1
|
Rouchka EC, de Almeida C, House RB, Daneshmand JC, Chariker JH, Saraswat-Ohri S, Gomes C, Sharp M, Shum-Siu A, Cesarz GM, Petruska JC, Magnuson DSK. Construction of a Searchable Database for Gene Expression Changes in Spinal Cord Injury Experiments. J Neurotrauma 2024; 41:1030-1043. [PMID: 37917105 PMCID: PMC11302316 DOI: 10.1089/neu.2023.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Spinal cord injury (SCI) is a debilitating condition with an estimated 18,000 new cases annually in the United States. The field has accepted and adopted standardized databases such as the Open Data Commons for Spinal Cord Injury (ODC-SCI) to aid in broader analyses, but these currently lack high-throughput data despite the availability of nearly 6000 samples from over 90 studies available in the Sequence Read Archive. This limits the potential for large datasets to enhance our understanding of SCI-related mechanisms at the molecular and cellular level. Therefore, we have developed a protocol for processing RNA-Seq samples from high-throughput sequencing experiments related to SCI resulting in both raw and normalized data that can be efficiently mined for comparisons across studies, as well as homologous discovery across species. We have processed 1196 publicly available RNA-Seq samples from 50 bulk RNA-Seq studies across nine different species, resulting in an SQLite database that can be used by the SCI research community for further discovery. We provide both the database as well as a web-based front-end that can be used to query the database for genes of interest, differential gene expression, genes with high variance, and gene set enrichments.
Collapse
Affiliation(s)
- Eric C. Rouchka
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky, USA
- Kentucky IDeA Networks of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville, Louisville, Kentucky, USA
- Bioinformatics Program, University of Louisville, Louisville, Kentucky, USA
| | - Carlos de Almeida
- Translational Neuroscience Program, University of Louisville, Louisville, Kentucky, USA
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Randi B. House
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA
| | | | - Julia H. Chariker
- Kentucky IDeA Networks of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville, Louisville, Kentucky, USA
- Department of Neuroscience Training, University of Louisville, Louisville, Kentucky, USA
| | - Sujata Saraswat-Ohri
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Cynthia Gomes
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, USA
| | - Morgan Sharp
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Alice Shum-Siu
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Greta M. Cesarz
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Jeffrey C. Petruska
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, USA
| | - David S. K. Magnuson
- Translational Neuroscience Program, University of Louisville, Louisville, Kentucky, USA
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
2
|
Yang WW, Matyas JJ, Li Y, Lee H, Lei Z, Renn CL, Faden AI, Dorsey SG, Wu J. Dissecting Genetic Mechanisms of Differential Locomotion, Depression, and Allodynia after Spinal Cord Injury in Three Mouse Strains. Cells 2024; 13:759. [PMID: 38727295 PMCID: PMC11083625 DOI: 10.3390/cells13090759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Strain differences have been reported for motor behaviors, and only a subset of spinal cord injury (SCI) patients develop neuropathic pain, implicating genetic or genomic contribution to this condition. Here, we evaluated neuropsychiatric behaviors in A/J, BALB/c, and C57BL/6 male mice and tested genetic or genomic alterations following SCI. A/J and BALB/c naive mice showed significantly less locomotor activity and greater anxiety-like behavior than C57BL/6 mice. Although SCI elicited locomotor dysfunction, C57BL/6 and A/J mice showed the best and the worst post-traumatic recovery, respectively. Mild (m)-SCI mice showed deficits in gait dynamics. All moderate/severe SCI mice exhibited similar degrees of anxiety/depression. mSCI in BALB/c and A/J mice resulted in depression, whereas C57BL/6 mice did not exhibit depression. mSCI mice had significantly lower mechanical thresholds than their controls, indicating high cutaneous hypersensitivity. C57BL/6, but not A/J and BLAB/c mice, showed significantly lower heat thresholds than their controls. C57BL/6 mice exhibited spontaneous pain. RNAseq showed that genes in immune responses and wound healing were upregulated, although A/J mice showed the largest increase. The cell cycle and the truncated isoform of trkB genes were robustly elevated in SCI mice. Thus, different genomics are associated with post-traumatic recovery, underscoring the likely importance of genetic factors in SCI.
Collapse
Affiliation(s)
- Wendy W. Yang
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (W.W.Y.); (J.J.M.); (Y.L.); (Z.L.); (A.I.F.)
| | - Jessica J. Matyas
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (W.W.Y.); (J.J.M.); (Y.L.); (Z.L.); (A.I.F.)
| | - Yun Li
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (W.W.Y.); (J.J.M.); (Y.L.); (Z.L.); (A.I.F.)
| | - Hangnoh Lee
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Zhuofan Lei
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (W.W.Y.); (J.J.M.); (Y.L.); (Z.L.); (A.I.F.)
| | - Cynthia L. Renn
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD 21201, USA; (C.L.R.); (S.G.D.)
| | - Alan I. Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (W.W.Y.); (J.J.M.); (Y.L.); (Z.L.); (A.I.F.)
| | - Susan G. Dorsey
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD 21201, USA; (C.L.R.); (S.G.D.)
| | - Junfang Wu
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (W.W.Y.); (J.J.M.); (Y.L.); (Z.L.); (A.I.F.)
