1
|
Ma Y, Kan A, Johnson DR. Metabolic interactions control the transfer and spread of plasmid-encoded antibiotic resistance during surface-associated microbial growth. Cell Rep 2024; 43:114653. [PMID: 39213158 DOI: 10.1016/j.celrep.2024.114653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/12/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Surface-associated microbial systems are hotspots for the spread of plasmid-encoded antibiotic resistance, but how surface association affects plasmid transfer and proliferation remains unclear. Surface association enables prolonged spatial proximities between different populations, which promotes plasmid transfer between them. However, surface association also fosters strong metabolic interactions between different populations, which can direct their spatial self-organization with consequences for plasmid transfer and proliferation. Here, we hypothesize that metabolic interactions direct the spatial self-organization of different populations and, in turn, regulate the spread of plasmid-encoded antibiotic resistance. We show that resource competition causes populations to spatially segregate, which represses plasmid transfer. In contrast, resource cross-feeding causes populations to spatially intermix, which promotes plasmid transfer. We further show that the spatial positionings that emerge from metabolic interactions determine the proliferation of plasmid recipients. Our results demonstrate that metabolic interactions are important regulators of both the transfer and proliferation of plasmid-encoded antibiotic resistance.
Collapse
Affiliation(s)
- Yinyin Ma
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH), 8092 Zürich, Switzerland.
| | - Anton Kan
- Department of Materials, Swiss Federal Institute of Technology (ETH), 8093 Zürich, Switzerland
| | - David R Johnson
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
2
|
Nuñez JG, Paulose J, Möbius W, Beller DA. Range expansions across landscapes with quenched noise. Proc Natl Acad Sci U S A 2024; 121:e2411487121. [PMID: 39136984 PMCID: PMC11348022 DOI: 10.1073/pnas.2411487121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/01/2024] [Indexed: 08/15/2024] Open
Abstract
When biological populations expand into new territory, the evolutionary outcomes can be strongly influenced by genetic drift, the random fluctuations in allele frequencies. Meanwhile, spatial variability in the environment can also significantly influence the competition between subpopulations vying for space. Little is known about the interplay of these intrinsic and extrinsic sources of noise in population dynamics: When does environmental heterogeneity dominate over genetic drift or vice versa, and what distinguishes their population genetics signatures? Here, in the context of neutral evolution, we examine the interplay between a population's intrinsic, demographic noise and an extrinsic, quenched random noise provided by a heterogeneous environment. Using a multispecies Eden model, we simulate a population expanding over a landscape with random variations in local growth rates and measure how this variability affects genealogical tree structure, and thus genetic diversity. We find that, for strong heterogeneity, the genetic makeup of the expansion front is to a great extent predetermined by the set of fastest paths through the environment. The landscape-dependent statistics of these optimal paths then supersede those of the population's intrinsic noise as the main determinant of evolutionary dynamics. Remarkably, the statistics for coalescence of genealogical lineages, derived from those deterministic paths, strongly resemble the statistics emerging from demographic noise alone in uniform landscapes. This cautions interpretations of coalescence statistics and raises new challenges for inferring past population dynamics.
Collapse
Affiliation(s)
- Jimmy Gonzalez Nuñez
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD21218
| | - Jayson Paulose
- Department of Physics, Institute for Fundamental Science, University of Oregon, Eugene, OR97403
| | - Wolfram Möbius
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, ExeterEX4 4QH, United Kingdom
- Physics and Astronomy, Faculty of Environment, Science and Economy, University of Exeter, ExeterEX4 4QL, United Kingdom
| | - Daniel A. Beller
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD21218
| |
Collapse
|
3
|
Gallardo-Navarro O, Aguilar-Salinas B, Rocha J, Olmedo-Álvarez G. Higher-order interactions and emergent properties of microbial communities: The power of synthetic ecology. Heliyon 2024; 10:e33896. [PMID: 39130413 PMCID: PMC11315108 DOI: 10.1016/j.heliyon.2024.e33896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 06/28/2024] [Indexed: 08/13/2024] Open
Abstract
Humans have long relied on microbial communities to create products, produce energy, and treat waste. The microbiota residing within our bodies directly impacts our health, while the soil and rhizosphere microbiomes influence the productivity of our crops. However, the complexity and diversity of microbial communities make them challenging to study and difficult to develop into applications, as they often exhibit the emergence of unpredictable higher-order phenomena. Synthetic ecology aims at simplifying complexity by constituting synthetic or semi-natural microbial communities with reduced diversity that become easier to study and analyze. This strategy combines methodologies that simplify existing complex systems (top-down approach) or build the system from its constituent components (bottom-up approach). Simplified communities are studied to understand how interactions among populations shape the behavior of the community and to model and predict their response to external stimuli. By harnessing the potential of synthetic microbial communities through a multidisciplinary approach, we can advance knowledge of ecological concepts and address critical public health, agricultural, and environmental issues more effectively.
