1
|
He F, Zheng Y, Elsabagh M, Fan K, Zha X, Zhang B, Wang M, Zhang H. Gut microbiota modulate intestinal inflammation by endoplasmic reticulum stress-autophagy-cell death signaling axis. J Anim Sci Biotechnol 2025; 16:63. [PMID: 40312439 DOI: 10.1186/s40104-025-01196-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/17/2025] [Indexed: 05/03/2025] Open
Abstract
The intestinal tract, a complex organ responsible for nutrient absorption and digestion, relies heavily on a balanced gut microbiome to maintain its integrity. Disruptions to this delicate microbial ecosystem can lead to intestinal inflammation, a hallmark of inflammatory bowel disease (IBD). While the role of the gut microbiome in IBD is increasingly recognized, the underlying mechanisms, particularly those involving endoplasmic reticulum (ER) stress, autophagy, and cell death, remain incompletely understood. ER stress, a cellular response to various stressors, can trigger inflammation and cell death. Autophagy, a cellular degradation process, can either alleviate or exacerbate ER stress-induced inflammation, depending on the specific context. The gut microbiome can influence both ER stress and autophagy pathways, further complicating the interplay between these processes. This review delves into the intricate relationship between ER stress, autophagy, and the gut microbiome in the context of intestinal inflammation. By exploring the molecular mechanisms underlying these interactions, we aim to provide a comprehensive theoretical framework for developing novel therapeutic strategies for IBD. A deeper understanding of the ER stress-autophagy axis, the gut microbial-ER stress axis, and the gut microbial-autophagy axis may pave the way for targeted interventions to restore intestinal health and mitigate the impact of IBD.
Collapse
Affiliation(s)
- Feiyang He
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
- Key Laboratory of Fujian Universities Preventive Veterinary Medicine and Biotechnology, Longyan University, Longyan, 364012, P. R. China
| | - Yi Zheng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Niğde Ömermer Halisdemir University, Nigde, 51240, Turkey
| | - Kewei Fan
- Key Laboratory of Fujian Universities Preventive Veterinary Medicine and Biotechnology, Longyan University, Longyan, 364012, P. R. China
| | - Xia Zha
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Bei Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Science, Shihezi, 832000, P. R. China
| | - Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China.
| |
Collapse
|
2
|
Wei X, Tang D. Effect of Bacteroides on Crohn's disease. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2025; 63:393-402. [PMID: 39586813 DOI: 10.1055/a-2435-2659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Crohn's disease (CD), also known as cicatrizing enteritis, is an inflammatory bowel disease that occurs in the distal ileum and right colon of unknown cause and is also called inflammatory bowel disease (IBD) with ulcerative colitis (UC). In recent years, intestinal biota have been confirmed to play a significant role in various gastrointestinal diseases. Studies have found that intestinal microbiota disorders are closely associated with the onset and progression of Crohn's disease. Bacteroidetes, the second largest microbiota in the intestine, are crucial for equilibrium in the microbiota and intestinal environment. Certain Bacteroides can induce the development of Crohn's disease and aggravate intestinal inflammation directly or through their metabolites. Conversely, certain Bacteroides can reduce intestinal inflammation and symptoms of Crohn's disease. This article reviews the effect of several intestinal Bacteroides in the onset and progression of Crohn's disease and their impact on its treatment.
Collapse
Affiliation(s)
- Xuanyu Wei
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, Yangzhou, China
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital, Nanjing University, Yangzhou, China
| |
Collapse
|
3
|
Alzahrani AJ, Al-Hebshi BM, Yahia ZA, Al-Judaibi EA, Alsaadi KH, Al-Judaibi AA. Impact of Microbiota Diversity on Inflammatory Bowel Disease. Microorganisms 2025; 13:710. [PMID: 40284547 PMCID: PMC12029714 DOI: 10.3390/microorganisms13040710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/29/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic condition that includes two main types, Crohn's disease (CD) and ulcerative colitis (UC), involving inflammation of the gastrointestinal (GI) tract. The exact cause of IBD is unknown but could be a combination of genetic, environmental, and immune system factors. This study investigated the impact of IBD on microbiota diversity by evaluating the differences in microbial composition and the microbiota of a control group (A) of healthy individuals and a group (B) of IBD patients. Sixty biopsies were collected from participants recruited from hospitals in Makkah, Saudi Arabia. Biopsy specimens were taken during colonoscopy examination, and bacterial identification was performed by extracting ribosomal DNA from sigmoid colon biopsies using a DNeasy Blood & Tissue Kit. Metagenomics and bioinformatics analyses were then conducted to analyze and compare the microbiota in the two groups. The results showed that the varieties of core microbiome species were 3.81% greater in the IBD patients than in the members of the control group. Furthermore, the differences between the groups were significantly greater than the variations within each group. Differences between the two groups were detected in the relative abundance of Clostridium nexile, Ruminococcus gnavus, Ruminococcus faecis, and Escherichia coli. These results indicate that microbiota could play a role in the pathogenesis of IBD and suggest that microbial diversity can serve as a biomarker for diagnosing the disease and monitoring its progression.
Collapse
Affiliation(s)
- Ashwag J. Alzahrani
- Department of Biological Sciences, Microbiology Section, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia; (A.J.A.); (B.M.A.-H.); (E.A.A.-J.); (K.H.A.)
| | - Basma M. Al-Hebshi
- Department of Biological Sciences, Microbiology Section, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia; (A.J.A.); (B.M.A.-H.); (E.A.A.-J.); (K.H.A.)
| | - Zolfekar A. Yahia
- Department of Internal Medicine, Al Noor Specialist Hospital, Ministry of Health, Makkah 24242, Saudi Arabia;
| | - Effat A. Al-Judaibi
- Department of Biological Sciences, Microbiology Section, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia; (A.J.A.); (B.M.A.-H.); (E.A.A.-J.); (K.H.A.)
| | - Khloud H. Alsaadi
- Department of Biological Sciences, Microbiology Section, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia; (A.J.A.); (B.M.A.-H.); (E.A.A.-J.); (K.H.A.)
| | - Awatif A. Al-Judaibi
- Department of Biological Sciences, Microbiology Section, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia; (A.J.A.); (B.M.A.-H.); (E.A.A.-J.); (K.H.A.)
| |
Collapse
|
4
|
Long Y, Zhang Q, Ling L, Zhuang Y, Wei X, Huang H, Lu Z, Huang Y, Chen X, Ye Y, Feng X, Zhang H, Huang B, Huang Y, Liang Y, Fang M, Nakamura Y, Lin B, Zhang X, Lu D, Jin X, Xu X. Mutations in AMBRA1 aggravate β-thalassemia by impairing autophagy-mediated clearance of free α-globin. Blood 2025; 145:1074-1088. [PMID: 39693613 DOI: 10.1182/blood.2023022688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/16/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024] Open
Abstract
ABSTRACT Accumulation of free α-globin is a critical factor in the pathogenesis of β-thalassemia. Autophagy plays a crucial role in clearing toxic free α-globin, thereby reducing disease severity. However, the impact of natural mutations in autophagy-related genes (ATGs) on the phenotypic variability of β-thalassemia remains unclear. In this study, we systematically investigated the relationship between variants in ATGs and disease phenotypes in a cohort of 1022 patients with β-thalassemia, identifying 4 missense mutations in the autophagy and beclin 1 regulator 1 (AMBRA1) gene. Disruption of the Ambra1 gene in β-thalassemic mice was found to reduce autophagic clearance of α-globin in red blood cell precursors, exacerbating disease phenotypes. Functional characterization of the AMBRA1 gene and these mutations in patient-derived CD34+ cells, edited human umbilical cord blood-derived erythroid progenitor 2 (HUDEP-2) cells, and engineered HUDEP-2 β-thalassemic cells confirmed that AMBRA1 facilitates the autophagic clearance of free α-globin in human erythroid cells. Functional studies demonstrated that AMBRA1 missense mutants destabilize Unc-51-like kinase 1 protein, inhibit light chain 3 protein lipidation, and subsequently hinder autophagic flux, leading to increased α-globin deposition. Additionally, these mutations were associated with erythrotoxic effects in vitro, including increased intracellular reactive oxygen species levels, higher apoptosis rates, and impaired erythroid differentiation and maturation. This study sheds light on the molecular association between mutations in ATGs and the exacerbation of β-thalassemia, highlighting the potential role of the AMBRA1 gene as a promising diagnostic and therapeutic target for β-hemoglobinopathies.
Collapse
Affiliation(s)
- Yong Long
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qianqian Zhang
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, China
| | - Ling Ling
- Yangzhou University, Yangzhou, China
| | - Yuan Zhuang
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaolei Wei
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haoyang Huang
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhanping Lu
- Central Laboratory, Chongqing University Fuling Hospital, Chongqing University, Chongqing, China
| | - Yushan Huang
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xianming Chen
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yuhua Ye
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaoqin Feng
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haokun Zhang
- State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Binbin Huang
- Department 1 of Internal Medicine, Sixth People's Hospital of Nanning, Nanning, China
| | - Yueyan Huang
- Department of Pediatric, Affiliated Hospital of Youjiang Medical University for Nationalities Baise, Baise, China
| | - Yidan Liang
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Mingyan Fang
- Central Laboratory, Chongqing University Fuling Hospital, Chongqing University, Chongqing, China
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Japan
- Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Bin Lin
- Genetics Laboratory, Guangzhou Huayin Healthcare Group Co, Ltd, Guangzhou, China
- Genetics Laboratory, Guangzhou Jiexu Gene Technology Co, Ltd, Guangzhou, China
| | - Xinhua Zhang
- Department of Hematology, 923rd Hospital of the People's Liberation Army, Nanning, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xin Jin
- Central Laboratory, Chongqing University Fuling Hospital, Chongqing University, Chongqing, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiangmin Xu
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Cune D, Pitasi CL, Rubiola A, Jamma T, Simula L, Boucher C, Fortun A, Adoux L, Letourneur F, Saintpierre B, Donnadieu E, Terris B, Bossard P, Chassaing B, Romagnolo B. Inhibition of Atg7 in intestinal epithelial cells drives resistance against Citrobacter rodentium. Cell Death Dis 2025; 16:112. [PMID: 39971913 PMCID: PMC11840101 DOI: 10.1038/s41419-025-07422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/14/2025] [Accepted: 02/03/2025] [Indexed: 02/21/2025]
Abstract
Autophagy, a cytoprotective mechanism in intestinal epithelial cells, plays a crucial role in maintaining intestinal homeostasis. Beyond its cell-autonomous effects, the significance of autophagy in these cells is increasingly acknowledged in the dynamic interplay between the microbiota and the immune response. In the context of colon cancer, intestinal epithelium disruption of autophagy has been identified as a critical factor influencing tumor development. This disruption modulates the composition of the gut microbiota, eliciting an anti-tumoral immune response. Here, we report that Atg7 deficiency in intestinal epithelial cells shapes the intestinal microbiota leading to an associated limitation of colitis induced by Citrobacter rodentium infection. Mice with an inducible, intestinal epithelial-cell-specific deletion of the autophagy gene, Atg7, exhibited enhanced clearance of C. rodentium, mitigated hyperplasia, and reduced pathogen-induced goblet cell loss. This protective effect is linked to a higher proportion of neutrophils and phagocytic cells in the early phase of infection. At later stages, it is associated with the downregulation of pro-inflammatory pathways and an increase in Th17 and Treg responses-immune responses known for their protective roles against C. rodentium infection, modulated by specific gut microbiota. Fecal microbiota transplantation and antibiotic treatment approaches revealed that the Atg7-deficiency-shapped microbiota, especially Gram-positive bacteria, playing a central role in driving resistance to C. rodentium infection. In summary, our findings highlight that inhibiting autophagy in intestinal epithelial cells contributes to maintaining homeostasis and preventing detrimental intestinal inflammation through microbiota-mediated colonization resistance against C. rodentium. This underscores the central role played by autophagy in shaping the microbiota in promoting immune-mediated resistance against enteropathogens.
Collapse
Affiliation(s)
- David Cune
- Université Paris Cité, Institut Cochin, Inserm, CNRS, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Caterina Luana Pitasi
- Université Paris Cité, Institut Cochin, Inserm, CNRS, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Alessia Rubiola
- Université Paris Cité, Institut Cochin, Inserm, CNRS, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Trinath Jamma
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - Luca Simula
- Université Paris Cité, Institut Cochin, Inserm, CNRS, Paris, France
| | - Camille Boucher
- Université Paris Cité, Institut Cochin, Inserm, CNRS, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Apolline Fortun
- Université Paris Cité, Institut Cochin, Inserm, CNRS, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Lucie Adoux
- Genomic Facility, Université de Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Franck Letourneur
- Genomic Facility, Université de Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Benjamin Saintpierre
- Genomic Facility, Université de Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | | | - Benoît Terris
- Université Paris Cité, Institut Cochin, Inserm, CNRS, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
- Pathology Department, AP-HP, Hôpital Cochin, Paris, France
| | - Pascale Bossard
- Université Paris Cité, Institut Cochin, Inserm, CNRS, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Benoît Chassaing
- Université Paris Cité, Institut Cochin, Inserm, CNRS, Paris, France
- Microbiome-Host Interactions, Institut Pasteur, Université Paris Cité, INSERM, Paris, France
| | - Béatrice Romagnolo
- Université Paris Cité, Institut Cochin, Inserm, CNRS, Paris, France.