| |
Collapse
|
3
|
Cabrera-Aldana EE, Balderas-Martínez YI, Velázquez-Cruz R, Tovar-y-Romo LB, Sevilla-Montoya R, Martínez-Cruz A, Martinez-Cordero C, Valdés-Flores M, Santamaria-Olmedo M, Hidalgo-Bravo A, Guízar-Sahagún G. Administration of Tamoxifen Can Regulate Changes in Gene Expression during the Acute Phase of Traumatic Spinal Cord Injury. Curr Issues Mol Biol 2023; 45:7476-7491. [PMID: 37754256 PMCID: PMC10529143 DOI: 10.3390/cimb45090472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Traumatic spinal cord injury (SCI) causes irreversible damage leading to incapacity. Molecular mechanisms underlying SCI damage are not fully understood, preventing the development of novel therapies. Tamoxifen (TMX) has emerged as a promising therapy. Our aim was to identify transcriptome changes in the acute phase of SCI and the effect of Tamoxifen on those changes in a rat model of SCI. Four groups were considered: (1) Non-injured without TMX (Sham/TMX-), (2) Non-injured with TMX (Sham/TMX+), (3) injured without TMX (SCI/TMX-), and (4) injured with TMX (SCI/TMX+). Tamoxifen was administered intraperitoneally 30 min after injury, and spinal cord tissues were collected 24 h after injury. Clariom S Assays Array was used for transcriptome analysis. After comparing Sham/TMX- versus SCI/TMX-, 708 genes showed differential expression. The enriched pathways were the SCI pathway and pathways related to the inflammatory response. When comparing SCI/TMX- versus SCI/TMX+, only 30 genes showed differential expression, with no pathways enriched. Our results showed differential expression of genes related to the inflammatory response after SCI, and Tamoxifen seems to regulate gene expression changes in Ccr2 and Mmp12. Our study contributes data regarding the potential value of tamoxifen as a therapeutic resource for traumatic SCI during the acute phase.
Collapse
Affiliation(s)
- Eibar E. Cabrera-Aldana
- Department of Genomics Medicine, National Institute of Rehabilitation (INR), Calzada Mexico-Xochimilco 289, Arenal de Guadalupe, Mexico City 14389, Mexico; (E.E.C.-A.); (M.V.-F.); (M.S.-O.)
| | - Yalbi I. Balderas-Martínez
- Laboratorio de Biología Computacional, Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Calz. de Tlalpan 4502, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico;
| | - Rafael Velázquez-Cruz
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Periférico Sur 4809, Arenal Tepepan, Mexico City 14610, Mexico;
| | - Luis B. Tovar-y-Romo
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n, Mexico City 04510, Mexico;
| | - Rosalba Sevilla-Montoya
- Reproductive Research and Perinatal Health Department, National Institute of Perinatology, Montes Urales 800, Lomas de Virreyes, Mexico City 11000, Mexico;
| | - Angelina Martínez-Cruz
- Department of Experimental Surgery, Proyecto Camina, A.C. 4430 Calz. Tlalpan, Mexico City 14050, Mexico;
| | - Claudia Martinez-Cordero
- Regional Hospital of High Specialty of the Bajio, Blvd. Milenio 130, Col. San Carlos la Roncha, León 37660, Guanajuato, Mexico;
| | - Margarita Valdés-Flores
- Department of Genomics Medicine, National Institute of Rehabilitation (INR), Calzada Mexico-Xochimilco 289, Arenal de Guadalupe, Mexico City 14389, Mexico; (E.E.C.-A.); (M.V.-F.); (M.S.-O.)
| | - Monica Santamaria-Olmedo
- Department of Genomics Medicine, National Institute of Rehabilitation (INR), Calzada Mexico-Xochimilco 289, Arenal de Guadalupe, Mexico City 14389, Mexico; (E.E.C.-A.); (M.V.-F.); (M.S.-O.)
| | - Alberto Hidalgo-Bravo
- Department of Genomics Medicine, National Institute of Rehabilitation (INR), Calzada Mexico-Xochimilco 289, Arenal de Guadalupe, Mexico City 14389, Mexico; (E.E.C.-A.); (M.V.-F.); (M.S.-O.)
| | - Gabriel Guízar-Sahagún
- Research Unit for Neurological Diseases, Instituto Mexicano del Seguro Social, 330 Avenida Cuauhtémoc, Mexico City 06720, Mexico
| |
Collapse
|
4
|
Guest JD, Kelly-Hedrick M, Williamson T, Park C, Ali DM, Sivaganesan A, Neal CJ, Tator CH, Fehlings MG. Development of a Systems Medicine Approach to Spinal Cord Injury. J Neurotrauma 2023; 40:1849-1877. [PMID: 37335060 PMCID: PMC10460697 DOI: 10.1089/neu.2023.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
Traumatic spinal cord injury (SCI) causes a sudden onset multi-system disease, permanently altering homeostasis with multiple complications. Consequences include aberrant neuronal circuits, multiple organ system dysfunctions, and chronic phenotypes such as neuropathic pain and metabolic syndrome. Reductionist approaches are used to classify SCI patients based on residual neurological function. Still, recovery varies due to interacting variables, including individual biology, comorbidities, complications, therapeutic side effects, and socioeconomic influences for which data integration methods are lacking. Infections, pressure sores, and heterotopic ossification are known recovery modifiers. However, the molecular pathobiology of the disease-modifying factors altering the neurological recovery-chronic syndrome trajectory is mainly unknown, with significant data gaps between intensive early treatment and chronic phases. Changes in organ function such as gut dysbiosis, adrenal dysregulation, fatty liver, muscle loss, and autonomic dysregulation disrupt homeostasis, generating progression-driving allostatic load. Interactions between interdependent systems produce emergent effects, such as resilience, that preclude single mechanism interpretations. Due to many interacting variables in individuals, substantiating the effects of treatments to improve neurological outcomes is difficult. Acute injury outcome predictors, including blood and cerebrospinal fluid biomarkers, neuroimaging signal changes, and autonomic system abnormalities, often do not predict chronic SCI syndrome phenotypes. In systems medicine, network analysis of bioinformatics data is used to derive molecular control modules. To better understand the evolution from acute SCI to chronic SCI multi-system states, we propose a topological phenotype framework integrating bioinformatics, physiological data, and allostatic load tested against accepted established recovery metrics. This form of correlational phenotyping may reveal critical nodal points for intervention to improve recovery trajectories. This study examines the limitations of current classifications of SCI and how these can evolve through systems medicine.