Collapse
Affiliation(s)
- Oscar Gallardo-Navarro
- Centro de Investigación y de Estudios Avanzado del Instituto Politécnico Nacional, Unidad Irapuato, Mexico
| | - Bernardo Aguilar-Salinas
- Centro de Investigación y de Estudios Avanzado del Instituto Politécnico Nacional, Unidad Irapuato, Mexico
| | - Jorge Rocha
- Centro de Investigaciones Biológicas del Noroeste, S. C., La Paz, Mexico
| | - Gabriela Olmedo-Álvarez
- Centro de Investigación y de Estudios Avanzado del Instituto Politécnico Nacional, Unidad Irapuato, Mexico
| |
Collapse
|
4
|
Postek W, Staśkiewicz K, Lilja E, Wacław B. Substrate geometry affects population dynamics in a bacterial biofilm. Proc Natl Acad Sci U S A 2024; 121:e2315361121. [PMID: 38621130 PMCID: PMC11047097 DOI: 10.1073/pnas.2315361121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/11/2024] [Indexed: 04/17/2024] Open
Abstract
Biofilms inhabit a range of environments, such as dental plaques or soil micropores, often characterized by noneven surfaces. However, the impact of surface irregularities on the population dynamics of biofilms remains elusive, as most experiments are conducted on flat surfaces. Here, we show that the shape of the surface on which a biofilm grows influences genetic drift and selection within the biofilm. We culture Escherichia coli biofilms in microwells with a corrugated bottom surface and observe the emergence of clonal sectors whose size corresponds to that of the corrugations, despite no physical barrier separating different areas of the biofilm. The sectors are remarkably stable and do not invade each other; we attribute this stability to the characteristics of the velocity field within the biofilm, which hinders mixing and clonal expansion. A microscopically detailed computer model fully reproduces these findings and highlights the role of mechanical interactions such as adhesion and friction in microbial evolution. The model also predicts clonal expansion to be limited even for clones with a significant growth advantage-a finding which we confirm experimentally using a mixture of antibiotic-sensitive and antibiotic-resistant mutants in the presence of sublethal concentrations of the antibiotic rifampicin. The strong suppression of selection contrasts sharply with the behavior seen in range expansion experiments in bacterial colonies grown on agar. Our results show that biofilm population dynamics can be affected by patterning the surface and demonstrate how a better understanding of the physics of bacterial growth can be used to control microbial evolution.
Collapse
Affiliation(s)
- Witold Postek
- Dioscuri Centre for Physics and Chemistry of Bacteria, Institute of Physical Chemistry, Polish Academy of Sciences, Warszawa01-224, Poland
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - Klaudia Staśkiewicz
- Dioscuri Centre for Physics and Chemistry of Bacteria, Institute of Physical Chemistry, Polish Academy of Sciences, Warszawa01-224, Poland
| | - Elin Lilja
- Dioscuri Centre for Physics and Chemistry of Bacteria, Institute of Physical Chemistry, Polish Academy of Sciences, Warszawa01-224, Poland
| | - Bartłomiej Wacław
- Dioscuri Centre for Physics and Chemistry of Bacteria, Institute of Physical Chemistry, Polish Academy of Sciences, Warszawa01-224, Poland
- School of Physics and Astronomy, The University of Edinburgh, EdinburghEH9 3FD, United Kingdom
| |
Collapse
|
5
|
Tunstall T, Rogers T, Möbius W. Assisted percolation of slow-spreading mutants in heterogeneous environments. Phys Rev E 2023; 108:044401. [PMID: 37978675 DOI: 10.1103/physreve.108.044401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/11/2023] [Indexed: 11/19/2023]
Abstract
Environmental heterogeneity can drive genetic heterogeneity in expanding populations; mutant strains may emerge that trade overall growth rate for an improved ability to survive in patches that are hostile to the wild type. This evolutionary dynamic is of practical importance when seeking to prevent the emergence of damaging traits. We show that a subcritical slow-spreading mutant can attain dominance even when the density of patches is below their percolation threshold and predict this transition using geometrical arguments. This work demonstrates a phenomenon of "assisted percolation", where one subcritical process assists another to achieve supercriticality.
Collapse
Affiliation(s)
- Thomas Tunstall
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4QD, United Kingdom
- Physics and Astronomy, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4QL, United Kingdom
| | - Tim Rogers
- Center for Networks and Collective Behaviour, Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Wolfram Möbius
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4QD, United Kingdom
- Physics and Astronomy, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4QL, United Kingdom
| |
Collapse
|
6
|
Young E, Melaugh G, Allen RJ. Active layer dynamics drives a transition to biofilm fingering. NPJ Biofilms Microbiomes 2023; 9:17. [PMID: 37024470 PMCID: PMC10079924 DOI: 10.1038/s41522-023-00380-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
The emergence of spatial organisation in biofilm growth is one of the most fundamental topics in biofilm biophysics and microbiology. It has long been known that growing biofilms can adopt smooth or rough interface morphologies, depending on the balance between nutrient supply and microbial growth; this 'fingering' transition has been linked with the average width of the 'active layer' of growing cells at the biofilm interface. Here we use long-time individual-based simulations of growing biofilms to investigate in detail the driving factors behind the biofilm-fingering transition. We show that the transition is associated with dynamical changes in the active layer. Fingering happens when gaps form in the active layer, which can cause local parts of the biofilm interface to pin, or become stationary relative to the moving front. Pinning can be transient or permanent, leading to different biofilm morphologies. By constructing a phase diagram for the transition, we show that the controlling factor is the magnitude of the relative fluctuations in the active layer thickness, rather than the active layer thickness per se. Taken together, our work suggests a central role for active layer dynamics in controlling the pinning of the biofilm interface and hence biofilm morphology.
Collapse
Affiliation(s)
- Ellen Young
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
| | - Gavin Melaugh
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
| | - Rosalind J Allen
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom.