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France.
| |
Collapse
|
6
|
Pavel C, Diculescu MM, Ilie M, Plotogea OM, Sandru V, Enache V, Gheonea DI, Jichitu A, Constantinescu A, Serban RE, Bogu CV, Liscu HD, Stepan AE. Immunohistochemistry Analysis in Inflammatory Bowel Disease-Should We Bring to Light Interleukin-10? Biomedicines 2025; 13:406. [PMID: 40002819 PMCID: PMC11853417 DOI: 10.3390/biomedicines13020406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/26/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Inflammatory bowel diseases (IBDs) are chronic intestinal disorders with an unpredictable course. In parallel with the advent of new biologic therapies targeting specific interleukin pathways, end-point targets have become more stringent, aiming for mucosal and even histologic healing. Methods: We conducted a prospective study assessing immunohistochemical (IHC) parameters in 46 IBD patients treated with biologic therapy. A similar IHC analysis was performed for comparison with a cohort of 10 "non-IBD" patients. Results: The highest integrated optical density (IOD) of TNF-α was observed in patients with dysplasia, abscesses, mucin depletion and basal plasmacytosis. Non-responders had higher pre- and post-treatment TNF-α expression in both UC and CD compared to responders. On the contrary, the same analysis conducted in the subpopulation treated with anti-TNF-α therapy (Infliximab and Adalimumab) did not reveal a substantial difference in TNF-α expression between responders and non-responders. High pre-treatment interleukin-10 expression was associated with biologic therapy failure, histological inflammatory activity and longer disease duration. Conclusions: Pre-treatment assessment of IL-10 might be a useful tool for identifying a high-risk subset of IBD patients and determining a more aggressive therapy and intensive monitoring strategy.
Collapse
Affiliation(s)
- Christopher Pavel
- Department 5, Gastroenterology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.P.); (M.I.); (O.-M.P.); (V.S.); (A.C.)
- Department of Gastroenterology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania; (A.J.); (C.V.B.)
| | - Mircea Mihai Diculescu
- Department 5, Gastroenterology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.P.); (M.I.); (O.-M.P.); (V.S.); (A.C.)
- Department of Gastroenterology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Madalina Ilie
- Department 5, Gastroenterology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.P.); (M.I.); (O.-M.P.); (V.S.); (A.C.)
- Department of Gastroenterology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania; (A.J.); (C.V.B.)
| | - Oana-Mihaela Plotogea
- Department 5, Gastroenterology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.P.); (M.I.); (O.-M.P.); (V.S.); (A.C.)
- Department of Gastroenterology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania; (A.J.); (C.V.B.)
| | - Vasile Sandru
- Department 5, Gastroenterology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.P.); (M.I.); (O.-M.P.); (V.S.); (A.C.)
- Department of Gastroenterology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania; (A.J.); (C.V.B.)
| | - Valentin Enache
- Department of Pathology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania;
| | - Dan-Ionut Gheonea
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (D.-I.G.); (R.-E.S.)
| | - Alexandra Jichitu
- Department of Gastroenterology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania; (A.J.); (C.V.B.)
| | - Alexandru Constantinescu
- Department 5, Gastroenterology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.P.); (M.I.); (O.-M.P.); (V.S.); (A.C.)
| | - Robert-Emmanuel Serban
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (D.-I.G.); (R.-E.S.)
| | - Cosmin Viorel Bogu
- Department of Gastroenterology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania; (A.J.); (C.V.B.)
| | - Horia-Dan Liscu
- Discipline of Oncological Radiotherapy and Medical Imaging, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Alex-Emilian Stepan
- Department of Pathology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| |
Collapse
|
7
|
Chen T, Liu J, Hang R, Chen Q, Wang D. Neutrophils: From Inflammatory Bowel Disease to Colitis-Associated Colorectal Cancer. J Inflamm Res 2025; 18:925-947. [PMID: 39871958 PMCID: PMC11770381 DOI: 10.2147/jir.s497701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/06/2025] [Indexed: 01/29/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a non-specific inflammatory disease of digestive tract, primarily manifesting as ulcerative colitis (UC) and Crohn's disease (CD). The precise etiology of IBD remains elusive. The interplay of genetic factors, environmental influences, and intestinal microbiota contributes to the establishment of an uncontrolled immune environment within the intestine, which can progressively lead to atypical hyperplasia and ultimately to malignancy over a long period. This colorectal malignant tumor that arises from chronic IBD is referred to as colitis-associated colorectal cancer (CAC). Dysregulation in the quantity and functionality of neutrophils plays a significant role in the onset, progression, and recurrence of IBD, as well as in the transition from IBD to CAC. Neutrophils affect the pathophysiology of IBD through various mechanisms, including the production of reactive oxygen species (ROS), degranulation, the release of inflammatory mediators and chemokines, and the formation of neutrophil extracellular traps (NETs). These processes can induce DNA mutations, thereby facilitating the development of colon cancer. Given the incomplete understanding of the disease mechanisms underlying IBD and CAC, effective treatment and prevention strategies remain challenging. Consequently, a comprehensive review of the functional roles of neutrophils in IBD and CAC is essential for advancing our understanding of IBD pathogenesis and identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Tianyi Chen
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Jiachen Liu
- Radiology Department, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Ruyi Hang
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Qian Chen
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Dong Wang
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
- Oncology Department of Qianjiang Center Hospital, Chongqing University, Chongqing, People’s Republic of China
| |
Collapse
|
8
|
Minagar A, Jabbour R. The Human Gut Microbiota: A Dynamic Biologic Factory. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2025; 189:91-106. [PMID: 38337077 DOI: 10.1007/10_2023_243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The human body constitutes a living environment for trillions of microorganisms, which establish the microbiome and, the largest population among them, reside within the gastrointestinal tract, establishing the gut microbiota. The term "gut microbiota" refers to a set of many microorganisms [mainly bacteria], which live symbiotically within the human host. The term "microbiome" means the collective genomic content of these microorganisms. The number of bacterial cells within the gut microbiota exceeds the host's cells; collectively and their genes quantitatively surpass the host's genes. Immense scientific research into the nature and function of the gut microbiota is unraveling its roles in certain human health activities such as metabolic, physiology, and immune activities and also in pathologic states and diseases. Interestingly, the microbiota, a dynamic ecosystem, inhabits a particular environment such as the human mouth or gut. Human microbiota can evolve and even adapt to the host's unique features such as eating habits, genetic makeup, underlying diseases, and even personalized habits. In the past decade, biologists and bioinformaticians have concentrated their research effort on the potential roles of the gut microbiome in the development of human diseases, particularly immune-mediated diseases and colorectal cancer, and have initiated the assessment of the impact of the gut microbiome on the host genome. In the present chapter, we focus on the biological features of gut microbiota, its physiology as a biological factory, and its impacts on the host's health and disease status.
Collapse
Affiliation(s)
- Alireza Minagar
- Department of Biotechnology (Bioinformatics), University of Maryland Global Campus, Adelphi, MD, USA
| | - Rabih Jabbour
- University of Maryland Global Campus, Largo, MD, USA
| |
Collapse
|
9
|
Subramanian A, J A, T T, Kumarasamy V, Begum MY, Sekar M, Subramaniyan V, Wong LS, Al Fatease A. Exploring the Connections: Autophagy, Gut Microbiota, and Inflammatory Bowel Disease Pathogenesis. J Inflamm Res 2024; 17:10453-10470. [PMID: 39654856 PMCID: PMC11626960 DOI: 10.2147/jir.s483958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/04/2024] [Indexed: 12/12/2024] Open
Abstract
Inflammatory Bowel Disease (IBD), which includes Crohn's disease and ulcerative colitis, represents a complex and growing global health issue with a multifaceted origin. This review delves into the intricate relationship between gut microbiota, autophagy, and the development of IBD. The gut microbiota, a diverse community of microorganisms, plays a vital role in maintaining gut health, while imbalances in this microbial community, known as dysbiosis, are linked to IBD. Autophagy, a process by which cells recycle their components, is essential for gut homeostasis and the regulation of immune responses. When autophagy is impaired and dysbiosis occurs, they individually contribute to IBD, with their combined impact intensifying inflammation. The interconnectedness of gut microbiota, autophagy, and the host's immune system is central to the onset of IBD. The review also examines how diet influences gut microbiota and its subsequent effects on IBD. It highlights the therapeutic potential of targeting the microbiota and modulating autophagic pathways as treatment strategies for IBD. Understanding these interactions could lead to personalized therapies within the rapidly advancing fields of microbiome research and immunology.
Collapse
Affiliation(s)
- Arunkumar Subramanian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Afrarahamed J
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Tamilanban T
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Selangor, Malaysia
| | - Vinoth Kumarasamy
- Department of Parasitology & Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya, Selangor, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
10
|
Lee YM, Vucic D. The role of autophagy in RIP1 mediated cell death and intestinal inflammation. Adv Immunol 2024; 163:1-20. [PMID: 39271257 DOI: 10.1016/bs.ai.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Autophagy, a highly conserved catabolic process that targets various types of cellular cargoes to lysosomal degradation, is one of the most important biological mechanisms critical for cellular homeostasis. Components of these cellular cargoes can range from individual proteins to invading pathogens, and degrading these materials is important for maintaining organismal health and survival. The process of autophagy is carried out by complex molecular mechanisms, and a growing body of evidence indicates that these mechanisms intersect with those involved in the cell death pathways. In this review, we examine several emerging studies elucidating the role of autophagy in RIP1-mediated cell death signaling, with particular emphasis on impaired autophagy caused by ATG16L1 deficiency. We also discuss how autophagy in RIP1-mediated cell death affects intestinal homeostasis in preclinical models, and the implications of the intersection between RIP1 and autophagy for understanding the intestinal pathologies associated with inflammatory bowel disease (IBD). Finally, we highlight the potential benefits of therapeutic targeting of RIP1 and autophagy proteins, while also proposing areas of research that will likely elucidate new links between autophagy and cell death signaling.
Collapse
Affiliation(s)
| | - Domagoj Vucic
- Immunology Discovery, Genentech, South San Francisco, CA, United States.
| |
Collapse
|
11
|
Fanizzi F, D'Amico F, Zanotelli Bombassaro I, Zilli A, Furfaro F, Parigi TL, Cicerone C, Fiorino G, Peyrin-Biroulet L, Danese S, Allocca M. The Role of Fecal Microbiota Transplantation in IBD. Microorganisms 2024; 12:1755. [PMID: 39338430 PMCID: PMC11433743 DOI: 10.3390/microorganisms12091755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Gut microbiota dysbiosis has a critical role in the pathogenesis of inflammatory bowel diseases, prompting the exploration of novel therapeutic approaches like fecal microbiota transplantation, which involves the transfer of fecal microbiota from a healthy donor to a recipient with the aim of restoring a balanced microbial community and attenuating inflammation. Fecal microbiota transplantation may exert beneficial effects in inflammatory bowel disease through modulation of immune responses, restoration of mucosal barrier integrity, and alteration of microbial metabolites. It could alter disease course and prevent flares, although long-term durability and safety data are lacking. This review provides a summary of current evidence on fecal microbiota transplantation in inflammatory bowel disease management, focusing on its challenges, such as variability in donor selection criteria, standardization of transplant protocols, and long-term outcomes post-transplantation.
Collapse
Affiliation(s)
- Fabrizio Fanizzi
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Ferdinando D'Amico
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Isadora Zanotelli Bombassaro
- Department of Gastroenterology and Endoscopy, Santa Casa de Misericordia de Porto Alagre, Porto Alegre 90020-090, Brazil
| | - Alessandra Zilli
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Federica Furfaro
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Tommaso Lorenzo Parigi
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Clelia Cicerone
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Gionata Fiorino
- Department of Gastroenterology and Digestive Endoscopy, San Camillo-Forlanini Hospital, 00152 Rome, Italy
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, Nancy University Hospital, F-54500 Vandœuvre-lès-Nancy, France
- INSERM, Nutrition-Genetics and Exposure to Environmental Risks Research Unit (NGERE), University of Lorraine, F-54000 Nancy, France
- INFINY Institute, Nancy University Hospital, F-54500 Vandœuvre-lès-Nancy, France
- Fédération Hospitalo-Universitaire CARE, Nancy University Hospital, F-54500 Vandœuvre-lès-Nancy, France
- Groupe Hospitalier Privé Ambroise Paré-Hartmann, Paris IBD Center, F-92200 Neuilly sur Seine, France
- Division of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Silvio Danese
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Mariangela Allocca
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
12
|
Gu X, Liao S, Li M, Wang J, Tan B. Chloroquine Downregulation of Intestinal Autophagy Changed Intestinal Microbial Community Compositions and Metabolite Profiles in Piglets. Vet Sci 2024; 11:333. [PMID: 39195787 PMCID: PMC11360670 DOI: 10.3390/vetsci11080333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 08/29/2024] Open
Abstract
Our previous study demonstrated that moderate inhibition of intestinal autophagy was beneficial to alleviate early weaning stress in piglets, but the detailed mechanism behind this was unclear. Microbiota-mediated enterocyte autophagy helps maintain intestinal homeostasis. This study investigated the effects of inhibition or activation of autophagy in intestinal microbial community compositions and metabolite profiles in piglets. Eighteen 24-day-old weaned piglets were divided into three groups (each treatment of six piglets) and treated daily with rapamycin (RAPA), chloroquine (CQ) or a control volume of normal saline (CON group). Before the formal trial, the piglets were allowed to acclimatize for 3 days, and then the trial period was 14 days. Collected samples from the ileum and colon underwent 16S rRNA gene sequencing and metabolite analysis. Significant differences in microbial composition were observed in both the ileum and colon of the RAPA and CQ groups compared to the CON group (p < 0.05). In addition, the relative levels of abundance of Peptostreptococcus, Fusobacterium, Dialister, Selenomonas and Oceanobacillus in the ileum and Porphyromonas, Bacteroides, unidentified_Lachnospiraceae, Akkermansia, Sharpea, Peptococcus, Pseudoalteromonas, Peptoclostridium and unidentified_Acidobacteria in the colon were improved in piglets fed the RAPA diet, whereas the relative levels of abundance of Turicibacter, Rickettsiella and Sarcina in the ileum and Roseburia and Kroppenstedtia in the colon were enhanced in the CQ group (p < 0.05). Meanwhile, metabolomic analysis showed that there were significant differences in metabolites among all groups (p < 0.05), and KEGG enrichment analysis revealed that differential metabolites were mainly enriched in the ABC transporters and biosynthesis of amino acids pathways. Furthermore, these metabolites were closely related to differential microorganisms (p < 0.05). Overall, autophagy inhibition regulates the composition of intestinal microorganisms and their metabolites, and these differential metabolites are significantly correlated with differential intestinal microorganisms, which may in turn affect the production performance of weaned piglets.