Collapse
Affiliation(s)
- James D. Guest
- Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
| | | | - Theresa Williamson
- Massachusetts General Neurosurgery, Harvard University, Boston, Massachusetts, USA
| | - Christine Park
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Daniyal Mansoor Ali
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ahilan Sivaganesan
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Chris J. Neal
- Division of Neurosurgery, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Charles H. Tator
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Michael G. Fehlings
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Cao XM, Li SL, Cao YQ, Lv YH, Wang YX, Yu B, Yao C. A comparative analysis of differentially expressed genes in rostral and caudal regions after spinal cord injury in rats. Neural Regen Res 2022; 17:2267-2271. [PMID: 35259848 PMCID: PMC9083160 DOI: 10.4103/1673-5374.336874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/26/2021] [Accepted: 12/24/2021] [Indexed: 11/04/2022] Open
Abstract
The initial mechanical damage of a spinal cord injury (SCI) triggers a progressive secondary injury cascade, which is a complicated process integrating multiple systems and cells. It is crucial to explore the molecular and biological process alterations that occur after SCI for therapy development. The differences between the rostral and caudal regions around an SCI lesion have received little attention. Here, we analyzed the differentially expressed genes between rostral and caudal sites after injury to determine the biological processes in these two segments after SCI. We identified a set of differentially expressed genes, including Col3a1, Col1a1, Dcn, Fn1, Kcnk3, and Nrg1, between rostral and caudal regions at different time points following SCI. Functional enrichment analysis indicated that these genes were involved in response to mechanical stimulus, blood vessel development, and brain development. We then chose Col3a1, Col1a1, Dcn, Fn1, Kcnk3, and Nrg1 for quantitative real-time PCR and Fn1 for immunostaining validation. Our results indicate alterations in different biological events enriched in the rostral and caudal lesion areas, providing new insights into the pathology of SCI.
Collapse
Affiliation(s)
- Xue-Min Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Sheng-Long Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Yu-Qi Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Ye-Hua Lv
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Ya-Xian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Chun Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
6
|
Li E, Yan R, Yan K, Zhang R, Zhang Q, Zou P, Wang H, Qiao H, Li S, Ma Q, Liao B. Single-cell RNA sequencing reveals the role of immune-related autophagy in spinal cord injury in rats. Front Immunol 2022; 13:987344. [PMID: 36211348 PMCID: PMC9535363 DOI: 10.3389/fimmu.2022.987344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury refers to damage to the spinal cord due to trauma, disease, or degeneration; and the number of new cases is increasing yearly. Significant cellular changes are known to occur in the area of spinal cord injury. However, changes in cellular composition, trajectory of cell development, and intercellular communication in the injured area remain unclear. Here, we used single-cell RNA sequencing to evaluate almost all the cell types that constitute the site of spinal cord injury in rats. In addition to mapping the cells of the injured area, we screened the expression of immune autophagy-related factors in cells and identified signaling pathways by the measuring the expression of the receptor−ligand pairs to regulate specific cell interactions during autophagy after spinal cord injury. Our data set is a valuable resource that provides new insights into the pathobiology of spinal cord injury and other traumatic diseases of the central nervous system.
Collapse
Affiliation(s)
- Erliang Li
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi’an, China
| | - Rongbao Yan
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kang Yan
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi’an, China
| | - Rui Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi’an, China
| | - Qian Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi’an, China
| | - Peng Zou
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi’an, China
| | - Huimei Wang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huan Qiao
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi’an, China
| | - Shuang Li
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi’an, China
| | - Qiong Ma
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi’an, China
- *Correspondence: Bo Liao, ; Qiong Ma,
| | - Bo Liao
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi’an, China
- *Correspondence: Bo Liao, ; Qiong Ma,
| |
Collapse
|
7
|
Pathophysiology, Classification and Comorbidities after Traumatic Spinal Cord Injury. J Pers Med 2022; 12:jpm12071126. [PMID: 35887623 PMCID: PMC9323191 DOI: 10.3390/jpm12071126] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 12/25/2022] Open
Abstract
The spinal cord is a conduit within the central nervous system (CNS) that provides ongoing communication between the brain and the rest of the body, conveying complex sensory and motor information necessary for safety, movement, reflexes, and optimization of autonomic function. After a spinal cord injury (SCI), supraspinal influences on the spinal segmental control system and autonomic nervous system (ANS) are disrupted, leading to spastic paralysis, pain and dysesthesia, sympathetic blunting and parasympathetic dominance resulting in cardiac dysrhythmias, systemic hypotension, bronchoconstriction, copious respiratory secretions and uncontrolled bowel, bladder, and sexual dysfunction. This article outlines the pathophysiology of traumatic SCI, current and emerging methods of classification, and its influence on sensory/motor function, and introduces the probable comorbidities associated with SCI that will be discussed in more detail in the accompanying manuscripts of this special issue.