- Theoretical Microbial Ecology, Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Buchaer Strasse 6, 07745, Jena, Germany.
| |
Collapse
|
7
|
Bravo P, Lung Ng S, MacGillivray KA, Hammer BK, Yunker PJ. Vertical growth dynamics of biofilms. Proc Natl Acad Sci U S A 2023; 120:e2214211120. [PMID: 36881625 PMCID: PMC10089195 DOI: 10.1073/pnas.2214211120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/02/2023] [Indexed: 03/08/2023] Open
Abstract
During the biofilm life cycle, bacteria attach to a surface and then reproduce, forming crowded, growing communities. Many theoretical models of biofilm growth dynamics have been proposed; however, difficulties in accurately measuring biofilm height across relevant time and length scales have prevented testing these models, or their biophysical underpinnings, empirically. Using white light interferometry, we measure the heights of microbial colonies with nanometer precision from inoculation to their final equilibrium height, producing a detailed empirical characterization of vertical growth dynamics. We propose a heuristic model for vertical growth dynamics based on basic biophysical processes inside a biofilm: diffusion and consumption of nutrients and growth and decay of the colony. This model captures the vertical growth dynamics from short to long time scales (10 min to 14 d) of diverse microorganisms, including bacteria and fungi.
Collapse
Affiliation(s)
- Pablo Bravo
- School of Physics, Georgia Institute of Technology, Atlanta, GA30332
- Interdisciplinary Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA30332
| | - Siu Lung Ng
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA30332
| | - Kathryn A. MacGillivray
- Interdisciplinary Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA30332
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA30332
| | - Brian K. Hammer
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA30332
| | - Peter J. Yunker
- School of Physics, Georgia Institute of Technology, Atlanta, GA30332
| |
Collapse
|
8
|
Kato T, Jenkins RP, Derzsi S, Tozluoglu M, Rullan A, Hooper S, Chaleil RAG, Joyce H, Fu X, Thavaraj S, Bates PA, Sahai E. Interplay of adherens junctions and matrix proteolysis determines the invasive pattern and growth of squamous cell carcinoma. eLife 2023; 12:e76520. [PMID: 36892272 PMCID: PMC9998089 DOI: 10.7554/elife.76520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2023] [Indexed: 03/08/2023] Open
Abstract
Cancers, such as squamous cell carcinoma, frequently invade as multicellular units. However, these invading units can be organised in a variety of ways, ranging from thin discontinuous strands to thick 'pushing' collectives. Here we employ an integrated experimental and computational approach to identify the factors that determine the mode of collective cancer cell invasion. We find that matrix proteolysis is linked to the formation of wide strands but has little effect on the maximum extent of invasion. Cell-cell junctions also favour wide strands, but our analysis also reveals a requirement for cell-cell junctions for efficient invasion in response to uniform directional cues. Unexpectedly, the ability to generate wide invasive strands is coupled to the ability to grow effectively when surrounded by extracellular matrix in three-dimensional assays. Combinatorial perturbation of both matrix proteolysis and cell-cell adhesion demonstrates that the most aggressive cancer behaviour, both in terms of invasion and growth, is achieved at high levels of cell-cell adhesion and high levels of proteolysis. Contrary to expectation, cells with canonical mesenchymal traits - no cell-cell junctions and high proteolysis - exhibit reduced growth and lymph node metastasis. Thus, we conclude that the ability of squamous cell carcinoma cells to invade effectively is also linked to their ability to generate space for proliferation in confined contexts. These data provide an explanation for the apparent advantage of retaining cell-cell junctions in squamous cell carcinomas.
Collapse
Affiliation(s)
- Takuya Kato
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Department of Pathology, Kitasato UniversitySagamiharaJapan
| | - Robert P Jenkins
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Stefanie Derzsi
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Hoffman La-RocheBaselSwitzerland
| | - Melda Tozluoglu
- Biomolecular Modelling Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Antonio Rullan
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Institute of Cancer ResearchLondonUnited Kingdom
| | - Steven Hooper
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Raphaël AG Chaleil
- Biomolecular Modelling Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Holly Joyce
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Xiao Fu
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Biomolecular Modelling Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Selvam Thavaraj
- Centre for Oral, Clinical and Translational Sciences, King's College LondonLondonUnited Kingdom
| | - Paul A Bates
- Biomolecular Modelling Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Erik Sahai
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| |
Collapse
|
9
|
de Lorenzo V. Innovation versus novelty in microbial systems. Environ Microbiol 2023; 25:167-170. [PMID: 36335556 PMCID: PMC10098617 DOI: 10.1111/1462-2920.16278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Víctor de Lorenzo
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
10
|
Eigentler L, Davidson FA, Stanley-Wall NR. Mechanisms driving spatial distribution of residents in colony biofilms: an interdisciplinary perspective. Open Biol 2022; 12:220194. [PMID: 36514980 PMCID: PMC9748781 DOI: 10.1098/rsob.220194] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Biofilms are consortia of microorganisms that form collectives through the excretion of extracellular matrix compounds. The importance of biofilms in biological, industrial and medical settings has long been recognized due to their emergent properties and impact on surrounding environments. In laboratory situations, one commonly used approach to study biofilm formation mechanisms is the colony biofilm assay, in which cell communities grow on solid-gas interfaces on agar plates after the deposition of a population of founder cells. The residents of a colony biofilm can self-organize to form intricate spatial distributions. The assay is ideally suited to coupling with mathematical modelling due to the ability to extract a wide range of metrics. In this review, we highlight how interdisciplinary approaches have provided deep insights into mechanisms causing the emergence of these spatial distributions from well-mixed inocula.