Collapse
Affiliation(s)
- Xueling Gu
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.G.); (S.L.); (J.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Simeng Liao
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.G.); (S.L.); (J.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Meng Li
- Yuelushan Laboratory, Changsha 410128, China;
| | - Jing Wang
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.G.); (S.L.); (J.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Bie Tan
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.G.); (S.L.); (J.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| |
Collapse
|
13
|
Lin Y, Xie S, Xiao L, Liu Z, Ke W, Huang JA, Liu Z, Quan W. Can drinking tea become an effective way to alleviate the extraintestinal manifestations of inflammatory bowel disease: A comprehensive review. FOOD BIOSCI 2024; 59:104168. [DOI: 10.1016/j.fbio.2024.104168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
14
|
Ciorba MA, Konnikova L, Hirota SA, Lucchetta EM, Turner JR, Slavin A, Johnson K, Condray CD, Hong S, Cressall BK, Pizarro TT, Hurtado-Lorenzo A, Heller CA, Moss AC, Swantek JL, Garrett WS. Challenges in IBD Research 2024: Preclinical Human IBD Mechanisms. Inflamm Bowel Dis 2024; 30:S5-S18. [PMID: 38778627 PMCID: PMC11491665 DOI: 10.1093/ibd/izae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Indexed: 05/25/2024]
Abstract
Preclinical human inflammatory bowel disease (IBD) mechanisms is one of 5 focus areas of the Challenges in IBD Research 2024 document, which also includes environmental triggers, novel technologies, precision medicine, and pragmatic clinical research. Herein, we provide a comprehensive overview of current gaps in inflammatory bowel diseases research that relate to preclinical research and deliver actionable approaches to address them with a focus on how these gaps can lead to advancements in IBD interception, remission, and restoration. The document is the result of multidisciplinary input from scientists, clinicians, patients, and funders and represents a valuable resource for patient-centric research prioritization. This preclinical human IBD mechanisms section identifies major research gaps whose investigation will elucidate pathways and mechanisms that can be targeted to address unmet medical needs in IBD. Research gaps were identified in the following areas: genetics, risk alleles, and epigenetics; the microbiome; cell states and interactions; barrier function; IBD complications (specifically fibrosis and stricturing); and extraintestinal manifestations. To address these gaps, we share specific opportunities for investigation for basic and translational scientists and identify priority actions.
Collapse
Affiliation(s)
- Matthew A Ciorba
- Inflammatory Bowel Diseases Center, Division of Gastroenterology, Washington University in St. Louis, Saint Louis, MO, USA
| | - Liza Konnikova
- Departments of Pediatrics, Immunobiology, and Obstetric, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Simon A Hirota
- Snyder Institute for Chronic Diseases, Dept. of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Elena M Lucchetta
- The Leona M. and Harry B. Helmsley Charitable Trust, New York, NY, USA
| | - Jerrold R Turner
- Departments of Pathology and Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Cass D Condray
- Patient Representative for the Crohn’s & Colitis Foundation, New York, NY, USA
| | - Sungmo Hong
- Patient Representative for the Crohn’s & Colitis Foundation, New York, NY, USA
| | - Brandon K Cressall
- Patient Representative for the Crohn’s & Colitis Foundation, New York, NY, USA
| | - Theresa T Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | - Caren A Heller
- Research Department, Crohn’s & Colitis Foundation, New York, NY, USA
| | - Alan C Moss
- Research Department, Crohn’s & Colitis Foundation, New York, NY, USA
| | | | - Wendy S Garrett
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- The Harvard T. H. Chan Microbiome in Public Health Center, Boston, MA, USA
- Kymera Therapeutics, Watertown, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Li C, Stražar M, Mohamed AMT, Pacheco JA, Walker RL, Lebar T, Zhao S, Lockart J, Dame A, Thurimella K, Jeanfavre S, Brown EM, Ang QY, Berdy B, Sergio D, Invernizzi R, Tinoco A, Pishchany G, Vasan RS, Balskus E, Huttenhower C, Vlamakis H, Clish C, Shaw SY, Plichta DR, Xavier RJ. Gut microbiome and metabolome profiling in Framingham heart study reveals cholesterol-metabolizing bacteria. Cell 2024; 187:1834-1852.e19. [PMID: 38569543 PMCID: PMC11071153 DOI: 10.1016/j.cell.2024.03.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 01/23/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
Accumulating evidence suggests that cardiovascular disease (CVD) is associated with an altered gut microbiome. Our understanding of the underlying mechanisms has been hindered by lack of matched multi-omic data with diagnostic biomarkers. To comprehensively profile gut microbiome contributions to CVD, we generated stool metagenomics and metabolomics from 1,429 Framingham Heart Study participants. We identified blood lipids and cardiovascular health measurements associated with microbiome and metabolome composition. Integrated analysis revealed microbial pathways implicated in CVD, including flavonoid, γ-butyrobetaine, and cholesterol metabolism. Species from the Oscillibacter genus were associated with decreased fecal and plasma cholesterol levels. Using functional prediction and in vitro characterization of multiple representative human gut Oscillibacter isolates, we uncovered conserved cholesterol-metabolizing capabilities, including glycosylation and dehydrogenation. These findings suggest that cholesterol metabolism is a broad property of phylogenetically diverse Oscillibacter spp., with potential benefits for lipid homeostasis and cardiovascular health.
Collapse
Affiliation(s)
- Chenhao Li
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Computational and Integrative Biology and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Ahmed M T Mohamed
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Computational and Integrative Biology and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Tina Lebar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Shijie Zhao
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julia Lockart
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Andrea Dame
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Eric M Brown
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Qi Yan Ang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Dallis Sergio
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rachele Invernizzi
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Computational and Integrative Biology and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Antonio Tinoco
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | | | - Ramachandran S Vasan
- Boston University and NHLBI's Framingham Heart Study, Framingham, MA, USA; Sections of Preventive Medicine and Epidemiology and Cardiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA; University of Texas School of Public Health, San Antonio, TX, USA
| | - Emily Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Curtis Huttenhower
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Hera Vlamakis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Clary Clish
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stanley Y Shaw
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Computational and Integrative Biology and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Schreurs RRCE, Koulis A, Booiman T, Boeser-Nunnink B, Cloherty APM, Rader AG, Patel KS, Kootstra NA, Ribeiro CMS. Autophagy-enhancing ATG16L1 polymorphism is associated with improved clinical outcome and T-cell immunity in chronic HIV-1 infection. Nat Commun 2024; 15:2465. [PMID: 38548722 PMCID: PMC10979031 DOI: 10.1038/s41467-024-46606-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/04/2024] [Indexed: 04/01/2024] Open
Abstract
Chronic HIV-1 infection is characterized by T-cell dysregulation that is partly restored by antiretroviral therapy. Autophagy is a critical regulator of T-cell function. Here, we demonstrate a protective role for autophagy in HIV-1 disease pathogenesis. Targeted analysis of genetic variation in core autophagy gene ATG16L1 reveals the previously unidentified rs6861 polymorphism, which correlates functionally with enhanced autophagy and clinically with improved survival of untreated HIV-1-infected individuals. T-cells carrying ATG16L1 rs6861(TT) genotype display improved antiviral immunity, evidenced by increased proliferation, revamped immune responsiveness, and suppressed exhaustion/immunosenescence features. In-depth flow-cytometric and transcriptional profiling reveal T-helper-cell-signatures unique to rs6861(TT) individuals with enriched regulation of pro-inflammatory networks and skewing towards immunoregulatory phenotype. Therapeutic enhancement of autophagy recapitulates the rs6861(TT)-associated T-cell traits in non-carriers. These data underscore the in vivo relevance of autophagy for longer-lasting T-cell-mediated HIV-1 control, with implications towards development of host-directed antivirals targeting autophagy to restore immune function in chronic HIV-1 infection.
Collapse
Affiliation(s)
- Renée R C E Schreurs
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Athanasios Koulis
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Thijs Booiman
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Brigitte Boeser-Nunnink
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Alexandra P M Cloherty
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Anusca G Rader
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Kharishma S Patel
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Neeltje A Kootstra
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Carla M S Ribeiro
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Schirmer M, Stražar M, Avila-Pacheco J, Rojas-Tapias DF, Brown EM, Temple E, Deik A, Bullock K, Jeanfavre S, Pierce K, Jin S, Invernizzi R, Pust MM, Costliow Z, Mack DR, Griffiths AM, Walters T, Boyle BM, Kugathasan S, Vlamakis H, Hyams J, Denson L, Clish CB, Xavier RJ. Linking microbial genes to plasma and stool metabolites uncovers host-microbial interactions underlying ulcerative colitis disease course. Cell Host Microbe 2024; 32:209-226.e7. [PMID: 38215740 PMCID: PMC10923022 DOI: 10.1016/j.chom.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 11/08/2023] [Accepted: 12/15/2023] [Indexed: 01/14/2024]
Abstract
Understanding the role of the microbiome in inflammatory diseases requires the identification of microbial effector molecules. We established an approach to link disease-associated microbes to microbial metabolites by integrating paired metagenomics, stool and plasma metabolomics, and culturomics. We identified host-microbial interactions correlated with disease activity, inflammation, and the clinical course of ulcerative colitis (UC) in the Predicting Response to Standardized Colitis Therapy (PROTECT) pediatric inception cohort. In severe disease, metabolite changes included increased dipeptides and tauro-conjugated bile acids (BAs) and decreased amino-acid-conjugated BAs in stool, whereas in plasma polyamines (N-acetylputrescine and N1-acetylspermidine) increased. Using patient samples and Veillonella parvula as a model, we uncovered nitrate- and lactate-dependent metabolic pathways, experimentally linking V. parvula expansion to immunomodulatory tryptophan metabolite production. Additionally, V. parvula metabolizes immunosuppressive thiopurine drugs through xdhA xanthine dehydrogenase, potentially impairing the therapeutic response. Our findings demonstrate that the microbiome contributes to disease-associated metabolite changes, underscoring the importance of these interactions in disease pathology and treatment.
Collapse
Affiliation(s)
- Melanie Schirmer
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Translational Microbiome Data Integration, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany.
| | - Martin Stražar
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | | | - Eric M Brown
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology and Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Emily Temple
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amy Deik
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kevin Bullock
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sarah Jeanfavre
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kerry Pierce
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shen Jin
- Translational Microbiome Data Integration, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | | | - Marie-Madlen Pust
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology and Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Zach Costliow
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - David R Mack
- Division of Gastroenterology, Hepatology & Nutrition, Children's Hospital of Eastern Ontario and University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Anne M Griffiths
- Division of Gastroenterology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Thomas Walters
- Division of Gastroenterology, Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Brendan M Boyle
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Subra Kugathasan
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA
| | - Hera Vlamakis
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jeffrey Hyams
- Connecticut Children's Medical Center, Division of Digestive Diseases, Hartford, CT 06106, USA
| | - Lee Denson
- Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Clary B Clish
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramnik J Xavier
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology and Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
18
|
Li S, Qian Q, Yang H, Wu Z, Xie Y, Yin Y, Cui Y, Li X. Fucoidan alleviated dextran sulfate sodium-induced ulcerative colitis with improved intestinal barrier, reshaped gut microbiota composition, and promoted autophagy in male C57BL/6 mice. Nutr Res 2024; 122:1-18. [PMID: 38064857 DOI: 10.1016/j.nutres.2023.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/11/2023] [Accepted: 11/12/2023] [Indexed: 03/08/2024]
Abstract
Although previous research has unveiled the remedial effects of fucoidan, an extract from marine algae, on ulcerative colitis (UC), the precise mechanisms remain elusive. Animal studies have suggested a connection between autophagy and the beneficial influences of fucoidan intervention. We hypothesized that fucoidan's alleviative effects on dextran sulfate sodium (DSS)-induced UC could be ascribed to autophagy. For our study, we chose 36 male C57BL/6 mice and administered 100 or 400 mg/(kg/body weight/day) of fucoidan via gavage for 5 consecutive weeks. During the last week, the mice were given 3% DSS in drinking water to induce UC. In contrast to the DSS-induced UC model, fucoidan intervention prevented DSS-induced body weight loss, mitigated colon shortening, improved colon mucosa damage, enhanced the intestinal barrier, and reduced serum inflammatory factor concentrations. Furthermore, fucoidan intervention reshaped the gut microbiota compositions, increased the relative abundance of Bacteroidota, Muribaculaceae_unclassified, Clostridiales_unclassified, and Lachnospiraceae_NK4A136_group, and decreased the relative abundance of Firmicutes, Proteobacteria, and Escherichia-Shigella, which led to a lower Firmicutes/Bacteroidota ratio. Additionally, fucoidan treatment enhanced autophagy, as evidenced by upregulated protein expressions of BECLIN1, ATG5, ATG7, and an increased microtubule-associated-proteinlight-chain-3-II/microtubule-associated-proteinlight-chain-3-I ratio. Our findings corroborated the ameliorating effects of fucoidan intervention on DSS-induced UC through autophagy activation, reorganization of gut microbiota, and fortification of the intestinal barrier. This lends support to the therapeutic potential of fucoidan as a natural bioactive ingredient for future UC treatments in humans.