Collapse
|
8
|
Spinal cord injury: a study protocol for a systematic review and meta-analysis of microRNA alterations. Syst Rev 2022; 11:61. [PMID: 35382886 PMCID: PMC8985297 DOI: 10.1186/s13643-022-01921-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/03/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a devastating condition with no current neurorestorative treatments. Clinical trials have been hampered by a lack of meaningful diagnostic and prognostic markers of injury severity and neurologic recovery. Objective biomarkers and novel therapies for SCI represent urgent unmet clinical needs. Biomarkers of SCI that objectively stratify the severity of cord damage could expand the depth and scope of clinical trials and represent targets for the development of novel therapies for acute SCI. MicroRNAs (miRNAs) represent promising candidates both as informative molecules of injury severity and recovery, and as therapeutic targets. miRNAs are small, regulatory RNA molecules that are tissue-specific and evolutionarily conserved across species. miRNAs have been shown to represent powerful predictors of pathology, particularly with respect to neurologic disorders. METHODS Studies investigating miRNA alterations in all species of animal models and human studies of acute, traumatic SCI will be identified from PubMed, Embase, and Scopus. We aim to identify whether SCI is associated with a specific pattern of miRNA expression that is conserved across species, and whether SCI is associated with a tissue- or cell type-specific pattern of miRNA expression. The inclusion criteria for this study will include (1) studies published anytime, (2) including all species, and sexes with acute, traumatic SCI, (3) relating to the alteration of miRNA after SCI, using molecular-based detection platforms including qRT-PCR, microarray, and RNA-sequencing, (4) including statistically significant miRNA alterations in tissues, such as spinal cord, serum/plasma, and/or CSF, and (5) studies with a SHAM surgery group. Articles included in the review will have their titles, abstracts, and full texts reviewed by two independent authors. Random effects meta-regression will be performed, which allows for within-study and between-study variability, on the miRNA expression after SCI or SHAM surgery. We will analyze both the cumulative pooled dataset, as well as datasets stratified by species, tissue type, and timepoint to identify miRNA alterations that are specifically related to the injured spinal cord. We aim to identify SCI-related miRNA that are specifically altered both within a species, and those that are evolutionarily conserved across species, including humans. The analyses will provide a description of the evolutionarily conserved miRNA signature of the pathophysiological response to SCI. DISCUSSION Here, we present a protocol to perform a systematic review and meta-analysis to investigate the conserved inter- and intra-species miRNA changes that occur due to acute, traumatic SCI. This review seeks to serve as a valuable resource for the SCI community by establishing a rigorous and unbiased description of miRNA changes after SCI for the next generation of SCI biomarkers and therapeutic interventions. TRIAL REGISTRATION The protocol for the systematic review and meta-analysis has been registered through PROSPERO: CRD42021222552 .
Collapse
|
9
|
Cao T, Chen H, Huang W, Xu S, Liu P, Zou W, Pang M, Xu Y, Bai X, Liu B, Rong L, Cui ZK, Li M. hUC-MSC-mediated recovery of subacute spinal cord injury through enhancing the pivotal subunits β3 and γ2 of the GABA A receptor. Theranostics 2022; 12:3057-3078. [PMID: 35547766 PMCID: PMC9065192 DOI: 10.7150/thno.72015] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/12/2022] [Indexed: 12/19/2022] Open
Abstract
Rationale: Spinal cord injury (SCI) remains an incurable neurological disorder leading to permanent and profound neurologic deficits and disabilities. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) are particularly appealing in SCI treatment to curtail damage, restore homeostasis and possible neural relay. However, the detailed mechanisms underlying hUC-MSC-mediated functional recovery of SCI have not been fully elucidated. The purpose of our current study is to identify novel therapeutic targets and depict the molecular mechanisms underlying the hUC-MSC-mediated recovery of subacute SCI. Methods: Adult female rats suffering from subacute incomplete thoracic SCI were treated with intrathecal transplantation of hUC-MSCs. The beneficial effects of hUC-MSCs on SCI repair were evaluated by a series of behavioral analyses, motor evoked potentials (MEPs) recording of hindlimb and immunohistochemistry. We carried out extensive transcriptome comparative analyses of spinal cord tissues at the lesion site from the subacute phase of SCI (sub-SCI) either treated without (+PBS) or with hUC-MSCs (+MSC) at 0 (sub-SCI), 1, 2, and 4 weeks post-transplantation (wpt), as well as normal spinal cord segments of intact/sham rats (Intact). Adeno-associated virus (AAV)-mediated neuron-specific expression system was employed to functionally screen specific γ-aminobutyric acid type A receptor (GABAAR) subunits promoting the functional recovery of SCI in vivo. The mature cortical axon scrape assay and transplantation of genetically modified MSCs with either overexpression or knockdown of brain-derived neurotrophic factor (BDNF) were employed to demonstrate that hUC-MSCs ameliorated the reduction of GABAAR subunits in the injured spinal cord via BDNF secretion in vitro and in vivo, respectively. Results: Comparative transcriptome analysis revealed the GABAergic synapse pathway is significantly enriched as a main target of hUC-MSC-activated genes in the injured spinal cord. Functional screening of the primary GABAAR subunits uncovered that Gabrb3 and Garbg2 harbored the motor and electrophysiological recovery-promoting competence. Moreover, targeting either of the two pivotal subunits β3 or γ2 in combination with/without the K+/Cl- cotransporter 2 (KCC2) reinforced the therapeutic effects. Mechanistically, BDNF secreted by hUC-MSCs contributed to the upregulation of GABAAR subunits (β3 & γ2) and KCC2 in the injured neurons. Conclusions: Our study identifies a novel mode for hUC-MSC-mediated locomotor recovery of SCI through synergistic upregulation of GABAAR β3 and γ2 along with KCC2 by BDNF secretion, indicating the significance of restoring the excitation/inhibition balance in the injured neurons for the reestablishment of neuronal circuits. This study also provides a potential combinatorial approach by targeting the pivotal subunit β3 or γ2 and KCC2, opening up possibilities for efficacious drug design.