Collapse
Affiliation(s)
- Lukas Eigentler
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK,Mathematics, School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| | - Fordyce A. Davidson
- Mathematics, School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| | - Nicola R. Stanley-Wall
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
11
|
Golden A, Dukovski I, Segrè D, Korolev KS. Growth instabilities shape morphology and genetic diversity of microbial colonies. Phys Biol 2022; 19:10.1088/1478-3975/ac8514. [PMID: 35901792 PMCID: PMC11209841 DOI: 10.1088/1478-3975/ac8514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/28/2022] [Indexed: 11/11/2022]
Abstract
Cellular populations assume an incredible variety of shapes ranging from circular molds to irregular tumors. While we understand many of the mechanisms responsible for these spatial patterns, little is known about how the shape of a population influences its ecology and evolution. Here, we investigate this relationship in the context of microbial colonies grown on hard agar plates. This a well-studied system that exhibits a transition from smooth circular disks to more irregular and rugged shapes as either the nutrient concentration or cellular motility is decreased. Starting from a mechanistic model of colony growth, we identify two dimensionless quantities that determine how morphology and genetic diversity of the population depend on the model parameters. Our simulations further reveal that population dynamics cannot be accurately described by the commonly-used surface growth models. Instead, one has to explicitly account for the emergent growth instabilities and demographic fluctuations. Overall, our work links together environmental conditions, colony morphology, and evolution. This link is essential for a rational design of concrete, biophysical perturbations to steer evolution in the desired direction.
Collapse
Affiliation(s)
- Alexander Golden
- Department of Physics, Graduate Program in Bioinformatics, and Biological Design Center, Boston University, Boston, MA 02215, United States of America
| | - Ilija Dukovski
- Graduate Program in Bioinformatics, and Biological Design Center, Boston University, Boston, MA 02215, United States of America
| | - Daniel Segrè
- Department of Physics, Department of Biology, Department of Biomedical Engineering, Graduate Program in Bioinformatics, and Biological Design Center, Boston University, Boston, MA 02215, United States of America
| | - Kirill S Korolev
- Department of Physics, Graduate Program in Bioinformatics, and Biological Design Center, Boston University, Boston, MA 02215, United States of America
| |
Collapse
|
12
|
Laws of Spatially Structured Population Dynamics on a Lattice. PHYSICS 2022. [DOI: 10.3390/physics4030052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We consider spatial population dynamics on a lattice, following a type of a contact (birth–death) stochastic process. We show that simple mathematical approximations for the density of cells can be obtained in a variety of scenarios. In the case of a homogeneous cell population, we derive the cellular density for a two-dimensional (2D) spatial lattice with an arbitrary number of neighbors, including the von Neumann, Moore, and hexagonal lattice.are not allowed in the abstract, please move them to the main text, please remember to check the order of references in the full text after revision. We then turn our attention to evolutionary dynamics, where mutant cells of different properties can be generated. For disadvantageous mutants, we derive an approximation for the equilibrium density representing the selection–mutation balance. For neutral and advantageous mutants, we show that simple scaling (power) laws for the numbers of mutants in expanding populations hold in 2D and 3D, under both flat (planar) and range population expansion. These models have relevance for studies in ecology and evolutionary biology, as well as biomedical applications including the dynamics of drug-resistant mutants in cancer and bacterial biofilms.
Collapse
|
13
|
Eigentler L, Stanley‐Wall NR, Davidson FA. A theoretical framework for multi‐species range expansion in spatially heterogeneous landscapes. OIKOS 2022. [DOI: 10.1111/oik.09077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lukas Eigentler
- Division of Molecular Microbiology, School of Life Sciences, Univ. of Dundee Dundee UK
- Mathematics, School of Science and Engineering, Univ. of Dundee Dundee UK
| | | | | |
Collapse
|
14
|
Eghdami A, Paulose J, Fusco D. Branching structure of genealogies in spatially growing populations and its implications for population genetics inference. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:294008. [PMID: 35510713 DOI: 10.1088/1361-648x/ac6cd9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
Spatial models where growth is limited to the population edge have been instrumental to understanding the population dynamics and the clone size distribution in growing cellular populations, such as microbial colonies and avascular tumours. A complete characterization of the coalescence process generated by spatial growth is still lacking, limiting our ability to apply classic population genetics inference to spatially growing populations. Here, we start filling this gap by investigating the statistical properties of the cell lineages generated by the two dimensional Eden model, leveraging their physical analogy with directed polymers. Our analysis provides quantitative estimates for population measurements that can easily be assessed via sequencing, such as the average number of segregating sites and the clone size distribution of a subsample of the population. Our results not only reveal remarkable features of the genealogies generated during growth, but also highlight new properties that can be misinterpreted as signs of selection if non-spatial models are inappropriately applied.
