1
|
Dutta S, Farhadifar R, Lu W, Kabacaoğlu G, Blackwell R, Stein DB, Lakonishok M, Gelfand VI, Shvartsman SY, Shelley MJ. Self-organized intracellular twisters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.04.534476. [PMID: 37066165 PMCID: PMC10104069 DOI: 10.1101/2023.04.04.534476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Life in complex systems, such as cities and organisms, comes to a standstill when global coordination of mass, energy, and information flows is disrupted. Global coordination is no less important in single cells, especially in large oocytes and newly formed embryos, which commonly use fast fluid flows for dynamic reorganization of their cytoplasm. Here, we combine theory, computing, and imaging to investigate such flows in the Drosophila oocyte, where streaming has been proposed to spontaneously arise from hydrodynamic interactions among cortically anchored microtubules loaded with cargo-carrying molecular motors. We use a fast, accurate, and scalable numerical approach to investigate fluid-structure interactions of 1000s of flexible fibers and demonstrate the robust emergence and evolution of cell-spanning vortices, or twisters. Dominated by a rigid body rotation and secondary toroidal components, these flows are likely involved in rapid mixing and transport of ooplasmic components.
Collapse
Affiliation(s)
- Sayantan Dutta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ
- Center of Computational Biology, Flatiron Institute, New York, NY
| | - Reza Farhadifar
- Center of Computational Biology, Flatiron Institute, New York, NY
| | - Wen Lu
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | - Robert Blackwell
- Center of Computational Biology, Flatiron Institute, New York, NY
| | - David B Stein
- Center of Computational Biology, Flatiron Institute, New York, NY
| | - Margot Lakonishok
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Vladimir I Gelfand
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ
- Center of Computational Biology, Flatiron Institute, New York, NY
- Department of Molecular Biology and Lewis Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ
| | - Michael J Shelley
- Center of Computational Biology, Flatiron Institute, New York, NY
- Courant Institute of Mathematical Sciences, New York University, New York, NY
| |
Collapse
|
2
|
Corci B, Hooiveld O, Dolga AM, Åberg C. Extending the analogy between intracellular motion in mammalian cells and glassy dynamics. SOFT MATTER 2023; 19:2529-2538. [PMID: 36939775 DOI: 10.1039/d2sm01672a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
How molecules, organelles, and foreign objects move within living cells has been studied in organisms ranging from bacteria to human cells. In mammalian cells, in particular, cellular vesicles move across the cell using motor proteins that carry the vesicle down the cytoskeleton to their destination. We have recently noted several similarities between the motion of such vesicles and that in disordered, "glassy", systems, but the generality of this observation remains unclear. Here we follow the motion of mitochondria, the organelles responsible for cell energy production, in mammalian cells over timescales from 50 ms to 70 s. Qualitative observations show that single mitochondria remain within a spatially limited region for extended periods of time, before moving longer distances relatively quickly. The displacement distribution is roughly Gaussian for shorter distances (≲0.05 μm) but exhibits exponentially decaying tails at longer distances (up to 0.40 μm). This behaviour is well-described by a model developed to describe the motion in glassy systems. These observations are extended to in total 3 different objects (mitochondria, lysosomes and nano-sized beads enclosed in vesicles), 3 different mammalian cell types (HEK 293, HeLa, and HT22), from 2 different organisms (human and mouse). Further evidence that supports glass-like characteristics of the motion is a difference between the time it takes to move a longer distance for the first time and subsequent times, as well as a weak ergodicity breaking of the motion. Overall, we demonstrate the ubiquity of glass-like motion in mammalian cells, providing a different perspective on intracellular motion.
Collapse
Affiliation(s)
- Beatrice Corci
- Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Oscar Hooiveld
- Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Amalia M Dolga
- Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Christoffer Åberg
- Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
3
|
Shen C, Qin CR, Xu TL, Chen K, Tian WD. Structure and dynamics of an active polymer adsorbed on the surface of a cylinder. SOFT MATTER 2022; 18:1489-1497. [PMID: 35089305 DOI: 10.1039/d1sm01658j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The structure and dynamics of an active polymer on a smooth cylindrical surface are studied by Brownian dynamics simulations. The effect of an active force on the polymer adsorption behavior and the combined effect of chain mobility, length N, rigidity κ, and cylinder radius, R, on the phase diagrams are systemically investigated. We find that complete adsorption is replaced by the irregular alternative adsorption/desorption process at a large driving force. Three typical (spiral, helix-like, and rod-like) conformations of the active polymer are observed, dependent on N, κ, and R. Dynamically, the polymer shows rotational motion in the spiral state, snake-like motion in the intermediate state, and straight translational motion without turning back in the rod-like state. In the spiral state, we find that the rotation velocity ω and the chain length follow a power-law relation ω ∼ N-0.42, consistent with the torque-balance theory of general Archimedean spirals. And the polymer shows super-diffusive behavior along the cylinder for a long time in the helix-like and rod-like states. Our results highlight that the mobility, rigidity, and curvature of surface can be used to regulate the polymer behavior.