Collapse
Affiliation(s)
- Tingting Cao
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Huan Chen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Weiping Huang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Sisi Xu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Peilin Liu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Weiwei Zou
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Mao Pang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510515, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, 510630, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, 510630, China
| | - Ying Xu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510515, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, 510630, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, 510630, China
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bin Liu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510515, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, 510630, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, 510630, China
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510515, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, 510630, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, 510630, China
| | - Zhong-Kai Cui
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Mangmang Li
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
10
|
Cao TT, Chen H, Pang M, Xu SS, Wen HQ, Liu B, Rong LM, Li MM. Dose optimization of intrathecal administration of human umbilical cord mesenchymal stem cells for the treatment of subacute incomplete spinal cord injury. Neural Regen Res 2022; 17:1785-1794. [PMID: 35017439 PMCID: PMC8820722 DOI: 10.4103/1673-5374.332151] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Human umbilical cord mesenchymal stem cells (hUC-MSCs) are a promising candidate for spinal cord injury (SCI) repair owing to their advantages of low immunogenicity and easy accessibility over other MSC sources. However, modest clinical efficacy hampered the progression of these cells to clinical translation. This discrepancy may be due to many variables, such as cell source, timing of implantation, route of administration, and relevant efficacious cell dose, which are critical factors that affect the efficacy of treatment of patients with SCI. Previously, we have evaluated the safety and efficacy of 4 × 106 hUC-MSCs/kg in the treatment of subacute SCI by intrathecal implantation in rat models. To search for a more accurate dose range for clinical translation, we compared the effects of three different doses of hUC-MSCs – low (0.25 × 106 cells/kg), medium (1 × 106 cells/kg) and high (4 × 106 cells/kg) – on subacute SCI repair through an elaborate combination of behavioral analyses, anatomical analyses, magnetic resonance imaging-diffusion tensor imaging (MRI-DTI), biotinylated dextran amine (BDA) tracing, electrophysiology, and quantification of mRNA levels of ion channels and neurotransmitter receptors. Our study demonstrated that the medium dose, but not the low dose, is as efficient as the high dose in producing the desired therapeutic outcomes. Furthermore, partial restoration of the γ-aminobutyric acid type A (GABAA) receptor expression by the effective doses indicates that GABAA receptors are possible candidates for therapeutic targeting of dormant relay pathways in injured spinal cord. Overall, this study revealed that intrathecal implantation of 1 × 106 hUC-MSCs/kg is an alternative approach for treating subacute SCI.
Collapse
Affiliation(s)
- Ting-Ting Cao
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Huan Chen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Mao Pang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, Guangdong Province, China
| | - Si-Si Xu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Hui-Quan Wen
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Bin Liu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, Guangdong Province, China
| | - Li-Min Rong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, Guangdong Province, China
| | - Mang-Mang Li
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
11
|
Zavvarian MM, Zhou C, Kahnemuyipour S, Hong J, Fehlings MG. The MAPK Signaling Pathway Presents Novel Molecular Targets for Therapeutic Intervention after Traumatic Spinal Cord Injury: A Comparative Cross-Species Transcriptional Analysis. Int J Mol Sci 2021; 22:12934. [PMID: 34884738 PMCID: PMC8657729 DOI: 10.3390/ijms222312934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 11/29/2022] Open
Abstract
Despite the debilitating consequences following traumatic spinal cord injury (SCI), there is a lack of safe and effective therapeutics in the clinic. The species-specific responses to SCI present major challenges and opportunities for the clinical translation of biomolecular and pharmacological interventions. Recent transcriptional analyses in preclinical SCI studies have provided a snapshot of the local SCI-induced molecular responses in different animal models. However, the variation in the pathogenesis of traumatic SCI across species is yet to be explored. This study aims to identify and characterize the common and inconsistent SCI-induced differentially expressed genes across species to identify potential therapeutic targets of translational relevance. A comprehensive search of open-source transcriptome datasets identified four cross-compatible microarray experiments in rats, mice, and salamanders. We observed consistent expressional changes in extracellular matrix components across the species. Conversely, salamanders showed downregulation of intracellular MAPK signaling compared to rodents. Additionally, sequence conservation and interactome analyses highlighted the well-preserved sequences of Fn1 and Jun with extensive protein-protein interaction networks. Lastly, in vivo immunohistochemical staining for fibronectin was used to validate the observed expressional pattern. These transcriptional changes in extracellular and MAPK pathways present potential therapeutic targets for traumatic SCI with promising translational relevance.
Collapse
Affiliation(s)
- Mohammad-Masoud Zavvarian
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (C.Z.); (J.H.)
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Cindy Zhou
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (C.Z.); (J.H.)
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sabah Kahnemuyipour
- Human Biology Department, University of Toronto, Toronto, ON M5S 3J6, Canada;
| | - James Hong
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (C.Z.); (J.H.)
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Michael G. Fehlings
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (C.Z.); (J.H.)
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
12
|
Squair JW, Gautier M, Kathe C, Anderson MA, James ND, Hutson TH, Hudelle R, Qaiser T, Matson KJE, Barraud Q, Levine AJ, La Manno G, Skinnider MA, Courtine G. Confronting false discoveries in single-cell differential expression. Nat Commun 2021; 12:5692. [PMID: 34584091 PMCID: PMC8479118 DOI: 10.1038/s41467-021-25960-2] [Citation(s) in RCA: 322] [Impact Index Per Article: 107.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Differential expression analysis in single-cell transcriptomics enables the dissection of cell-type-specific responses to perturbations such as disease, trauma, or experimental manipulations. While many statistical methods are available to identify differentially expressed genes, the principles that distinguish these methods and their performance remain unclear. Here, we show that the relative performance of these methods is contingent on their ability to account for variation between biological replicates. Methods that ignore this inevitable variation are biased and prone to false discoveries. Indeed, the most widely used methods can discover hundreds of differentially expressed genes in the absence of biological differences. To exemplify these principles, we exposed true and false discoveries of differentially expressed genes in the injured mouse spinal cord.