Collapse
Affiliation(s)
- Shilan Li
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Qingfan Qian
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Hao Yang
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zhengli Wu
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yisha Xie
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yan Yin
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yuan Cui
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Xinli Li
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, P.R. China.
| |
Collapse
|
19
|
López-Agudelo VA, Falk-Paulsen M, Bharti R, Rehman A, Sommer F, Wacker EM, Ellinghaus D, Luzius A, Sievers LK, Liebeke M, Kaser A, Rosenstiel P. Defective Atg16l1 in intestinal epithelial cells links to altered fecal microbiota and metabolic shifts during pregnancy in mice. Gut Microbes 2024; 16:2429267. [PMID: 39620359 PMCID: PMC11622647 DOI: 10.1080/19490976.2024.2429267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/04/2024] [Accepted: 11/08/2024] [Indexed: 12/08/2024] Open
Abstract
Throughout gestation, the female body undergoes a series of transformations, including profound alterations in intestinal microbial communities. Changes gradually increase toward the end of pregnancy and comprise reduced α-diversity of microbial communities and an increased propensity for energy harvest. Despite the importance of the intestinal microbiota for the pathophysiology of inflammatory bowel diseases, very little is known about the relationship between these microbiota shifts and pregnancy-associated complications of the disease. Here, we explored the longitudinal dynamics of gut microbiota composition and functional potential during pregnancy and after lactation in Atg16l1∆IEC mice carrying an intestinal epithelial deletion of the Crohn's disease risk gene Atg16l1. Using 16S rRNA amplicon and shotgun metagenomic sequencing, we demonstrated divergent temporal shifts in microbial composition between Atg16l1 wildtype and Atg16l1∆IEC pregnant mice in trimester 3, which was validated in an independent experiment. Observed differences included microbial genera implicated in IBD such as Lachnospiraceae, Roseburia, Ruminococcus, and Turicibacter. Changes partially recovered after lactation. Additionally, metagenomic and metabolomic analyses suggest an increased capacity for chitin degradation, resulting in higher levels of free N-acetyl-glucosamine products in feces, alongside reduced glucose and myo-inositol levels in serum around the time of delivery. On the host side, we found that the immunological response of Atg16l1∆IEC mice is characterized by higher colonic mRNA levels of TNFα and CXCL1 in trimester 3 and a lower weight of offspring at birth. Understanding pregnancy-dependent microbiome changes in the context of IBD may constitute the first step in the identification of fecal microbial biomarkers and microbiota-directed therapies that could help improve precision care for managing pregnancies in IBD patients.
Collapse
Affiliation(s)
- Víctor A. López-Agudelo
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Maren Falk-Paulsen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Richa Bharti
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
- Boehringer Ingelheim, Biberach an der Riß, Germany
| | - Ateequr Rehman
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
- DSM Nutritional Products, Kaiseraugst, Switzerland
| | - Felix Sommer
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Eike Matthias Wacker
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Anne Luzius
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Laura Katharina Sievers
- Department of General Internal Medicine, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Manuel Liebeke
- Department for Metabolomics, Institute for Human Nutrition and Food Science, University of Kiel, Kiel, Germany
- Department of Symbiosis, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Arthur Kaser
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, and Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
20
|
Fonseca-Pereira D, Bae S, Michaud M, Glickman JN, Garrett WS. Chronic binge drinking-induced susceptibility to colonic inflammation is microbiome-dependent. Gut Microbes 2024; 16:2392874. [PMID: 39163515 PMCID: PMC11340762 DOI: 10.1080/19490976.2024.2392874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
Alterations in intestinal permeability and the gut microbiome caused by alcohol abuse are associated with alcoholic liver disease and with worsening of inflammatory bowel diseases (IBD) symptoms. To resolve the direct effects of chronic ethanol consumption on the colon and its microbiome in the absence of acute or chronic alcohol-induced liver disease, we developed a mouse model of chronic binge drinking that uncovers how alcohol may enhance susceptibility to colitis via the microbiota. Employing daily ethanol gavage, we recapitulate key features of binge ethanol consumption. We found that binge ethanol drinking worsens intestinal infection, colonic injury and inflammation, and this effect persists beyond the drinking period. Using gnotobiotics, we showed that alcohol-driven susceptibility to colitis is microbiota-dependent and transferable to ethanol-naïve mice by microbiome transplantation. Allobaculum spp. expanded in binge drinking mice, and administration of Allobaculum fili was sufficient to enhance colitis in non-drinking mice. Our study provides a model to study binge drinking-microbiota interactions and their effects on host disease and reinforces the pathogenic function of Allobaculum spp. as colitogenic bacteria. Our findings illustrate how chronic binge drinking-induced alterations of the microbiome may affect susceptibility to IBD onset or flares.
Collapse
Affiliation(s)
- Diogo Fonseca-Pereira
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Sena Bae
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Monia Michaud
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Jonathan N. Glickman
- Gastrointestinal Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Wendy S. Garrett
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA, USA
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
21
|
Deris Zayeri Z, Parsi A, Shahrabi S, Kargar M, Davari N, Saki N. Epigenetic and metabolic reprogramming in inflammatory bowel diseases: diagnostic and prognostic biomarkers in colorectal cancer. Cancer Cell Int 2023; 23:264. [PMID: 37936149 PMCID: PMC10631091 DOI: 10.1186/s12935-023-03117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND AND AIM "Inflammatory bowel disease" (IBD) is a chronic, relapsing inflammatory disease of the intestinal tract that typically begins at a young age and might transit to colorectal cancer (CRC). In this manuscript, we discussed the epigenetic and metabolic change to present a extensive view of IBDs transition to CRC. This study discusses the possible biomarkers for evaluating the condition of IBDs patients, especially before the transition to CRC. RESEARCH APPROACH We searched "PubMed" and "Google Scholar" using the keywords from 2000 to 2022. DISCUSSION In this manuscript, interesting titles associated with IBD and CRC are discussed to present a broad view regarding the epigenetic and metabolic reprogramming and the biomarkers. CONCLUSION Epigenetics can be the main reason in IBD transition to CRC, and Hypermethylation of several genes, such as VIM, OSM4, SEPT9, GATA4 and GATA5, NDRG4, BMP3, ITGA4 and plus hypomethylation of LINE1 can be used in IBD and CRC management. Epigenetic, metabolisms and microbiome-derived biomarkers, such as Linoleic acid and 12 hydroxy 8,10-octadecadienoic acid, Serum M2-pyruvate kinase and Six metabolic genes (NAT2, XDH, GPX3, AKR1C4, SPHK and ADCY5) expression are valuable biomarkers for early detection and transition to CRC condition. Some miRs, such as miR-31, miR-139-5p, miR -155, miR-17, miR-223, miR-370-3p, miR-31, miR -106a, miR -135b and miR-320 can be used as biomarkers to estimate IBD transition to CRC condition.
Collapse
Affiliation(s)
- Zeinab Deris Zayeri
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abazar Parsi
- Alimentary Tract Research Center, Clinical Sciences Research Inistitute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Masoud Kargar
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nader Davari
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
22
|
Kumar S, Ahmad MF, Nath P, Roy R, Bhattacharjee R, Shama E, Gahatraj I, Sehrawat M, Dasriya V, Dhillon HS, Puniya M, Samtiya M, Dhewa T, Aluko RE, Khedkar GD, Raposo A, Puniya AK. Controlling Intestinal Infections and Digestive Disorders Using Probiotics. J Med Food 2023; 26:705-720. [PMID: 37646629 DOI: 10.1089/jmf.2023.0062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
After consumption, probiotics provide health benefits to the host. Probiotics and their metabolites have therapeutic and nutritional properties that help to alleviate gastrointestinal, neurological, and cardiovascular problems. Probiotics strengthen host immunity through various mechanisms, including improved gut barrier function, receptor site blocking, competitive exclusion of pathogens, and the production of bioactive molecules. Emerging evidence suggests that intestinal bowel diseases can be fatal, but regular probiotic consumption can alleviate disease symptoms. The use and detailed description of the health benefits of probiotics to consumers in terms of reducing intestinal infection, inflammation, and digestive disorders are discussed in this review. The well-designed and controlled studies that examined the use of probiotics to reduce life-threatening activities caused by intestinal bowel diseases are also covered. This review discussed the active principles and potency of probiotics as evidenced by the known effects on host health, in addition to providing information on the mechanism of action.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Priyakshi Nath
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Rubina Roy
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Rudrarup Bhattacharjee
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Eman Shama
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Indira Gahatraj
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | | | - Vaishali Dasriya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | | | - Monica Puniya
- Science and Standards Division, Food Safety and Standards Authority of India, New Delhi, India
| | - Mrinal Samtiya
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, India
| | - Tejpal Dhewa
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, India
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| | - Gulab D Khedkar
- Paul Hebert Centre for DNA Barcoding and Biodiversity Studies, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| | - Anil Kumar Puniya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
23
|
Taraborrelli L, Şenbabaoğlu Y, Wang L, Lim J, Blake K, Kljavin N, Gierke S, Scherl A, Ziai J, McNamara E, Owyong M, Rao S, Calviello AK, Oreper D, Jhunjhunwala S, Argiles G, Bendell J, Kim TW, Ciardiello F, Wongchenko MJ, de Sauvage FJ, de Sousa E Melo F, Yan Y, West NR, Murthy A. Tumor-intrinsic expression of the autophagy gene Atg16l1 suppresses anti-tumor immunity in colorectal cancer. Nat Commun 2023; 14:5945. [PMID: 37741832 PMCID: PMC10517947 DOI: 10.1038/s41467-023-41618-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023] Open
Abstract
Microsatellite-stable colorectal cancer (MSS-CRC) is highly refractory to immunotherapy. Understanding tumor-intrinsic determinants of immunotherapy resistance is critical to improve MSS-CRC patient outcomes. Here, we demonstrate that high tumor expression of the core autophagy gene ATG16L1 is associated with poor clinical response to anti-PD-L1 therapy in KRAS-mutant tumors from IMblaze370 (NCT02788279), a large phase III clinical trial of atezolizumab (anti-PD-L1) in advanced metastatic MSS-CRC. Deletion of Atg16l1 in engineered murine colon cancer organoids inhibits tumor growth in primary (colon) and metastatic (liver and lung) niches in syngeneic female hosts, primarily due to increased sensitivity to IFN-γ-mediated immune pressure. ATG16L1 deficiency enhances programmed cell death of colon cancer organoids induced by IFN-γ and TNF, thus increasing their sensitivity to host immunity. In parallel, ATG16L1 deficiency reduces tumor stem-like populations in vivo independently of adaptive immune pressure. This work reveals autophagy as a clinically relevant mechanism of immune evasion and tumor fitness in MSS-CRC and provides a rationale for autophagy inhibition to boost immunotherapy responses in the clinic.
Collapse
Affiliation(s)
- Lucia Taraborrelli
- Department of Cancer Immunology, Genentech Inc., South San Francisco, USA
| | - Yasin Şenbabaoğlu
- Department of Oncology Bioinformatics, Genentech Inc., South San Francisco, USA
| | - Lifen Wang
- Department of Cancer Immunology, Genentech Inc., South San Francisco, USA
| | - Junghyun Lim
- Department of Cancer Immunology, Genentech Inc., South San Francisco, USA
| | - Kerrigan Blake
- Department of Cancer Immunology, Genentech Inc., South San Francisco, USA
| | - Noelyn Kljavin
- Department of Molecular Oncology, Genentech Inc., South San Francisco, USA
| | - Sarah Gierke
- Center for Advanced Light Microscopy, Genentech Inc., South San Francisco, USA
- Department of Pathology, Genentech Inc., South San Francisco, USA
| | - Alexis Scherl
- Department of Pathology, Genentech Inc., South San Francisco, USA
| | - James Ziai
- Department of Pathology, Genentech Inc., South San Francisco, USA
| | - Erin McNamara
- Department of In Vivo Pharmacology, Genentech Inc., South San Francisco, USA
| | - Mark Owyong
- Department of In Vivo Pharmacology, Genentech Inc., South San Francisco, USA
| | - Shilpa Rao
- Department of Oncology Bioinformatics, Genentech Inc., South San Francisco, USA
| | | | - Daniel Oreper
- Department of Oncology Bioinformatics, Genentech Inc., South San Francisco, USA
| | - Suchit Jhunjhunwala
- Department of Oncology Bioinformatics, Genentech Inc., South San Francisco, USA
| | - Guillem Argiles
- Vall d'Hebrón Institute of Oncology, Vall d'Hebrón University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Johanna Bendell
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN, USA
| | - Tae Won Kim
- Department of Oncology, Medical Center, University of Ulsan, Seoul, Korea
| | - Fortunato Ciardiello
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | | | | | | | - Yibing Yan
- Oncology Biomarker Development, Genentech, Inc., South San Francisco, CA, USA
| | - Nathaniel R West
- Department of Cancer Immunology, Genentech Inc., South San Francisco, USA.
| | - Aditya Murthy
- Department of Cancer Immunology, Genentech Inc., South San Francisco, USA.