Collapse
Affiliation(s)
- Armin Eghdami
- Department of Physics, University of Cambridge, Cambridge, CB3 0HE, United Kingdom
| | - Jayson Paulose
- Department of Physics and Institute for Fundamental Science, University of Oregon, Eugene, OR 97401, United States of America
| | - Diana Fusco
- Department of Physics, University of Cambridge, Cambridge, CB3 0HE, United Kingdom
| |
Collapse
|
15
|
Rare and localized events stabilize microbial community composition and patterns of spatial self-organization in a fluctuating environment. THE ISME JOURNAL 2022; 16:1453-1463. [PMID: 35079136 PMCID: PMC9038690 DOI: 10.1038/s41396-022-01189-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 12/19/2021] [Accepted: 01/06/2022] [Indexed: 01/07/2023]
Abstract
Spatial self-organization is a hallmark of surface-associated microbial communities that is governed by local environmental conditions and further modified by interspecific interactions. Here, we hypothesize that spatial patterns of microbial cell-types can stabilize the composition of cross-feeding microbial communities under fluctuating environmental conditions. We tested this hypothesis by studying the growth and spatial self-organization of microbial co-cultures consisting of two metabolically interacting strains of the bacterium Pseudomonas stutzeri. We inoculated the co-cultures onto agar surfaces and allowed them to expand (i.e. range expansion) while fluctuating environmental conditions that alter the dependency between the two strains. We alternated between anoxic conditions that induce a mutualistic interaction and oxic conditions that induce a competitive interaction. We observed co-occurrence of both strains in rare and highly localized clusters (referred to as “spatial jackpot events”) that persist during environmental fluctuations. To resolve the underlying mechanisms for the emergence of spatial jackpot events, we used a mechanistic agent-based mathematical model that resolves growth and dispersal at the scale relevant to individual cells. While co-culture composition varied with the strength of the mutualistic interaction and across environmental fluctuations, the model provides insights into the formation of spatially resolved substrate landscapes with localized niches that support the co-occurrence of the two strains and secure co-culture function. This study highlights that in addition to spatial patterns that emerge in response to environmental fluctuations, localized spatial jackpot events ensure persistence of strains across dynamic conditions.
Collapse
|
16
|
Möbius W, Tesser F, Alards KMJ, Benzi R, Nelson DR, Toschi F. The collective effect of finite-sized inhomogeneities on the spatial spread of populations in two dimensions. J R Soc Interface 2021; 18:20210579. [PMID: 34665975 PMCID: PMC8526172 DOI: 10.1098/rsif.2021.0579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The dynamics of a population expanding into unoccupied habitat has been primarily studied for situations in which growth and dispersal parameters are uniform in space or vary in one dimension. Here, we study the influence of finite-sized individual inhomogeneities and their collective effect on front speed if randomly placed in a two-dimensional habitat. We use an individual-based model to investigate the front dynamics for a region in which dispersal or growth of individuals is reduced to zero (obstacles) or increased above the background (hotspots), respectively. In a regime where front dynamics is determined by a local front speed only, a principle of least time can be employed to predict front speed and shape. The resulting analytical solutions motivate an event-based algorithm illustrating the effects of several obstacles or hotspots. We finally apply the principle of least time to large heterogeneous environments by solving the Eikonal equation numerically. Obstacles lead to a slow-down that is dominated by the number density and width of obstacles, but not by their precise shape. Hotspots result in a speed-up, which we characterize as function of hotspot strength and density. Our findings emphasize the importance of taking the dimensionality of the environment into account.
Collapse
Affiliation(s)
- Wolfram Möbius
- Living Systems Institute, University of Exeter, Exeter, UK.,Physics and Astronomy, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK.,Department of Applied Physics, Technische Universiteit Eindhoven, Eindhoven, The Netherlands.,Department of Physics, Harvard University, Cambridge, MA, USA
| | - Francesca Tesser
- Department of Applied Physics, Technische Universiteit Eindhoven, Eindhoven, The Netherlands.,PMMH, ESPCI Paris-PSL, Paris, France
| | - Kim M J Alards
- Department of Applied Physics, Technische Universiteit Eindhoven, Eindhoven, The Netherlands
| | - Roberto Benzi
- Universitá di Roma 'Tor Vergata' and INFN, Rome, Italy
| | - David R Nelson
- Department of Physics, Harvard University, Cambridge, MA, USA.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Federico Toschi
- Department of Applied Physics, Technische Universiteit Eindhoven, Eindhoven, The Netherlands.,Istituto per le Applicazioni del Calcolo, Consiglio Nazionale delle Ricerche, Rome, Italy
| |
Collapse
|
17
|
Causes and consequences of pattern diversification in a spatially self-organizing microbial community. THE ISME JOURNAL 2021; 15:2415-2426. [PMID: 33664433 PMCID: PMC8319339 DOI: 10.1038/s41396-021-00942-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/06/2021] [Accepted: 02/15/2021] [Indexed: 01/31/2023]
Abstract
Surface-attached microbial communities constitute a vast amount of life on our planet. They contribute to all major biogeochemical cycles, provide essential services to our society and environment, and have important effects on human health and disease. They typically consist of different interacting genotypes that arrange themselves non-randomly across space (referred to hereafter as spatial self-organization). While spatial self-organization is important for the functioning, ecology, and evolution of these communities, the underlying determinants of spatial self-organization remain unclear. Here, we performed a combination of experiments, statistical modeling, and mathematical simulations with a synthetic cross-feeding microbial community consisting of two isogenic strains. We found that two different patterns of spatial self-organization emerged at the same length and time scales, thus demonstrating pattern diversification. This pattern diversification was not caused by initial environmental heterogeneity or by genetic heterogeneity within populations. Instead, it was caused by nongenetic heterogeneity within populations, and we provide evidence that the source of this nongenetic heterogeneity is local differences in the initial spatial positionings of individuals. We further demonstrate that the different patterns exhibit different community-level properties; namely, they have different expansion speeds. Together, our results demonstrate that pattern diversification can emerge in the absence of initial environmental heterogeneity or genetic heterogeneity within populations and can affect community-level properties, thus providing novel insights into the causes and consequences of microbial spatial self-organization.