Collapse
Affiliation(s)
- Jordan W Squair
- Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Matthieu Gautier
- Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Claudia Kathe
- Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Mark A Anderson
- Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Nicholas D James
- Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Thomas H Hutson
- Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Rémi Hudelle
- Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Taha Qaiser
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Kaya J E Matson
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Quentin Barraud
- Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Ariel J Levine
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Gioele La Manno
- Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Michael A Skinnider
- Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
| | - Grégoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
| |
Collapse
|
13
|
Yao XQ, Liu ZY, Chen JY, Huang ZC, Liu JH, Sun BH, Zhu QA, Ding RT, Chen JT. Proteomics and bioinformatics reveal insights into neuroinflammation in the acute to subacute phases in rat models of spinal cord contusion injury. FASEB J 2021; 35:e21735. [PMID: 34143440 DOI: 10.1096/fj.202100081rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/18/2021] [Accepted: 06/01/2021] [Indexed: 01/16/2023]
Abstract
Neuroinflammation is recognized as a hallmark of spinal cord injury (SCI). Although neuroinflammation is an important pathogenic factor that leads to secondary injuries after SCI, neuroprotective anti-inflammatory treatments remain ineffective in the management of SCI. Moreover, the molecular signatures involved in the pathophysiological changes that occur during the course of SCI remain ambiguous. The current study investigated the proteins and pathways involved in C5 spinal cord hemi-contusion injury using a rat model by means of 4-D label-free proteomic analysis. Furthermore, two Gene Expression Omnibus (GEO) transcriptomic datasets, Western blot assays, and immunofluorescent staining were used to validate the expression levels and localization of dysregulated proteins. The present study observed that the rat models of SCI were associated with the enrichment of proteins related to the complement and coagulation cascades, cholesterol metabolism, and lysosome pathway throughout the acute and subacute phases of injury. Intriguingly, the current study also observed that 75 genes were significantly altered in both the GEO datasets, including ANXA1, C1QC, CTSZ, GM2A, GPNMB, and PYCARD. Further temporal clustering analysis revealed that the continuously upregulated protein cluster was associated with immune response, lipid regulation, lysosome pathway, and myeloid cells. Additionally, five proteins were further validated by means of Western blot assays and the immunofluorescent staining showed that these proteins coexisted with the F4/80+ reactive microglia and infiltrating macrophages. In conclusion, the proteomic data pertaining to the current study indicate the notable proteins and pathways that may be novel therapeutic targets for the treatment of SCI.
Collapse
Affiliation(s)
- Xin-Qiang Yao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhong-Yuan Liu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jia-Ying Chen
- Department of Comprehensive Medical Treatment Ward, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zu-Cheng Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun-Hao Liu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Division of Spine Surgery, Department of Orthopaedics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Bai-Hui Sun
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qing-An Zhu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruo-Ting Ding
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian-Ting Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Proteomic Portraits Reveal Evolutionarily Conserved and Divergent Responses to Spinal Cord Injury. Mol Cell Proteomics 2021; 20:100096. [PMID: 34129941 PMCID: PMC8260874 DOI: 10.1016/j.mcpro.2021.100096] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/14/2021] [Accepted: 05/11/2021] [Indexed: 01/16/2023] Open
Abstract
Despite the emergence of promising therapeutic approaches in preclinical studies, the failure of large-scale clinical trials leaves clinicians without effective treatments for acute spinal cord injury (SCI). These trials are hindered by their reliance on detailed neurological examinations to establish outcomes, which inflate the time and resources required for completion. Moreover, therapeutic development takes place in animal models whose relevance to human injury remains unclear. Here, we address these challenges through targeted proteomic analyses of cerebrospinal fluid and serum samples from 111 patients with acute SCI and, in parallel, a large animal (porcine) model of SCI. We develop protein biomarkers of injury severity and recovery, including a prognostic model of neurological improvement at 6 months with an area under the receiver operating characteristic curve of 0.91, and validate these in an independent cohort. Through cross-species proteomic analyses, we dissect evolutionarily conserved and divergent aspects of the SCI response and establish the cerebrospinal fluid abundance of glial fibrillary acidic protein as a biochemical outcome measure in both humans and pigs. Our work opens up new avenues to catalyze translation by facilitating the evaluation of novel SCI therapies, while also providing a resource from which to direct future preclinical efforts. • Targeted proteomic analysis of CSF and serum samples from 111 acute SCI patients. • Single- and multiprotein biomarkers of injury severity and recovery. • Parallel proteomic analysis in a large animal model identifies conserved biomarkers. • Evolutionary conservation and divergence of the proteomic response to SCI.
Collapse
|
15
|
Anderson MA. Targeting Central Nervous System Regeneration with Cell Type Specificity. Neurosurg Clin N Am 2021; 32:397-405. [PMID: 34053727 DOI: 10.1016/j.nec.2021.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There have been tremendous advances in identifying cellular and molecular mechanisms constraining axon growth and strategies have been developed to overcome regenerative failure. However, reproducible and meaningful functional recovery remains elusive. An emerging reason is that neurons possess subtype-specific activation requirements. Much of this evidence comes from studying retinal ganglion cells following optic nerve injury. This review summarizes key neuropathologic events following spinal cord injury, and draws on findings from the optic nerve to suggest how a similar framework may be used to dissect and manipulate the heterogeneous and subtype-specific responses of neurons useful to target for spinal cord injury.