- Gilead Sciences, Foster City, USA.
| |
Collapse
|
24
|
Fongang B, Satizabal C, Kautz TF, Wadop YN, Muhammad JAS, Vasquez E, Mathews J, Gireud-Goss M, Saklad AR, Himali J, Beiser A, Cavazos JE, Mahaney MC, Maestre G, DeCarli C, Shipp EL, Vasan RS, Seshadri S. Cerebral small vessel disease burden is associated with decreased abundance of gut Barnesiella intestinihominis bacterium in the Framingham Heart Study. Sci Rep 2023; 13:13622. [PMID: 37604954 PMCID: PMC10442369 DOI: 10.1038/s41598-023-40872-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023] Open
Abstract
A bidirectional communication exists between the brain and the gut, in which the gut microbiota influences cognitive function and vice-versa. Gut dysbiosis has been linked to several diseases, including Alzheimer's disease and related dementias (ADRD). However, the relationship between gut dysbiosis and markers of cerebral small vessel disease (cSVD), a major contributor to ADRD, is unknown. In this cross-sectional study, we examined the connection between the gut microbiome, cognitive, and neuroimaging markers of cSVD in the Framingham Heart Study (FHS). Markers of cSVD included white matter hyperintensities (WMH), peak width of skeletonized mean diffusivity (PSMD), and executive function (EF), estimated as the difference between the trail-making tests B and A. We included 972 FHS participants with MRI scans, neurocognitive measures, and stool samples and quantified the gut microbiota composition using 16S rRNA sequencing. We used multivariable association and differential abundance analyses adjusting for age, sex, BMI, and education level to estimate the association between gut microbiota and WMH, PSMD, and EF measures. Our results suggest an increased abundance of Pseudobutyrivibrio and Ruminococcus genera was associated with lower WMH and PSMD (p values < 0.001), as well as better executive function (p values < 0.01). In addition, in both differential and multivariable analyses, we found that the gram-negative bacterium Barnesiella intestinihominis was strongly associated with markers indicating a higher cSVD burden. Finally, functional analyses using PICRUSt implicated various KEGG pathways, including microbial quorum sensing, AMP/GMP-activated protein kinase, phenylpyruvate, and β-hydroxybutyrate production previously associated with cognitive performance and dementia. Our study provides important insights into the association between the gut microbiome and cSVD, but further studies are needed to replicate the findings.
Collapse
Affiliation(s)
- Bernard Fongang
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Claudia Satizabal
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Tiffany F Kautz
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yannick N Wadop
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jazmyn A S Muhammad
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Erin Vasquez
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Julia Mathews
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Monica Gireud-Goss
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Amy R Saklad
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jayandra Himali
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Alexa Beiser
- Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Jose E Cavazos
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Michael C Mahaney
- Department of Human Genetics, South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Gladys Maestre
- Department of Neurosciences and Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Charles DeCarli
- Department of Neurology, Alzheimer's Disease Center, University of California, Davis, Sacramento, CA, USA
| | - Eric L Shipp
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ramachandran S Vasan
- Framingham Heart Study, Framingham, MA, USA
- Department of Medicine, Section of Cardiovascular Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
- Department of Medicine, Section of Preventive Medicine and Epidemiology, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Boston University's Center for Computing and Data Sciences, Boston, MA, USA
- The University of Texas School of Public Health in San Antonio, San Antonio, TX, USA
- The Long School of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
25
|
Hajj Hussein I, Dosh L, Al Qassab M, Jurjus R, El Masri J, Abi Nader C, Rappa F, Leone A, Jurjus A. Highlights on two decades with microbiota and inflammatory bowel disease from etiology to therapy. Transpl Immunol 2023; 78:101835. [PMID: 37030558 DOI: 10.1016/j.trim.2023.101835] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/08/2023]
Abstract
Inflammatory Bowel diseases (IBDs) constitute a complex panel of disorders characterized with chronic inflammation affecting the alimentary canal along with extra intestinal manifestations. Its exact etiology is still unknown; however, it seems to be the result of uncharacterized environmental insults in the intestine and their immunological consequences along with dysbiosis, in genetically predisposed individuals. It was the main target of our team since 2002 to explore the etiology of IBD and the related role of bacteria. For almost two decades, our laboratory, among others, has been involved in the reciprocal interaction between the host gastrointestinal lining and the homing microbiota. In the first decade, the attention of scientists focused on the possible role of enteropathogenic E. coli and its relationship to the mechanistic pathways involved in IBD induced in both rats and mice by chemicals like Iodoacetamide, Dextran Sodium Sulfate, Trinitrobenzene, thus linking microbial alteration to IBD pathology. A thorough characterization of the various models was the focus of research in addition to exploring how to establish an active homeostatic composition of the commensal microbiota, including its wide diversity by restoration of gut microbiota by probiotics and moving from dysbiosis to eubiosis. In the last six years and in order to effectively translate such findings into clinical practice, it was critical to explore their relationship to colorectal cancer CRC both in solid tumors and chemically induced CRC. It was also critical to explore the degree of intestinal dysbiosis and linking to IBD, CRC and diabetes. Remarkably, the active mechanistic pathways were proposed as well as the role of microbiota or bacterial metabolites involved. This review covers two decades of investigations in our laboratory and sheds light on the different aspects of the relationship between microbiota and IBD with an emphasis on dysbiosis, probiotics and the multiple mechanistic pathways involved.
Collapse
Affiliation(s)
- Inaya Hajj Hussein
- Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Laura Dosh
- Department of Anatomy, Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Biomedicine, Neuroscience and Advanced Diagnostics, Institute of Human Anatomy and Histology, University of Palermo, Palermo, Italy
| | - Mohamad Al Qassab
- Department of Anatomy, Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rosalyn Jurjus
- Department of Anatomy, Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Jad El Masri
- Department of Anatomy, Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Celine Abi Nader
- Department of Anatomy, Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Francesca Rappa
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Institute of Human Anatomy and Histology, University of Palermo, Palermo, Italy
| | - Angelo Leone
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Institute of Human Anatomy and Histology, University of Palermo, Palermo, Italy
| | - Abdo Jurjus
- Department of Anatomy, Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
26
|
Liu Z, Liu R, Gao H, Jung S, Gao X, Sun R, Liu X, Kim Y, Lee HS, Kawai Y, Nagasaki M, Umeno J, Tokunaga K, Kinouchi Y, Masamune A, Shi W, Shen C, Guo Z, Yuan K, Zhu S, Li D, Liu J, Ge T, Cho J, Daly MJ, McGovern DPB, Ye BD, Song K, Kakuta Y, Li M, Huang H. Genetic architecture of the inflammatory bowel diseases across East Asian and European ancestries. Nat Genet 2023; 55:796-806. [PMID: 37156999 PMCID: PMC10290755 DOI: 10.1038/s41588-023-01384-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 03/27/2023] [Indexed: 05/10/2023]
Abstract
Inflammatory bowel diseases (IBDs) are chronic disorders of the gastrointestinal tract with the following two subtypes: Crohn's disease (CD) and ulcerative colitis (UC). To date, most IBD genetic associations were derived from individuals of European (EUR) ancestries. Here we report the largest IBD study of individuals of East Asian (EAS) ancestries, including 14,393 cases and 15,456 controls. We found 80 IBD loci in EAS alone and 320 when meta-analyzed with ~370,000 EUR individuals (~30,000 cases), among which 81 are new. EAS-enriched coding variants implicate many new IBD genes, including ADAP1 and GIT2. Although IBD genetic effects are generally consistent across ancestries, genetics underlying CD appears more ancestry dependent than UC, driven by allele frequency (NOD2) and effect (TNFSF15). We extended the IBD polygenic risk score (PRS) by incorporating both ancestries, greatly improving its accuracy and highlighting the importance of diversity for the equitable deployment of PRS.
Collapse
Affiliation(s)
- Zhanju Liu
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Ruize Liu
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Han Gao
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Seulgi Jung
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Xiang Gao
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ruicong Sun
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoming Liu
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongjae Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Ho-Su Lee
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Yosuke Kawai
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masao Nagasaki
- Human Biosciences Unit for the Top Global Course Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junji Umeno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yoshitaka Kinouchi
- Student Healthcare Center, Institute for Excellence in Higher Education, Tohoku University, Sendai, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Wenzhao Shi
- Digital Health China Technologies Corp Ltd., Beijing, China
| | - Chengguo Shen
- Digital Health China Technologies Corp Ltd., Beijing, China
| | - Zhenglin Guo
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kai Yuan
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shu Zhu
- Institute of Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Dalin Li
- Widjaja Inflammatory Bowel Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jianjun Liu
- Genome Institute of Singapore, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tian Ge
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Precision Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Judy Cho
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mark J Daly
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dermot P B McGovern
- Widjaja Inflammatory Bowel Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Byong Duk Ye
- Department of Gastroenterology and Inflammatory Bowel Disease Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyuyoung Song
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea.
| | - Yoichi Kakuta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Mingsong Li
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Markelova M, Senina A, Khusnutdinova D, Siniagina M, Kupriyanova E, Shakirova G, Odintsova A, Abdulkhakov R, Kolesnikova I, Shagaleeva O, Lyamina S, Abdulkhakov S, Zakharzhevskaya N, Grigoryeva T. Association between Taxonomic Composition of Gut Microbiota and Host Single Nucleotide Polymorphisms in Crohn's Disease Patients from Russia. Int J Mol Sci 2023; 24:ijms24097998. [PMID: 37175705 PMCID: PMC10178390 DOI: 10.3390/ijms24097998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Crohn's disease (CD) is a chronic relapsing inflammatory bowel disease of unknown etiology. Genetic predisposition and dysbiotic gut microbiota are important factors in the pathogenesis of CD. In this study, we analyzed the taxonomic composition of the gut microbiota and genotypes of 24 single nucleotide polymorphisms (SNP) associated with the risk of CD. The studied cohorts included 96 CD patients and 24 healthy volunteers from Russia. Statistically significant differences were found in the allele frequencies for 8 SNPs and taxonomic composition of the gut microbiota in CD patients compared with controls. In addition, two types of gut microbiota communities were identified in CD patients. The main distinguishing driver of bacterial families for the first community type are Bacteroidaceae and unclassified members of the Clostridiales order, and the second type is characterized by increased abundance of Streptococcaceae and Enterobacteriaceae. Differences in the allele frequencies of the rs9858542 (BSN), rs3816769 (STAT3), and rs1793004 (NELL1) were also found between groups of CD patients with different types of microbiota communities. These findings confirm the complex multifactorial nature of CD.
Collapse
Affiliation(s)
- Maria Markelova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Anastasia Senina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Dilyara Khusnutdinova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Maria Siniagina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Elena Kupriyanova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | | | | | - Rustam Abdulkhakov
- Hospital Therapy Department, Kazan State Medical University, 420012 Kazan, Russia
| | - Irina Kolesnikova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Olga Shagaleeva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Svetlana Lyamina
- Molecular Pathology of Digestion Laboratory, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Sayar Abdulkhakov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Natalia Zakharzhevskaya
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Tatiana Grigoryeva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| |
Collapse
|
28
|
Shahini A, Shahini A. Role of interleukin-6-mediated inflammation in the pathogenesis of inflammatory bowel disease: focus on the available therapeutic approaches and gut microbiome. J Cell Commun Signal 2023; 17:55-74. [PMID: 36112307 PMCID: PMC10030733 DOI: 10.1007/s12079-022-00695-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is considered a chronic inflammatory and multifactorial disease of the gastrointestinal tract. Crohn's disease (CD) and ulcerative colitis (UC) are two types of chronic IBD. Although there is no accurate information about IBD pathophysiology, evidence suggests that various factors, including the gut microbiome, environment, genetics, lifestyle, and a dysregulated immune system, may increase susceptibility to IBD. Moreover, inflammatory mediators such as interleukin-6 (IL-6) are involved in the immunopathogenesis of IBDs. IL-6 contributes to T helper 17 (Th17) differentiation, mediating further destructive inflammatory responses in CD and UC. Moreover, Th1-mediated responses participate in IBD, and the antiapoptotic IL-6/IL-6 receptor (IL-6R)/signal transducer and activator of transcription 3 (STAT3) signals are responsible for preserving Th1 cells in the site of inflammation. It has been revealed that fecal bacteria isolated from UC-active and UC-remission patients stimulate the hyperproduction of several cytokines, such as IL-6, tumor necrosis factor-α (TNF-α), IL-10, and IL-12. Given the importance of the IL-6/IL-6R axis, various therapeutic options exist for controlling or treating IBD. Therefore, alternative therapeutic approaches such as modulating the gut microbiome could be beneficial due to the failure of the target therapies so far. This review article summarizes IBD immunopathogenesis focusing on the IL-6/IL-6R axis and discusses available therapeutic approaches based on the gut microbiome alteration and IL-6/IL-6R axis targeting and treatment failure.
Collapse
Affiliation(s)
- Arshia Shahini
- Department of Laboratory Sciences, School of Allied Medical Sciences, Arak University of Medical Sciences, Arak, Iran
| | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
29
|
Halper-Stromberg A, Dalal SR. The Role of the Microbiome in the Etiology of Inflammatory Bowel Diseases. Clin Colon Rectal Surg 2023; 36:120-126. [PMID: 36844713 PMCID: PMC9946717 DOI: 10.1055/s-0042-1760680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Inflammatory bowel diseases (IBDs) result from dysregulated immune responses to environmental and microbial triggers in genetically susceptible hosts. Many clinical observations and animal studies support the role of the microbiome in the pathogenesis of IBD. Restoration of the fecal stream leads to postoperative Crohn's recurrence, while diversion can treat active inflammation. Antibiotics can be effective in prevention of postoperative Crohn's recurrence and in pouch inflammation. Several gene mutations associated with Crohn's risk lead to functional changes in microbial sensing and handling. However, the evidence linking the microbiome to the IBD is largely correlative, given the difficulty in studying the microbiome before disease occurs. Attempts to modify the microbial triggers of inflammation have had modest success to date. Exclusive enteral nutrition can treat Crohn's inflammation though no whole food diet to date has been shown to treat inflammation. Manipulation of the microbiome through fecal microbiota transplant and probiotics have had limited success. Further focus on early changes in the microbiome and functional consequences of microbial changes through the study of metabolomics are needed to help advance the field.