Collapse
|
18
|
Azimzade Y, Saberi AA. Geometrically regulating evolutionary dynamics in biofilms. Phys Rev E 2021; 103:L050401. [PMID: 34134254 DOI: 10.1103/physreve.103.l050401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/21/2021] [Indexed: 11/07/2022]
Abstract
The theoretical understanding of evolutionary dynamics in spatially structured populations often relies on nonspatial models. Biofilms are among such populations where a more accurate understanding is of theoretical interest and can reveal new solutions to existing challenges. Here, we studied how the geometry of the environment affects the evolutionary dynamics of expanding populations, using the Eden model. Our results show that fluctuations of subpopulations during range expansion in two- and three-dimensional environments are not Brownian. Furthermore, we found that the substrate's geometry interferes with the evolutionary dynamics of populations that grow upon it. Inspired by these findings, we propose a periodically wedged pattern on surfaces prone to develop biofilms. On such patterned surfaces, natural selection becomes less effective and beneficial mutants would have a harder time establishing. Additionally, this modification accelerates genetic drift and leads to less diverse biofilms. Both interventions are highly desired for biofilms.
Collapse
Affiliation(s)
- Youness Azimzade
- Department of Physics, University of Tehran, Tehran 14395-547, Iran
| | - Abbas Ali Saberi
- Department of Physics, University of Tehran, Tehran 14395-547, Iran.,Institut für Theoretische Physik, Universitat zu Köln, Zülpicher Strasse 77, 50937 Köln, Germany
| |
Collapse
|
19
|
Wang X, Bai D. Self‐Organization Principles of Cell Cycles and Gene Expressions in the Development of Cell Populations. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202100005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoliang Wang
- College of Life Sciences Zhejiang University Hangzhou 310058 China
- School of Physical Sciences University of Science and Technology of China Hefei 230026 China
| | - Dongyun Bai
- School of Physics and Astronomy Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
20
|
Mutability of demographic noise in microbial range expansions. ISME JOURNAL 2021; 15:2643-2654. [PMID: 33746203 PMCID: PMC8397776 DOI: 10.1038/s41396-021-00951-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/24/2021] [Indexed: 11/13/2022]
Abstract
Demographic noise, the change in the composition of a population due to random birth and death events, is an important driving force in evolution because it reduces the efficacy of natural selection. Demographic noise is typically thought to be set by the population size and the environment, but recent experiments with microbial range expansions have revealed substantial strain-level differences in demographic noise under the same growth conditions. Many genetic and phenotypic differences exist between strains; to what extent do single mutations change the strength of demographic noise? To investigate this question, we developed a high-throughput method for measuring demographic noise in colonies without the need for genetic manipulation. By applying this method to 191 randomly-selected single gene deletion strains from the E. coli Keio collection, we find that a typical single gene deletion mutation decreases demographic noise by 8% (maximal decrease: 81%). We find that the strength of demographic noise is an emergent trait at the population level that can be predicted by colony-level traits but not cell-level traits. The observed differences in demographic noise from single gene deletions can increase the establishment probability of beneficial mutations by almost an order of magnitude (compared to in the wild type). Our results show that single mutations can substantially alter adaptation through their effects on demographic noise and suggest that demographic noise can be an evolvable trait of a population.
Collapse
|
21
|
Ursell T. Structured environments foster competitor coexistence by manipulating interspecies interfaces. PLoS Comput Biol 2021; 17:e1007762. [PMID: 33412560 PMCID: PMC7790539 DOI: 10.1371/journal.pcbi.1007762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 10/19/2020] [Indexed: 01/12/2023] Open
Abstract
Natural environments, like soils or the mammalian gut, frequently contain microbial consortia competing within a niche, wherein many species contain genetically encoded mechanisms of interspecies competition. Recent computational work suggests that physical structures in the environment can stabilize local competition between species that would otherwise be subject to competitive exclusion under isotropic conditions. Here we employ Lotka-Volterra models to show that interfacial competition localizes to physical structures, stabilizing competitive ecological networks of many species, even with significant differences in the strength of competitive interactions between species. Within a limited range of parameter space, we show that for stable communities the length-scale of physical structure inversely correlates with the width of the distribution of competitive fitness, such that physical environments with finer structure can sustain a broader spectrum of interspecific competition. These results highlight the potentially stabilizing effects of physical structure on microbial communities and lay groundwork for engineering structures that stabilize and/or select for diverse communities of ecological, medical, or industrial utility.
Collapse
Affiliation(s)
- Tristan Ursell
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
- Materials Science Institute, University of Oregon, Eugene, Oregon, United States of America
- Department of Physics, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
22
|
Borer B, Ciccarese D, Johnson D, Or D. Spatial organization in microbial range expansion emerges from trophic dependencies and successful lineages. Commun Biol 2020; 3:685. [PMID: 33208809 PMCID: PMC7674409 DOI: 10.1038/s42003-020-01409-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022] Open
Abstract
Evidence suggests that bacterial community spatial organization affects their ecological function, yet details of the mechanisms that promote spatial patterns remain difficult to resolve experimentally. In contrast to bacterial communities in liquid cultures, surface-attached range expansion fosters genetic segregation of the growing population with preferential access to nutrients and reduced mechanical restrictions for cells at the expanding periphery. Here we elucidate how localized conditions in cross-feeding bacterial communities shape community spatial organization. We combine experiments with an individual based mathematical model to resolve how trophic dependencies affect localized growth rates and nucleate successful cell lineages. The model tracks individual cell lineages and attributes these with trophic dependencies that promote counterintuitive reproductive advantages and result in lasting influences on the community structure, and potentially, on its functioning. We examine persistence of lucky lineages in structured habitats where expansion is interrupted by physical obstacles to gain insights into patterns in porous domains.