Collapse
Affiliation(s)
- Mark A Anderson
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Féderale de Lausanne (EPFL), Lausanne, Switzerland; Neural Repair Unit, NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
| |
Collapse
|
16
|
Ghibaudi M, Boido M, Green D, Signorino E, Berto GE, Pourshayesteh S, Singh A, Di Cunto F, Dalmay T, Vercelli A. miR-7b-3p Exerts a Dual Role After Spinal Cord Injury, by Supporting Plasticity and Neuroprotection at Cortical Level. Front Mol Biosci 2021; 8:618869. [PMID: 33869277 PMCID: PMC8044879 DOI: 10.3389/fmolb.2021.618869] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) affects 6 million people worldwide with no available treatment. Despite research advances, the inherent poor regeneration potential of the central nervous system remains a major hurdle. Small RNAs (sRNAs) 19-33 nucleotides in length are a set of non-coding RNA molecules that regulate gene expression and have emerged as key players in regulating cellular events occurring after SCI. Here we profiled a class of sRNA known as microRNAs (miRNAs) following SCI in the cortex where the cell bodies of corticospinal motor neurons are located. We identified miR-7b-3p as a candidate target given its significant upregulation after SCI in vivo and we screened by miRWalk PTM the genes predicted to be targets of miR-7b-3p (among which we identified Wipf2, a gene regulating neurite extension). Moreover, 16 genes, involved in neural regeneration and potential miR-7b-3p targets, were found to be downregulated in the cortex following SCI. We also analysed miR-7b-3p function during cortical neuron development in vitro: we observed that the overexpression of miR-7b-3p was important (1) to maintain neurons in a more immature and, likely, plastic neuronal developmental phase and (2) to contrast the apoptotic pathway; however, in normal conditions it did not affect the Wipf2 expression. On the contrary, the overexpression of miR-7b-3p upon in vitro oxidative stress condition (mimicking the SCI environment) significantly reduced the expression level of Wipf2, as observed in vivo, confirming it as a direct miR-7b-3p target. Overall, these data suggest a dual role of miR-7b-3p: (i) the induction of a more plastic neuronal condition/phase, possibly at the expense of the axon growth, (ii) the neuroprotective role exerted through the inhibition of the apoptotic cascade. Increasing the miR-7b-3p levels in case of SCI could reactivate in adult neurons silenced developmental programmes, supporting at the same time the survival of the axotomised neurons.
Collapse
Affiliation(s)
- Matilde Ghibaudi
- Department of Neuroscience “Rita Levi Montalcini,” Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
- Polymers and Biomaterials, Italian Institute of Technology, Genova, Italy
| | - Marina Boido
- Department of Neuroscience “Rita Levi Montalcini,” Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| | - Darrell Green
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Elena Signorino
- Department of Neuroscience “Rita Levi Montalcini,” Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| | - Gaia Elena Berto
- Department of Neuroscience “Rita Levi Montalcini,” Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| | - Soraya Pourshayesteh
- Department of Neuroscience “Rita Levi Montalcini,” Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| | - Archana Singh
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Ferdinando Di Cunto
- Department of Neuroscience “Rita Levi Montalcini,” Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Alessandro Vercelli
- Department of Neuroscience “Rita Levi Montalcini,” Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| |
Collapse
|
17
|
Chen Q, Zhao Z, Yin G, Yang C, Wang D, Feng Z, Ta N. Identification and analysis of spinal cord injury subtypes using weighted gene co-expression network analysis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:466. [PMID: 33850863 PMCID: PMC8039699 DOI: 10.21037/atm-21-340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Spinal cord injury (SCI) has an immediate and devastating impact on the control over various movements and sensations. However, no effective therapies for SCI currently exist. Methods To identify and analyze SCI subtypes, we obtained the expression profile data of the 1,057 genes (889 intersection genes) in GSE45550 using weighted gene co-expression network analysis (WGCNA), and 14 co-expression gene modules were identified. Next, we filtered out the network degree top 10 (degree >80) genes, considered the final key SCI genes. A multifactor regulatory network (105 interaction pairs), consisting of messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), and transcription factors (TFs) was constructed. This network was involved in the co-expression of key genes. We selected the top 10 regulatory factors (degree >4) as core regulators in the multifactor regulatory network. Results The results of functional enrichment analysis of the target gene expressing the core regulatory factor [1,059] showed that these target genes were enriched in pathways for human cytomegalovirus infection, chronic myeloid leukemia, and pancreatic cancer. Further, we used the key genes in the co-expression network to categorize the SCI samples in GSE45550. The expression levels of the top 6 genes (CCNB2, CCNB1, CKS2, COL5A1, KIF20A, and RACGAP1) may act as potential marker genes for different SCI subtypes. On the basis of these different subtypes, 8 SCI core gene CDK1-associated drugs were also found to provide potential therapeutic options for SCI. Conclusions These results may provide a novel therapeutic strategy for the treatment of SCI.
Collapse
Affiliation(s)
- Qi Chen
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ziru Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guoyong Yin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuanjun Yang
- Department of Orthopedics, Anting Hospital, Shanghai, China
| | - Danfeng Wang
- Department of Orthopedics, Anting Hospital, Shanghai, China
| | - Zhi Feng
- Department of Orthopedics, Anting Hospital, Shanghai, China
| | - Na Ta
- Department of Nursing Management, Anting Hospital, Shanghai, China
| |
Collapse
|
18
|
Skinnider MA, Squair JW, Kathe C, Anderson MA, Gautier M, Matson KJE, Milano M, Hutson TH, Barraud Q, Phillips AA, Foster LJ, La Manno G, Levine AJ, Courtine G. Cell type prioritization in single-cell data. Nat Biotechnol 2021; 39:30-34. [PMID: 32690972 PMCID: PMC7610525 DOI: 10.1038/s41587-020-0605-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022]
Abstract
We present Augur, a method to prioritize the cell types most responsive to biological perturbations in single-cell data. Augur employs a machine-learning framework to quantify the separability of perturbed and unperturbed cells within a high-dimensional space. We validate our method on single-cell RNA sequencing, chromatin accessibility and imaging transcriptomics datasets, and show that Augur outperforms existing methods based on differential gene expression. Augur identified the neural circuits restoring locomotion in mice following spinal cord neurostimulation.