Collapse
Affiliation(s)
- Ariel Halper-Stromberg
- University of Chicago Medicine Inflammatory Bowel Disease Center, Dept of Medicine, Chicago, Illinois
| | - Sushila R. Dalal
- University of Chicago Medicine Inflammatory Bowel Disease Center, Dept of Medicine, Chicago, Illinois
| |
Collapse
|
30
|
Otte ML, Lama Tamang R, Papapanagiotou J, Ahmad R, Dhawan P, Singh AB. Mucosal healing and inflammatory bowel disease: Therapeutic implications and new targets. World J Gastroenterol 2023; 29:1157-1172. [PMID: 36926666 PMCID: PMC10011951 DOI: 10.3748/wjg.v29.i7.1157] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/16/2022] [Accepted: 02/14/2023] [Indexed: 02/21/2023] Open
Abstract
Mucosal healing (MH) is vital in maintaining homeostasis within the gut and protecting against injury and infections. Multiple factors and signaling pathways contribute in a dynamic and coordinated manner to maintain intestinal homeostasis and mucosal regeneration/repair. However, when intestinal homeostasis becomes chronically disturbed and an inflammatory immune response is constitutively active due to impairment of the intestinal epithelial barrier autoimmune disease results, particularly inflammatory bowel disease (IBD). Many proteins and signaling pathways become dysregulated or impaired during these pathological conditions, with the mechanisms of regulation just beginning to be understood. Consequently, there remains a relative lack of broadly effective therapeutics that can restore MH due to the complexity of both the disease and healing processes, so tissue damage in the gastrointestinal tract of patients, even those in clinical remission, persists. With increased understanding of the molecular mechanisms of IBD and MH, tissue damage from autoimmune disease may in the future be ameliorated by developing therapeutics that enhance the body’s own healing response. In this review, we introduce the concept of mucosal healing and its relevance in IBD as well as discuss the mechanisms of IBD and potential strategies for altering these processes and inducing MH.
Collapse
Affiliation(s)
- Megan Lynn Otte
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Raju Lama Tamang
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Julia Papapanagiotou
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Rizwan Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Amar B Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States
| |
Collapse
|
31
|
Jiang W, Wang Z, Zhang J, Li M. Interleukin 25 and its biological features and function in intestinal diseases. Cent Eur J Immunol 2023; 47:362-372. [PMID: 36817397 PMCID: PMC9901255 DOI: 10.5114/ceji.2022.124416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/13/2023] [Indexed: 02/04/2023] Open
Abstract
Interleukin 25 (IL-25), also known as IL-17E, is a member of the IL-17 cytokine family and an important regulator of the type 2 immune response. Accumulating evidence suggests that IL-25 interacts with diverse immune as well as non-immune cells and plays a rather complicated role in different backgrounds of multiple organs. IL-25 has been studied in the physiology and pathology of the intestine to some extent. With epithelial cells being an important source in the intestine, IL-25 plays a key role in intestinal immune responses and is associated with inappropriate allergic reactions, autoimmune diseases, and cancer tumorigenesis. In this review, we discuss the emerging comprehension of the biology of IL-25, as well as its cellular sources, targets, and signaling transduction. In particular, we discuss how IL-25 participates in the development of intestinal diseases including helminth infection, inflammatory bowel diseases, food allergy and colorectal cancer, as well as its underlying role in future therapy.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zehui Wang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jun Zhang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Minghui Li
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
32
|
Sharma A, Junge O, Szymczak S, Rühlemann MC, Enderle J, Schreiber S, Laudes M, Franke A, Lieb W, Krawczak M, Dempfle A. Network-based quantitative trait linkage analysis of microbiome composition in inflammatory bowel disease families. Front Genet 2023; 14:1048312. [PMID: 36755569 PMCID: PMC9901208 DOI: 10.3389/fgene.2023.1048312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Introduction: Inflammatory bowel disease (IBD) is characterized by a dysbiosis of the gut microbiome that results from the interaction of the constituting taxa with one another, and with the host. At the same time, host genetic variation is associated with both IBD risk and microbiome composition. Methods: In the present study, we defined quantitative traits (QTs) from modules identified in microbial co-occurrence networks to measure the inter-individual consistency of microbial abundance and subjected these QTs to a genome-wide quantitative trait locus (QTL) linkage analysis. Results: Four microbial network modules were consistently identified in two cohorts of healthy individuals, but three of the corresponding QTs differed significantly between IBD patients and unaffected individuals. The QTL linkage analysis was performed in a sub-sample of the Kiel IBD family cohort (IBD-KC), an ongoing study of 256 German families comprising 455 IBD patients and 575 first- and second-degree, non-affected relatives. The analysis revealed five chromosomal regions linked to one of three microbial module QTs, namely on chromosomes 3 (spanning 10.79 cM) and 11 (6.69 cM) for the first module, chr9 (0.13 cM) and chr16 (1.20 cM) for the second module, and chr13 (19.98 cM) for the third module. None of these loci have been implicated in a microbial phenotype before. Discussion: Our study illustrates the benefit of combining network and family-based linkage analysis to identify novel genetic drivers of microbiome composition in a specific disease context.
Collapse
Affiliation(s)
- Arunabh Sharma
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | - Olaf Junge
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | - Silke Szymczak
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Malte Christoph Rühlemann
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany,Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Janna Enderle
- Institute of Epidemiology, Kiel University, Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany,Department of Internal Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Matthias Laudes
- Institute of Diabetology and Clinical Metabolic Research, Kiel University, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Wolfgang Lieb
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | - Astrid Dempfle
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany,*Correspondence: Astrid Dempfle,
| |
Collapse
|
33
|
Campbell C, Kandalgaonkar MR, Golonka RM, Yeoh BS, Vijay-Kumar M, Saha P. Crosstalk between Gut Microbiota and Host Immunity: Impact on Inflammation and Immunotherapy. Biomedicines 2023; 11:294. [PMID: 36830830 PMCID: PMC9953403 DOI: 10.3390/biomedicines11020294] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Gut microbes and their metabolites are actively involved in the development and regulation of host immunity, which can influence disease susceptibility. Herein, we review the most recent research advancements in the gut microbiota-immune axis. We discuss in detail how the gut microbiota is a tipping point for neonatal immune development as indicated by newly uncovered phenomenon, such as maternal imprinting, in utero intestinal metabolome, and weaning reaction. We describe how the gut microbiota shapes both innate and adaptive immunity with emphasis on the metabolites short-chain fatty acids and secondary bile acids. We also comprehensively delineate how disruption in the microbiota-immune axis results in immune-mediated diseases, such as gastrointestinal infections, inflammatory bowel diseases, cardiometabolic disorders (e.g., cardiovascular diseases, diabetes, and hypertension), autoimmunity (e.g., rheumatoid arthritis), hypersensitivity (e.g., asthma and allergies), psychological disorders (e.g., anxiety), and cancer (e.g., colorectal and hepatic). We further encompass the role of fecal microbiota transplantation, probiotics, prebiotics, and dietary polyphenols in reshaping the gut microbiota and their therapeutic potential. Continuing, we examine how the gut microbiota modulates immune therapies, including immune checkpoint inhibitors, JAK inhibitors, and anti-TNF therapies. We lastly mention the current challenges in metagenomics, germ-free models, and microbiota recapitulation to a achieve fundamental understanding for how gut microbiota regulates immunity. Altogether, this review proposes improving immunotherapy efficacy from the perspective of microbiome-targeted interventions.
Collapse
Affiliation(s)
- Connor Campbell
- Department of Physiology & Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Mrunmayee R. Kandalgaonkar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Rachel M. Golonka
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Beng San Yeoh
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Matam Vijay-Kumar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Piu Saha
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
34
|
Zi C, Wang D, Gao Y, He L. The role of Th17 cells in endocrine organs: Involvement of the gut, adipose tissue, liver and bone. Front Immunol 2023; 13:1104943. [PMID: 36726994 PMCID: PMC9884980 DOI: 10.3389/fimmu.2022.1104943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
T Helper 17 (Th17) cells are adaptive immune cells that play myriad roles in the body. Immune-endocrine interactions are vital in endocrine organs during pathological states. Th17 cells are known to take part in multiple autoimmune diseases over the years. Current evidence has moved from minimal to substantial that Th17 cells are closely related to endocrine organs. Diverse tissue Th17 cells have been discovered within endocrine organs, including gut, adipose tissue, liver and bone, and these cells are modulated by various secretions from endocrine organs. Th17 cells in these endocrine organs are key players in the process of an array of metabolic disorders and inflammatory conditions, including obesity, insulin resistance, nonalcoholic fatty liver disease (NAFLD), primary sclerosing cholangitis (PSC), osteoporosis and inflammatory bowel disease (IBD). We reviewed the pathogenetic or protective functions played by Th17 cells in various endocrine tissues and identified potential regulators for plasticity of it. Furthermore, we discussed the roles of Th17 cells in crosstalk of gut-organs axis.
Collapse
Affiliation(s)
- Changyan Zi
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Die Wang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yongxiang Gao
- School of International Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Yongxiang Gao, ; Lisha He,
| | - Lisha He
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Yongxiang Gao, ; Lisha He,
| |
Collapse
|
35
|
Abstract
Macroautophagy and microautophagy are highly conserved eukaryotic cellular processes that degrade cytoplasmic material in lysosomes. Both pathways involve characteristic membrane dynamics regulated by autophagy-related proteins and other molecules, some of which are shared between the two pathways. Over the past few years, the application of new technologies, such as cryo-electron microscopy, coevolution-based structural prediction and in vitro reconstitution, has revealed the functions of individual autophagy gene products, especially in autophagy induction, membrane reorganization and cargo recognition. Concomitantly, mutations in autophagy genes have been linked to human disorders, particularly neurodegenerative diseases, emphasizing the potential pathogenic implications of autophagy defects. Accumulating genome data have also illuminated the evolution of autophagy genes within eukaryotes as well as their transition from possible ancestral elements in prokaryotes.
Collapse
Affiliation(s)
- Hayashi Yamamoto
- grid.26999.3d0000 0001 2151 536XDepartment of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan ,grid.410821.e0000 0001 2173 8328Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Sidi Zhang
- grid.26999.3d0000 0001 2151 536XDepartment of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Noboru Mizushima
- grid.26999.3d0000 0001 2151 536XDepartment of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
36
|
Genetic and Epigenetic Etiology of Inflammatory Bowel Disease: An Update. Genes (Basel) 2022; 13:genes13122388. [PMID: 36553655 PMCID: PMC9778199 DOI: 10.3390/genes13122388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disease with periods of exacerbation and remission of the disease. The etiology of IBD is not fully understood. Many studies point to the presence of genetic, immunological, environmental, and microbiological factors and the interactions between them in the occurrence of IBD. The review looks at genetic factors in the context of both IBD predisposition and pharmacogenetics.
Collapse
|
37
|
Wang H, Liu Z, Yu T, Zhang Y, Jiao Y, Wang X, Du H, Jiang R, Liu D, Xu Y, Guan Q, Lu M. The effect of tuina on ulcerative colitis model mice analyzed by gut microbiota and proteomics. Front Microbiol 2022; 13:976239. [PMID: 36523844 PMCID: PMC9745952 DOI: 10.3389/fmicb.2022.976239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/25/2022] [Indexed: 02/13/2024] Open
Abstract
Tuina can effectively alleviate ulcerative colitis-related symptoms, but the mechanism of action is unknown. The purpose of this research is to explore potential pathways for the treatment of tuina through gut microbiota and proteomics techniques. Thirty-two male BALB/c mice were divided into four groups, the control, model, mesalazine, and tuina groups. The ulcerative colitis model was established by freely drinking a 3% dextran sulphate sodium solution for 7 days. The mesalazine group and the tuina group, respectively, received 7 days of mesalazine and tuina treatment. Subsequently, their body weights, feces properties, colon length, histomorphological changes, gut microbiota, and colon proteomics were determined. Body weights, disease activity index score, colon histological scores, and microbiota diversity were restored in the tuina group. At the phylum level, Firmicutes was increased and Bacteroidota decreased. At the family level, Lachnospiraceae increased and Prevotellaceae decreased. At the genus level, the Lachnospiraceae_NK4A136_group was increased. Proteomics detected 370 differentially expressed proteins regulated by tuina, enriched to a total of 304 pathways, including biotin metabolism, Notch signaling pathway, linoleic acid metabolism, and autophagy. Tuina can effectively improve the symptoms of weight loss, fecal properties, and colon inflammation in ulcerative colitis mice and restore the gut microbiota diversity, adjusting the relative abundance of microbiota. The therapeutic effects of tuina may be achieved by modulating the signaling pathways of biotin metabolism, Notch signaling pathway, linoleic acid metabolism, and autophagy.