Collapse
Affiliation(s)
- Chen Shen
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Chao-Ran Qin
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Tian-Liang Xu
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Kang Chen
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Wen-de Tian
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| |
Collapse
|
4
|
Zhou H, Isozaki N, Fujimoto K, Yokokawa R. Growth rate-dependent flexural rigidity of microtubules influences pattern formation in collective motion. J Nanobiotechnology 2021; 19:218. [PMID: 34281555 PMCID: PMC8287809 DOI: 10.1186/s12951-021-00960-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/11/2021] [Indexed: 11/10/2022] Open
Abstract
Background Microtubules (MTs) are highly dynamic tubular cytoskeleton filaments that are essential for cellular morphology and intracellular transport. In vivo, the flexural rigidity of MTs can be dynamically regulated depending on their intracellular function. In the in vitro reconstructed MT-motor system, flexural rigidity affects MT gliding behaviors and trajectories. Despite the importance of flexural rigidity for both biological functions and in vitro applications, there is no clear interpretation of the regulation of MT flexural rigidity, and the results of many studies are contradictory. These discrepancies impede our understanding of the regulation of MT flexural rigidity, thereby challenging its precise manipulation. Results Here, plausible explanations for these discrepancies are provided and a new method to evaluate the MT rigidity is developed. Moreover, a new relationship of the dynamic and mechanic of MTs is revealed that MT flexural rigidity decreases through three phases with the growth rate increases, which offers a method of designing MT flexural rigidity by regulating its growth rate. To test the validity of this method, the gliding performances of MTs with different flexural rigidities polymerized at different growth rates are examined. The growth rate-dependent flexural rigidity of MTs is experimentally found to influence the pattern formation in collective motion using gliding motility assay, which is further validated using machine learning. Conclusion Our study establishes a robust quantitative method for measurement and design of MT flexural rigidity to study its influences on MT gliding assays, collective motion, and other biological activities in vitro. The new relationship about the growth rate and rigidity of MTs updates current concepts on the dynamics and mechanics of MTs and provides comparable data for investigating the regulation mechanism of MT rigidity in vivo in the future. Graphic Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00960-y.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Naoto Isozaki
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Kazuya Fujimoto
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Ryuji Yokokawa
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan.
| |
Collapse
|
5
|
Anand SK, Singh SP. Conformation and dynamics of a self-avoiding active flexible polymer. Phys Rev E 2020; 101:030501. [PMID: 32289970 DOI: 10.1103/physreve.101.030501] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/14/2020] [Indexed: 06/11/2023]
Abstract
We investigate conformations and dynamics of a polymer considering its monomers to be active Brownian particles. This active polymer shows very intriguing physical behavior which is absent in an active Rouse chain. The chain initially shrinks with active force, which starts swelling on further increase in force. The shrinkage followed by swelling is attributed purely to excluded-volume interactions among the monomers. In the swelling regime, the chain shows a crossover from the self-avoiding behavior to the Rouse behavior with scaling exponent ν_{a}≈1/2 for end-to-end distance. The nonmonotonicity in the structure is analyzed through various physical quantities; specifically, radial distribution function of monomers, scattering time, as well as various energy calculations. The chain relaxes faster than the Rouse chain in the intermediate force regime, with a crossover in variation of relaxation time at large active force as given by a power law τ_{r}∼Pe^{-4/3} (Pe is Péclet number).
Collapse
Affiliation(s)
- Shalabh K Anand
- Department of Physics, Indian Institute of Science Education and Research, Bhopal 462 066, Madhya Pradesh, India
| | - Sunil P Singh
- Department of Physics, Indian Institute of Science Education and Research, Bhopal 462 066, Madhya Pradesh, India
| |
Collapse
|
6
|
Das S, Cacciuto A. Dynamics of an active semi-flexible filament in a spherical cavity. J Chem Phys 2019; 151:244904. [DOI: 10.1063/1.5132757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- S. Das
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - A. Cacciuto
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| |
Collapse
|
7
|
Rickman J, Nédélec F, Surrey T. Effects of spatial dimensionality and steric interactions on microtubule-motor self-organization. Phys Biol 2019; 16:046004. [PMID: 31013252 PMCID: PMC7655122 DOI: 10.1088/1478-3975/ab0fb1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Active networks composed of filaments and motor proteins can self-organize into a
variety of architectures. Computer simulations in two or three spatial
dimensions and including or omitting steric interactions between filaments can
be used to model active networks. Here we examine how these modelling choices
affect the state space of network self-organization. We compare the networks
generated by different models of a system of dynamic microtubules and
microtubule-crosslinking motors. We find that a thin 3D model that includes
steric interactions between filaments is the most versatile, capturing a variety
of network states observed in recent experiments. In contrast, 2D models either
with or without steric interactions which prohibit microtubule crossings can
produce some, but not all, observed network states. Our results provide
guidelines for the most appropriate choice of model for the study of different
network types and elucidate mechanisms of active network organization.
Collapse
Affiliation(s)
- Jamie Rickman
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom. Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London WC1 6BT, United Kingdom
| | | | | |
Collapse
|