Collapse
Affiliation(s)
- Michael A Skinnider
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Jordan W Squair
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada.
| | - Claudia Kathe
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Mark A Anderson
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Matthieu Gautier
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Kaya J E Matson
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Marco Milano
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Thomas H Hutson
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Quentin Barraud
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Aaron A Phillips
- Departments of Physiology and Pharmacology, Clinical Neurosciences, and Cardiac Sciences, Hotchkiss Brain Institute and Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gioele La Manno
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ariel J Levine
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Grégoire Courtine
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
- Center for Neuroprosthetics, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
19
|
Glial Metabolic Rewiring Promotes Axon Regeneration and Functional Recovery in the Central Nervous System. Cell Metab 2020; 32:767-785.e7. [PMID: 32941799 PMCID: PMC7642184 DOI: 10.1016/j.cmet.2020.08.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/07/2020] [Accepted: 08/26/2020] [Indexed: 12/25/2022]
Abstract
Axons in the mature central nervous system (CNS) fail to regenerate after axotomy, partly due to the inhibitory environment constituted by reactive glial cells producing astrocytic scars, chondroitin sulfate proteoglycans, and myelin debris. We investigated this inhibitory milieu, showing that it is reversible and depends on glial metabolic status. We show that glia can be reprogrammed to promote morphological and functional regeneration after CNS injury in Drosophila via increased glycolysis. This enhancement is mediated by the glia derived metabolites: L-lactate and L-2-hydroxyglutarate (L-2HG). Genetically/pharmacologically increasing or reducing their bioactivity promoted or impeded CNS axon regeneration. L-lactate and L-2HG from glia acted on neuronal metabotropic GABAB receptors to boost cAMP signaling. Local application of L-lactate to injured spinal cord promoted corticospinal tract axon regeneration, leading to behavioral recovery in adult mice. Our findings revealed a metabolic switch to circumvent the inhibition of glia while amplifying their beneficial effects for treating CNS injuries.
Collapse
|
20
|
Min HK, Moon SJ, Park KS, Kim KJ. Integrated systems analysis of salivary gland transcriptomics reveals key molecular networks in Sjögren's syndrome. Arthritis Res Ther 2019; 21:294. [PMID: 31856901 PMCID: PMC6921432 DOI: 10.1186/s13075-019-2082-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/04/2019] [Indexed: 02/08/2023] Open
Abstract
Background Treatment of patients with Sjögren’s syndrome (SjS) is a clinical challenge with high unmet needs. Gene expression profiling and integrative network-based approaches to complex disease can offer an insight on molecular characteristics in the context of clinical setting. Methods An integrated dataset was created from salivary gland samples of 30 SjS patients. Pathway-driven enrichment profiles made by gene set enrichment analysis were categorized using hierarchical clustering. Differentially expressed genes (DEGs) were subjected to functional network analysis, where the elements of the core subnetwork were used for key driver analysis. Results We identified 310 upregulated DEGs, including nine known genetic risk factors and two potential biomarkers. The core subnetwork was enriched with the processes associated with B cell hyperactivity. Pathway-based subgrouping revealed two clusters with distinct molecular signatures for the relevant pathways and cell subsets. Cluster 2, with low-grade inflammation, showed a better response to rituximab therapy than cluster 1, with high-grade inflammation. Fourteen key driver genes appeared to be essential signaling mediators downstream of the B cell receptor (BCR) signaling pathway and to have a positive relationship with histopathology scores. Conclusion Integrative network-based approaches provide deep insights into the modules and pathways causally related to SjS and allow identification of key targets for disease. Intervention adjusted to the molecular traits of the disease would allow the achievement of better outcomes, and the BCR signaling pathway and its leading players are promising therapeutic targets.
Collapse
Affiliation(s)
- Hong Ki Min
- Division of Rheumatology, Department of Internal Medicine, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Su-Jin Moon
- Division of Rheumatology, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyung-Su Park
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ki-Jo Kim
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
21
|
McCallum-Loudeac J, Anderson G, Wilson MJ. Age and Sex-Related Changes to Gene Expression in the Mouse Spinal Cord. J Mol Neurosci 2019; 69:419-432. [PMID: 31267314 DOI: 10.1007/s12031-019-01371-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
Abstract
The spinal cord is essential for neuronal communication between the brain and rest of the body. To gain further insight into the molecular changes underpinning maturation of the mouse spinal cord, we analysed gene expression differences between 4 weeks of age (prior to puberty onset) and adulthood (8 weeks). We found 800 genes were significantly differentially expressed between juvenile and adult spinal cords. Gene ontology analysis revealed an overrepresentation of genes with roles in myelination and signal transduction among others. The expression of a further 19 genes was sexually dimorphic; these included both autosomal and sex-linked genes. Given the presence of steroid hormone receptors in the spinal cord, we also looked at the impact of two major steroid hormones, oestradiol and dihydrotestosterone (DHT) on spinal cord gene expression for selected genes. In gonadectomised male animals, implants with oestradiol and DHT produced significant changes to spinal cord gene expression. This study provides an overview of the global gene expression changes that occur as the spinal cord matures, over a key period of maturation. This confirms that both age and sex are important considerations in studies involving the spinal cord.
Collapse
Affiliation(s)
- Jeremy McCallum-Loudeac
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Greg Anderson
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Megan J Wilson
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|