Collapse
Affiliation(s)
- Benedict Borer
- Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland.
| | - Davide Ciccarese
- Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Dübendorf, Switzerland
| | - David Johnson
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Dübendorf, Switzerland
| | - Dani Or
- Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland
| |
Collapse
|
23
|
Azimzade Y, Sasar M, Maleki I. Invasion front dynamics in disordered environments. Sci Rep 2020; 10:18231. [PMID: 33106618 PMCID: PMC7588433 DOI: 10.1038/s41598-020-75366-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 10/15/2020] [Indexed: 12/25/2022] Open
Abstract
Invasion occurs in environments that are normally spatially disordered, however, the effect of such a randomness on the dynamics of the invasion front has remained less understood. Here, we study Fisher's equation in disordered environments both analytically and numerically. Using the Effective Medium Approximation, we show that disorder slows down invasion velocity and for ensemble average of invasion velocity in disordered environment we have [Formula: see text] where [Formula: see text] is the amplitude of disorder and [Formula: see text] is the invasion velocity in the corresponding homogeneous environment given by [Formula: see text]. Additionally, disorder imposes fluctuations on the invasion front. Using a perturbative approach, we show that these fluctuations are Brownian with a diffusion constant of: [Formula: see text]. These findings were approved by numerical analysis. Alongside this continuum model, we use the Stepping Stone Model to check how our findings change when we move from the continuum approach to a discrete approach. Our analysis suggests that individual-based models exhibit inherent fluctuations and the effect of environmental disorder becomes apparent for large disorder intensity and/or high carrying capacities.
Collapse
Affiliation(s)
- Youness Azimzade
- Department of Physics, University of Tehran, 14395-547, Tehran, Iran.
| | - Mahdi Sasar
- Department of Physics, University of Tehran, 14395-547, Tehran, Iran
| | - Iraj Maleki
- Department of Physics, University of Tehran, 14395-547, Tehran, Iran
| |
Collapse
|
24
|
Bär J, Boumasmoud M, Kouyos RD, Zinkernagel AS, Vulin C. Efficient microbial colony growth dynamics quantification with ColTapp, an automated image analysis application. Sci Rep 2020; 10:16084. [PMID: 32999342 PMCID: PMC7528005 DOI: 10.1038/s41598-020-72979-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Populations of genetically identical bacteria are phenotypically heterogeneous, giving rise to population functionalities that would not be possible in homogeneous populations. For instance, a proportion of non-dividing bacteria could persist through antibiotic challenges and secure population survival. This heterogeneity can be studied in complex environmental or clinical samples by spreading the bacteria on agar plates and monitoring time to growth resumption in order to infer their metabolic state distribution. We present ColTapp, the Colony Time-lapse application for bacterial colony growth quantification. Its intuitive graphical user interface allows users to analyze time-lapse images of agar plates to monitor size, color and morphology of colonies. Additionally, images at isolated timepoints can be used to estimate lag time. Using ColTapp, we analyze a dataset of Staphylococcus aureus time-lapse images including populations with heterogeneous lag time. Colonies on dense plates reach saturation early, leading to overestimation of lag time from isolated images. We show that this bias can be corrected by taking into account the area available to each colony on the plate. We envision that in clinical settings, improved analysis of colony growth dynamics may help treatment decisions oriented towards personalized antibiotic therapies.
Collapse
Affiliation(s)
- Julian Bär
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mathilde Boumasmoud
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Roger D Kouyos
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Annelies S Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Clément Vulin
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland. .,Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092, Zurich, Switzerland. .,Department of Environmental Microbiology, 8600, Eawag, Dubendorf, Switzerland.
| |
Collapse
|
25
|
Miller TEX, Angert AL, Brown CD, Lee-Yaw JA, Lewis M, Lutscher F, Marculis NG, Melbourne BA, Shaw AK, Szűcs M, Tabares O, Usui T, Weiss-Lehman C, Williams JL. Eco-evolutionary dynamics of range expansion. Ecology 2020; 101:e03139. [PMID: 32697876 DOI: 10.1002/ecy.3139] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/05/2020] [Accepted: 06/08/2020] [Indexed: 01/31/2023]
Abstract
Understanding the movement of species' ranges is a classic ecological problem that takes on urgency in this era of global change. Historically treated as a purely ecological process, range expansion is now understood to involve eco-evolutionary feedbacks due to spatial genetic structure that emerges as populations spread. We synthesize empirical and theoretical work on the eco-evolutionary dynamics of range expansion, with emphasis on bridging directional, deterministic processes that favor evolved increases in dispersal and demographic traits with stochastic processes that lead to the random fixation of alleles and traits. We develop a framework for understanding the joint influence of these processes in changing the mean and variance of expansion speed and its underlying traits. Our synthesis of recent laboratory experiments supports the consistent role of evolution in accelerating expansion speed on average, and highlights unexpected diversity in how evolution can influence variability in speed: results not well predicted by current theory. We discuss and evaluate support for three classes of modifiers of eco-evolutionary range dynamics (landscape context, trait genetics, and biotic interactions), identify emerging themes, and suggest new directions for future work in a field that stands to increase in relevance as populations move in response to global change.