Collapse
Affiliation(s)
- Hourong Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Zhifeng Liu
- Tuina and Pain Management Department, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Tianyuan Yu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yingqi Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Jiao
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xiangyi Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Hongjin Du
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ruichen Jiang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Di Liu
- Acupuncture Department, Oriental Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yajing Xu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Qian Guan
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Mengqian Lu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
38
|
Zhang H, Duan Y, Cai F, Cao D, Wang L, Qiao Z, Hong Q, Li N, Zheng Y, Su M, Liu Z, Zhu B. Next-Generation Probiotics: Microflora Intervention to Human Diseases. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5633403. [PMID: 36440358 PMCID: PMC9683952 DOI: 10.1155/2022/5633403] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/06/2022] [Indexed: 11/02/2023]
Abstract
With the development of human genome sequencing and techniques such as intestinal microbial culture and fecal microbial transplantation, newly discovered microorganisms have been isolated, cultured, and researched. Consequently, many beneficial probiotics have emerged as next-generation probiotics (NGPs). Currently, "safety," "individualized treatment," and "internal interaction within the flora" are requirements of a potential NGPs. Furthermore, in the complex ecosystem of humans and microbes, it is challenging to identify the relationship between specific strains, specific flora, and hosts to warrant a therapeutic intervention in case of a disease. Thus, this review focuses on the progress made in NGPs and human health research by elucidating the limitations of traditional probiotics; summarizing the functions and strengths of Akkermansia muciniphila, Faecalibacterium prausnitzii, Bacteroides fragilis, Eubacterium hallii, and Roseburia spp. as NGPs; and determining the role of their intervention in treatment of certain diseases. Finally, we aim to provide a reference for developing new probiotics in the future.
Collapse
Affiliation(s)
- Huanchang Zhang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Yunfeng Duan
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Feng Cai
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Demin Cao
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Zhenyi Qiao
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Qing Hong
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Nan Li
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Miya Su
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Baoli Zhu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
39
|
Li Y, Law HKW. Deciphering the role of autophagy in the immunopathogenesis of inflammatory bowel disease. Front Pharmacol 2022; 13:1070184. [DOI: 10.3389/fphar.2022.1070184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a typical immune-mediated chronic inflammatory disorder. Following the industrialization and changes in lifestyle, the incidence of IBD in the world is rising, which makes health concerns and heavy burdens all over the world. However, the pathogenesis of IBD remains unclear, and the current understanding of the pathogenesis involves dysregulation of mucosal immunity, gut microbiome dysbiosis, and gut barrier defect based on genetic susceptibility and environmental triggers. In recent years, autophagy has emerged as a key mechanism in IBD development and progression because Genome-Wide Association Study revealed the complex interactions of autophagy in IBD, especially immunopathogenesis. Besides, autophagy markers are also suggested to be potential biomarkers and target treatment in IBD. This review summarizes the autophagy-related genes regulating immune response in IBD. Furthermore, we explore the evolving evidence that autophagy interacts with intestinal epithelial and immune cells to contribute to the inflammatory changes in IBD. Finally, we discuss how novel discovery could further advance our understanding of the role of autophagy and inform novel therapeutic strategies in IBD.
Collapse
|
40
|
Proctor A, Parvinroo S, Richie T, Jia X, Lee STM, Karp PD, Paley S, Kostic AD, Pierre JF, Wannemuehler MJ, Phillips GJ. Resources to Facilitate Use of the Altered Schaedler Flora (ASF) Mouse Model to Study Microbiome Function. mSystems 2022; 7:e0029322. [PMID: 35968975 PMCID: PMC9600240 DOI: 10.1128/msystems.00293-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022] Open
Abstract
Animals colonized with a defined microbiota represent useful experimental systems to investigate microbiome function. The altered Schaedler flora (ASF) represents a consortium of eight murine bacterial species that have been used for more than 4 decades where the study of mice with a reduced microbiota is desired. In contrast to germ-free mice, or mice colonized with only one or two species, ASF mice show the normal gut structure and immune system development. To further expand the utility of the ASF, we have developed technical and bioinformatic resources to enable a systems-based analysis of microbiome function using this model. Here, we highlighted four distinct applications of these resources that enable and improve (i) measurements of the abundance of each ASF member by quantitative PCR; (ii) exploration and comparative analysis of ASF genomes and the metabolic pathways they encode that comprise the entire gut microbiome; (iii) global transcriptional profiling to identify genes whose expression responds to environmental changes within the gut; and (iv) discovery of genetic changes resulting from the evolutionary adaptation of the microbiota. These resources were designed to be accessible to a broad community of researchers that, in combination with conventionally-reared mice (i.e., with complex microbiome), should contribute to our understanding of microbiome structure and function. IMPORTANCE Improved experimental systems are needed to advance our understanding of how the gut microbiome influences processes of the mammalian host as well as microbial community structure and function. An approach that is receiving considerable attention is the use of animal models that harbor a stable microbiota of known composition, i.e., defined microbiota, which enables control over an otherwise highly complex and variable feature of mammalian biology. The altered Schaedler flora (ASF) consortium is a well-established defined microbiota model, where mice are stably colonized with 8 distinct murine bacterial species. To take better advantage of the ASF, we established new experimental and bioinformatics resources for researchers to make better use of this model as an experimental system to study microbiome function.
Collapse
Affiliation(s)
- Alexandra Proctor
- Department of Veterinary Microbiology, Iowa State University, Ames, Iowa, USA
| | - Shadi Parvinroo
- Department of Veterinary Microbiology, Iowa State University, Ames, Iowa, USA
| | - Tanner Richie
- Division of Biology, Kansas State University, Manhattan Kansas, USA
| | - Xinglin Jia
- Department of Veterinary Microbiology, Iowa State University, Ames, Iowa, USA
| | - Sonny T. M. Lee
- Division of Biology, Kansas State University, Manhattan Kansas, USA
| | - Peter D. Karp
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Suzanne Paley
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Aleksandar D. Kostic
- Department of Microbiology and Immunology, Joslin Diabetes Center, Harvard University, Cambridge Massachusetts, USA
| | - Joseph F. Pierre
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison Wisconsin, USA
| | | | - Gregory J. Phillips
- Department of Veterinary Microbiology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
41
|
Ganapathy AS, Saha K, Suchanec E, Singh V, Verma A, Yochum G, Koltun W, Nighot M, Ma T, Nighot P. AP2M1 mediates autophagy-induced CLDN2 (claudin 2) degradation through endocytosis and interaction with LC3 and reduces intestinal epithelial tight junction permeability. Autophagy 2022; 18:2086-2103. [PMID: 34964704 PMCID: PMC9466623 DOI: 10.1080/15548627.2021.2016233] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The intestinal epithelial tight junctions (TJs) provide barrier against paracellular permeation of lumenal antigens. Defects in TJ barrier such as increased levels of pore-forming TJ protein CLDN2 (claudin-2) is associated with inflammatory bowel disease. We have previously reported that starvation-induced macroautophagy/autophagy enhances the TJ barrier by degrading pore-forming CLDN2. In this study, we examined the molecular mechanism underlying autophagy-induced CLDN2 degradation. CLDN2 degradation was persistent in multiple modes of autophagy induction. Immunolocalization, membrane fractionation, and pharmacological inhibition studies showed increased clathrin-mediated CLDN2 endocytosis upon starvation. Inhibition of clathrin-mediated endocytosis negated autophagy-induced CLDN2 degradation and enhancement of the TJ barrier. The co-immunoprecipitation studies showed increased association of CLDN2 with clathrin and adaptor protein AP2 (AP2A1 and AP2M1 subunits) as well as LC3 and lysosomes upon starvation, signifying the role of clathrin-mediated endocytosis in autophagy-induced CLDN2 degradation. The expression and phosphorylation of AP2M1 was increased upon starvation. In-vitro, in-vivo (mouse colon), and ex-vivo (human colon) inhibition of AP2M1 activation prevented CLDN2 degradation. AP2M1 knockout prevented autophagy-induced CLDN2 degradation via reduced CLDN2-LC3 interaction. Site-directed mutagenesis revealed that AP2M1 binds to CLDN2 tyrosine motifs (YXXФ) (67-70 and 148-151). Increased baseline expression of CLDN2 and TJ permeability along with reduced CLDN2-AP2M1-LC3 interactions in ATG7 knockout cells validated the role of autophagy in modulation of CLDN2 levels. Acute deletion of Atg7 in mice increased CLDN2 levels and the susceptibility to experimental colitis. The autophagy-regulated molecular mechanisms linking CLDN2, AP2M1, and LC3 may provide therapeutic tools against intestinal inflammation.Abbreviations: Amil: amiloride; AP2: adaptor protein complex 2; AP2A1: adaptor related protein complex 2 subunit alpha 1; AP2M1: adaptor related protein complex 2 subunit mu 1; ATG7: autophagy related 7; CAL: calcitriol; Cas9: CRISPR-associated protein 9; Con: control; CPZ: chlorpromazine; DSS: dextran sodium sulfate; EBSS: Earle's balanced salt solution; IBD: inflammatory bowel disease; TER: trans-epithelial resistance; KD: knockdown; KO: knockout; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MβCD: Methyl-β-cyclodextrin; MET: metformin; MG132: carbobenzoxy-Leu-Leu-leucinal; MTOR: mechanistic target of rapamycin kinase; NT: non target; RAPA: rapamycin; RES: resveratrol; SMER: small-molecule enhancer 28; SQSTM1: sequestosome 1; ST: starvation; ULK1: unc-51 like autophagy activating kinase 1; WT: wild type.
Collapse
Affiliation(s)
| | - Kushal Saha
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Eric Suchanec
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Vikash Singh
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State College of Medicine, Hershey, Pa, USA
| | - Aayush Verma
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Gregory Yochum
- Division of Colon and Rectal Surgery, Department of Surgery, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Walter Koltun
- Division of Colon and Rectal Surgery, Department of Surgery, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Meghali Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Thomas Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Prashant Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA, USA,CONTACT Prashant Nighot Department of Medicine, College of Medicine, Penn State University, Hershey, PA17033, USA
| |
Collapse
|
42
|
Computational approach to modeling microbiome landscapes associated with chronic human disease progression. PLoS Comput Biol 2022; 18:e1010373. [PMID: 35926003 PMCID: PMC9380910 DOI: 10.1371/journal.pcbi.1010373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/16/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022] Open
Abstract
A microbial community is a dynamic system undergoing constant change in response to internal and external stimuli. These changes can have significant implications for human health. However, due to the difficulty in obtaining longitudinal samples, the study of the dynamic relationship between the microbiome and human health remains a challenge. Here, we introduce a novel computational strategy that uses massive cross-sectional sample data to model microbiome landscapes associated with chronic disease development. The strategy is based on the rationale that each static sample provides a snapshot of the disease process, and if the number of samples is sufficiently large, the footprints of individual samples populate progression trajectories, which enables us to recover disease progression paths along a microbiome landscape by using computational approaches. To demonstrate the validity of the proposed strategy, we developed a bioinformatics pipeline and applied it to a gut microbiome dataset available from a Crohn’s disease study. Our analysis resulted in one of the first working models of microbial progression for Crohn’s disease. We performed a series of interrogations to validate the constructed model. Our analysis suggested that the model recapitulated the longitudinal progression of microbial dysbiosis during the known clinical trajectory of Crohn’s disease. By overcoming restrictions associated with complex longitudinal sampling, the proposed strategy can provide valuable insights into the role of the microbiome in the pathogenesis of chronic disease and facilitate the shift of the field from descriptive research to mechanistic studies. The delineation of system dynamics of a microbial community can provide a wealth of insights into the roles of the microbiome in the pathogenesis of chronic disease. However, due to the difficulty in obtaining longitudinal samples, most existing microbiome studies have been cross-sectional and largely descriptive. Here, we present a novel computational strategy that leverages massive static sample data to model microbiome landscapes associated with chronic disease development. To demonstrate the validity of the proposed strategy, we applied it to a gut microbiome dataset available from a Crohn’s disease study and constructed one of the first microbial progression models of the disease. We performed a series of interrogations on the constructed model. Our analysis suggested that the constructed model recapitulated the longitudinal progression of microbial dysbiosis during the known clinical trajectory of Crohn’s disease. By overcoming the sampling restrictions inherent to slowly progressive diseases, our approach is potentially widely applicable in many different studies across body sites, diseases, and other conditions.
Collapse
|
43
|
Ahmad S, Ashktorab H, Brim H, Housseau F. Inflammation, microbiome and colorectal cancer disparity in African-Americans: Are there bugs in the genetics? World J Gastroenterol 2022; 28:2782-2801. [PMID: 35978869 PMCID: PMC9280725 DOI: 10.3748/wjg.v28.i25.2782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/27/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Dysregulated interactions between host inflammation and gut microbiota over the course of life increase the risk of colorectal cancer (CRC). While environmental factors and socio-economic realities of race remain predominant contributors to CRC disparities in African-Americans (AAs), this review focuses on the biological mediators of CRC disparity, namely the under-appreciated influence of inherited ancestral genetic regulation on mucosal innate immunity and its interaction with the microbiome. There remains a poor understanding of mechanisms linking immune-related genetic polymorphisms and microbiome diversity that could influence chronic inflammation and exacerbate CRC disparities in AAs. A better understanding of the relationship between host genetics, bacteria, and CRC pathogenesis will improve the prediction of cancer risk across race/ethnicity groups overall.
Collapse
Affiliation(s)
- Sami Ahmad
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21231, United States
| | - Hassan Ashktorab
- Department of Medicine, Howard University, Washington, DC 20060, United States
| | - Hassan Brim
- Department of Pathology, Howard University, Washington, DC 20060, United States
| | - Franck Housseau
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21231, United States
| |
Collapse
|
44
|
Kondo T, Uebanso T, Arao N, Shimohata T, Mawatari K, Takahashi A. Effect of T1R3 Taste Receptor Gene Deletion on Dextran Sulfate Sodium-Induced Colitis in Mice. J Nutr Sci Vitaminol (Tokyo) 2022; 68:204-212. [PMID: 35768251 DOI: 10.3177/jnsv.68.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Taste receptor type 1 member 3 (T1R3) recognize umami or sweet tastes and also contributes type 2 immunity and autophagy in small intestine and muscle cells, respectively. Since imbalance of type 1 and type 2 immunity and autophagy affect intestinal bowel disease (IBD), we hypothesized that T1R3 have a potential role in the incidence and progression of colitis. In the present study, we investigated whether genetic deletion of T1R3 impacted aggravation of DSS-induced colitis in mice. We found that T1R3-KO mice showed reduction in colon damage, including reduced inflammation and colon shrinking relative to those of WT mice following DSS treatment. mRNA expression of tight junction components, particularly claudin1 was significantly lower in T1R3-KO mice with trend to lower inflammation related gene mRNA expression in colon. Other parameters, such as response to microbial stimuli in splenic lymphocytes and peritoneal macrophages, gut microbiota composition, and expression of autophagy-related proteins, were similar between WT and KO mice. Together, these results indicated that deletion of T1R3 has a minor role in intestinal inflammation induced by DSS-induced acute colitis in mice.
