic levels. Lastly, we utilized network motifs to characterize specific interaction patterns. Our results indicate that microbial mats from CCB contain an enormous taxonomic diversity with at least 100 phyla, mainly represented by members of the rare biosphere (RB). Statistical ecological analyses point out a clear involvement of anaerobic guilds related to sulfur and methane cycles during wet versus dry conditions, where we find an increase in fungi, photosynthetic, and halotolerant taxa. TS-ENs indicate that in wet conditions, there was an equilibrium between cooperation and competition (positive and negative relationships, respectively), while under dry conditions there is an over-representation of negative relationships. Furthermore, most of the keystone taxa of the TS-ENs at family level are members of the RB and the microbial mat core highlighting their crucial role within the community. Our results indicate that microbial mats are more robust to perturbation due to redundant functions that are likely shared among community members in the highly connected TS-ENs with density values close to one (≈0.9). Finally, we provide evidence that suggests that a large taxonomic diversity where all community members interact with each other (low modularity), the presence of permanent of low-abundant taxa, and an increase in competition can be potential buffers against environmental disturbance in microbial mats.
Collapse
Affiliation(s)
- Valerie De Anda
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Icoquih Zapata-Peñasco
- Dirección de Investigación en Transformación de Hidrocarburos, Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas, Ciudad de México, Mexico
| | - Jazmín Blaz
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Augusto Cesar Poot-Hernández
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, UNAM, Ciudad Universitaria, Ciudad de México, Mexico
| | - Bruno Contreras-Moreira
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
- Fundación ARAID, Zaragoza, Spain
| | | | - Niza Gámez-Tamariz
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|