Collapse
Affiliation(s)
- Tsubasa Kondo
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Takashi Uebanso
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Natsuki Arao
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Takaaki Shimohata
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School.,Faculty of Marine Biosciences, Fukui Prefectural University
| | - Kazuaki Mawatari
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Akira Takahashi
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| |
Collapse
|
45
|
Zheng L, Ji YY, Wen XL, Duan SL. Fecal microbiota transplantation in the metabolic diseases: Current status and perspectives. World J Gastroenterol 2022; 28:2546-2560. [PMID: 35949351 PMCID: PMC9254144 DOI: 10.3748/wjg.v28.i23.2546] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/14/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
With the development of microbiology and metabolomics, the relationship between the intestinal microbiome and intestinal diseases has been revealed. Fecal microbiota transplantation (FMT), as a new treatment method, can affect the course of many chronic diseases such as metabolic syndrome, malignant tumor, autoimmune disease and nervous system disease. Although the mechanism of action of FMT is now well understood, there is some controversy in metabolic diseases, so its clinical application may be limited. Microflora transplantation is recommended by clinical medical guidelines and consensus for the treatment of recurrent or refractory Clostridium difficile infection, and has been gradually promoted for the treatment of other intestinal and extraintestinal diseases. However, the initial results are varied, suggesting that the heterogeneity of the donor stools may affect the efficacy of FMT. The success of FMT depends on the microbial diversity and composition of donor feces. Therefore, clinical trials may fail due to the selection of ineffective donors, and not to faulty indication selection for FMT. A new understanding is that FMT not only improves insulin sensitivity, but may also alter the natural course of type 1 diabetes by modulating autoimmunity. In this review, we focus on the main mechanisms and deficiencies of FMT, and explore the optimal design of FMT research, especially in the field of cardiometabolic diseases.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 710003, Shaanxi Province, China
| | - Yong-Yi Ji
- Department of Neurology, Xi’an Hospital of Traditional Chinese Medicine, Xi’an 710021, Shaanxi Province, China
| | - Xin-Li Wen
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 710003, Shaanxi Province, China
| | - Sheng-Lei Duan
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 710003, Shaanxi Province, China
| |
Collapse
|
46
|
Xu X, Ocansey DKW, Hang S, Wang B, Amoah S, Yi C, Zhang X, Liu L, Mao F. The gut metagenomics and metabolomics signature in patients with inflammatory bowel disease. Gut Pathog 2022; 14:26. [PMID: 35729658 PMCID: PMC9215062 DOI: 10.1186/s13099-022-00499-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/17/2022] [Indexed: 12/26/2022] Open
Abstract
Inflammatory bowel disease (IBD), a chronic gut immune dysregulation and dysbiosis condition is rapidly increasing in global incidence. Regardless, there is a lack of ideal diagnostic markers, while conventional treatment provides scarce desired results, thus, the exploration for better options. Changes in the gut microbial composition and metabolites either lead to or are caused by the immune dysregulation that characterizes IBD. This study examined the fecal metagenomics and metabolomic changes in IBD patients. A total of 30 fecal samples were collected from 15 IBD patients and 15 healthy controls for 16S rDNA gene sequencing and UHPLC/Q-TOF-MS detection of metabolomics. Results showed that there was a severe perturbation of gut bacteria community composition, diversity, metabolites, and associated functions and metabolic pathways in IBD. This included a significantly decreased abundance of Bacteroidetes and Firmicutes, increased disease-associated phyla such as Proteobacteria and Actinobacteria, and increased Escherichiacoli and Klebsiellapneumoniae in IBD. A total of 3146 metabolites were detected out of which 135 were differentially expressed between IBD and controls. Metabolites with high sensitivity and specificity in differentiating IBD from healthy individuals included 6,7,4′-trihydroxyisoflavone and thyroxine 4′-o-.beta.-d-glucuronide (AUC = 0.92), normorphine and salvinorin a (AUC = 0.90), and trichostachine (AUC = 0.91). Moreover, the IBD group had significantly affected pathways including primary bile acid biosynthesis, vitamin digestion and absorption, and carbohydrate metabolism. This study reveals that the combined evaluation of metabolites and fecal microbiome can be useful to discriminate between healthy subjects and IBD patients and consequently serve as therapeutic and diagnostic targets.
Collapse
Affiliation(s)
- Xinwei Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.,Directorate of University Health Services, University of Cape Coast, PMB, Cape Coast, Ghana
| | - Sanhua Hang
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, 212300, Jiangsu, People's Republic of China
| | - Bo Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Samuel Amoah
- Directorate of University Health Services, University of Cape Coast, PMB, Cape Coast, Ghana
| | - Chengxue Yi
- School of Medical Technology, Zhenjiang College, Zhenjiang, 212028, Jiangsu, People's Republic of China
| | - Xu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Lianqin Liu
- Huai'an Maternity and Children Hospital, Huaian, 223002, Jiangsu, People's Republic of China.
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
47
|
Zhang ZJ, Lehmann CJ, Cole CG, Pamer EG. Translating Microbiome Research From and To the Clinic. Annu Rev Microbiol 2022; 76:435-460. [DOI: 10.1146/annurev-micro-041020-022206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Extensive research has elucidated the influence of the gut microbiota on human health and disease susceptibility and resistance. We review recent clinical and laboratory-based experimental studies associating the gut microbiota with certain human diseases. We also highlight ongoing translational advances that manipulate the gut microbiota to treat human diseases and discuss opportunities and challenges in translating microbiome research from and to the bedside. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Zhenrun J. Zhang
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | | | - Cody G. Cole
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Eric G. Pamer
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
- Department of Medicine and Pathology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
48
|
Aguanno D, Metwaly A, Coleman OI, Haller D. Modeling microbiota-associated human diseases: from minimal models to complex systems. MICROBIOME RESEARCH REPORTS 2022; 1:17. [PMID: 38046357 PMCID: PMC10688821 DOI: 10.20517/mrr.2022.01] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/08/2022] [Accepted: 04/24/2022] [Indexed: 12/05/2023]
Abstract
Alterations in the intestinal microbiota are associated with various human diseases of the digestive system, including obesity and its associated metabolic diseases, inflammatory bowel diseases (IBD), and colorectal cancer (CRC). All three diseases are characterized by modifications of the richness, composition, and metabolic functions of the human intestinal microbiota. Despite being multi-factorial diseases, studies in germ-free animal models have unarguably identified the intestinal microbiota as a causal driver of disease pathogenesis. However, for an increased mechanistic understanding of microbial signatures in human diseases, models require detailed refinement to closely mimic the human microbiota and reflect the complexity and range of dysbiosis observed in patients. The transplantation of human fecal microbiota into animal models represents a powerful tool for studying the causal and functional role of the dysbiotic human microbiome in a pathological context. While human microbiota-associated models were initially employed to study obesity, an increasing number of studies have applied this approach in the context of IBD and CRC over the past decade. In this review, we discuss different approaches that allow the functional validation of the bacterial contribution to human diseases, with emphasis on obesity and its associated metabolic diseases, IBD, and CRC. We discuss the utility of simple models, such as in vitro fermentation systems of the human microbiota and ex vivo intestinal organoids, as well as more complex whole organism models. Our focus here lies on human microbiota-associated mouse models in the context of all three diseases, as well as highlighting the advantages and limitations of this approach.
Collapse
Affiliation(s)
- Doriane Aguanno
- Chair of Nutrition and Immunology, Technical University of Munich, Freising 85354, Germany
| | - Amira Metwaly
- Chair of Nutrition and Immunology, Technical University of Munich, Freising 85354, Germany
| | - Olivia I. Coleman
- Chair of Nutrition and Immunology, Technical University of Munich, Freising 85354, Germany
| | - Dirk Haller
- Chair of Nutrition and Immunology, Technical University of Munich, Freising 85354, Germany
- ZIEL Institute for Food & Health, Technical University of Munich, Freising 85354, Germany
| |
Collapse
|
49
|
Le Naour J, Sztupinszki Z, Carbonnier V, Casiraghi O, Marty V, Galluzzi L, Szallasi Z, Kroemer G, Vacchelli E. A loss-of-function polymorphism in ATG16L1 compromises therapeutic outcome in head and neck carcinoma patients. Oncoimmunology 2022; 11:2059878. [PMID: 35481288 PMCID: PMC9037530 DOI: 10.1080/2162402x.2022.2059878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The anticancer immune response is shaped by immunogenic cell stress and death pathways. Thus, cancer cells can release danger-associated molecular patterns that act on pattern recognition receptors expressed by dendritic cells and their precursors to elicit an antitumor immune response. Here, we investigated the impact of single nucleotide polymorphisms (SNPs) in genes affecting this cancer-immunity dialogue in the context of head and neck squamous cell carcinoma (HNSCC). We observed that homozygosity for a loss-of-function SNP (rs2241880, leading to the substitution of a threonine residue in position 300 by an alanine) affecting autophagy related 16 like 1 (ATG16L1) is coupled to poor progression-free survival in platinum-treated HNSCC patients. This result was obtained on a cohort of patients enrolled at the Gustave Roussy Cancer Campus and was validated on an independent cohort of The Cancer Genome Atlas (TCGA). Homozygosity in rs2241880 is well known to predispose to Crohn’s disease, and epidemiological associations between Crohn’s disease and HNSCC have been reported at the levels of cancer incidence and prognosis. We speculate that rs2241880 might be partially responsible for this association.
Collapse
Affiliation(s)
- Julie Le Naour
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris Sud, Paris Saclay, Faculty of Medicine Kremlin Bicêtre, France
| | - Zsofia Sztupinszki
- Computational Health Informatics Program (CHIP), Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Vincent Carbonnier
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris Sud, Paris Saclay, Faculty of Medicine Kremlin Bicêtre, France
| | - Odile Casiraghi
- Department of Head and Neck Surgical and Medical Oncology, Gustave Roussy Cancer Campus, Paris-Saclay University, Villejuif, France
| | - Virginie Marty
- Experimental and Translational Pathology Platform (PETRA), AMMICa Inserm US23/UMS CNRS3655, Gustave Roussy Cancer Campus, Villejuif, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Zoltan Szallasi
- Computational Health Informatics Program (CHIP), Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Institut du Cancer Paris CARPEMAP-HP, Hôpital Européen Georges Pompidou, Pôle de Biologie, Paris, France
- Department of Cancer Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| | - Erika Vacchelli
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
50
|
Majumder S, Shivaji UN, Kasturi R, Sigamani A, Ghosh S, Iacucci M. Inflammatory bowel disease-related colorectal cancer: Past, present and future perspectives. World J Gastrointest Oncol 2022; 14:547-567. [PMID: 35321275 PMCID: PMC8919014 DOI: 10.4251/wjgo.v14.i3.547] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/21/2021] [Accepted: 02/27/2022] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease-related colorectal cancer (IBD-CRC) is one of the most serious complications of IBD contributing to significant mortality in this cohort of patients. IBD is often associated with diet and lifestyle-related gut microbial dysbiosis, the interaction of genetic and environmental factors, leading to chronic gut inflammation. According to the “common ground hypothesis”, microbial dysbiosis and intestinal barrier impairment are at the core of the chronic inflammatory process associated with IBD-CRC. Among the many underlying factors known to increase the risk of IBD-CRC, perhaps the most important factor is chronic persistent inflammation. The persistent inflammation in the colon results in increased proliferation of cells necessary for repair but this also increases the risk of dysplastic changes due to chromosomal and microsatellite instability. Multiple pathways have been identified, regulated by many positive and negative factors involved in the development of cancer, which in this case follows the ‘inflammation-dysplasia-carcinoma’ sequence. Strategies to lower this risk are extremely important to reduce morbidity and mortality due to IBD-CRC, among which colonoscopic surveillance is the most widely accepted and implemented modality, forming part of many national and international guidelines. However, the effectiveness of surveillance in IBD has been a topic of much debate in recent years for multiple reasons — cost-benefit to health systems, resource requirements, and also because of studies showing conflicting long-term data. Our review provides a comprehensive overview of past, present, and future perspectives of IBD-CRC. We explore and analyse evidence from studies over decades and current best practices followed globally. In the future directions section, we cover emerging novel endoscopic techniques and artificial intelligence that could play an important role in managing the risk of IBD-CRC.
Collapse
Affiliation(s)
- Snehali Majumder
- Department of Clinical Research, Narayana Health, Bangalore 560099, Karnataka, India
| | - Uday Nagesh Shivaji
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham, Birmingham B15 2TH, United Kingdom
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TH, United Kingdom
| | - Rangarajan Kasturi
- Department of Gastroenterology, Narayana Health, Bangalore 560099, India
| | - Alben Sigamani
- Department of Clinical Research, Narayana Health, Bangalore 560099, Karnataka, India
| | - Subrata Ghosh
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham, Birmingham B15 2TH, United Kingdom
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TH, United Kingdom
| | - Marietta Iacucci
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham, Birmingham B15 2TH, United Kingdom
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TH, United Kingdom
| |
Collapse
|