Collapse
Affiliation(s)
- Tom E X Miller
- Program in Ecology and Evolutionary Biology, Department of BioSciences, Rice University, Houston, Texas, 77005, USA
| | - Amy L Angert
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z2, Canada
| | - Carissa D Brown
- Department of Geography, Memorial University, 230 Elizabeth Avenue, St John's, Newfoundland and Labrador, A1B 3X9, Canada
| | - Julie A Lee-Yaw
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z2, Canada.,Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, T1K 3M4, Canada
| | - Mark Lewis
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, T6G 2G1, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2G1, Canada
| | - Frithjof Lutscher
- Department of Mathematics and Statistics, and Department of Biology, University of Ottawa, Ottawa, Ottawa, K1N 6N5, Canada
| | - Nathan G Marculis
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, T6G 2G1, Canada.,Department of Environmental Science and Policy, University of California-Davis, Davis, California, 95616, USA
| | - Brett A Melbourne
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309, USA
| | - Allison K Shaw
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Marianna Szűcs
- Department of Entomology, Michigan State University, 288 Farm Lane, East Lansing, Michigan, 48824, USA
| | - Olivia Tabares
- Department of Geography and Biodiversity Research Centre, University of British Columbia, 1984 West Mall, Vancouver, British Columbia, V6T 1Z2, Canada
| | - Takuji Usui
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z2, Canada
| | - Christopher Weiss-Lehman
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Jennifer L Williams
- Department of Geography and Biodiversity Research Centre, University of British Columbia, 1984 West Mall, Vancouver, British Columbia, V6T 1Z2, Canada
| |
Collapse
|
26
|
Wodarz D, Komarova NL. Mutant Evolution in Spatially Structured and Fragmented Expanding Populations. Genetics 2020; 216:191-203. [PMID: 32661138 PMCID: PMC7463292 DOI: 10.1534/genetics.120.303422] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/23/2020] [Indexed: 11/18/2022] Open
Abstract
Mutant evolution in spatially structured systems is important for a range of biological systems, but aspects of it still require further elucidation. Adding to previous work, we provide a simple derivation of growth laws that characterize the number of mutants of different relative fitness in expanding populations in spatial models of different dimensionalities. These laws are universal and independent of "microscopic" modeling details. We further study the accumulation of mutants and find that, with advantageous and neutral mutants, more of them are present in spatially structured, compared to well-mixed colonies of the same size. The behavior of disadvantageous mutants is subtle: if they are disadvantageous through a reduction in division rates, the result is the same, and it is the opposite if the disadvantage is due to a death rate increase. Finally, we show that in all cases, the same results are observed in fragmented, nonspatial patch models. This suggests that the patterns observed are the consequence of population fragmentation, and not spatial restrictions per se We provide an intuitive explanation for the complex dependence of disadvantageous mutant evolution on spatial restriction, which relies on desynchronized dynamics in different locations/patches, and plays out differently depending on whether the disadvantage is due to a lower division rate or a higher death rate. Implications for specific biological systems, such as the evolution of drug-resistant cell mutants in cancer or bacterial biofilms, are discussed.
Collapse
Affiliation(s)
- Dominik Wodarz
- Department of Population Health and Disease Prevention, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California Irvine, California 92697
- Department of Mathematics, University of California Irvine, California 92697
| | - Natalia L Komarova
- Department of Mathematics, University of California Irvine, California 92697
| |
Collapse
|
27
|
Ciccarese D, Zuidema A, Merlo V, Johnson DR. Interaction-dependent effects of surface structure on microbial spatial self-organization. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190246. [PMID: 32200742 DOI: 10.1098/rstb.2019.0246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Surface-attached microbial communities consist of different cell types that, at least to some degree, organize themselves non-randomly across space (referred to as spatial self-organization). While spatial self-organization can have important effects on the functioning, ecology and evolution of communities, the underlying determinants of spatial self-organization remain unclear. Here, we hypothesize that the presence of physical objects across a surface can have important effects on spatial self-organization. Using pairs of isogenic strains of Pseudomonas stutzeri, we performed range expansion experiments in the absence or presence of physical objects and quantified the effects on spatial self-organization. We demonstrate that physical objects create local deformities along the expansion frontier, and these deformities increase in magnitude during range expansion. The deformities affect the densities of interspecific boundaries and diversity along the expansion frontier, and thus affect spatial self-organization, but the effects are interaction-dependent. For competitive interactions that promote sectorized patterns of spatial self-organization, physical objects increase the density of interspecific boundaries and diversity. By contrast, for cross-feeding interactions that promote dendritic patterns, they decrease the density of interspecific boundaries and diversity. These qualitatively different outcomes are probably caused by fundamental differences in the orientations of the interspecific boundaries. Thus, in order to predict the effects of physical objects on spatial self-organization, information is needed regarding the interactions present within a community and the general geometric shapes of spatial self-organization that emerge from those interactions. This article is part of the theme issue 'Conceptual challenges in microbial community ecology'.
Collapse
Affiliation(s)
- Davide Ciccarese
- Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland.,Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
| | - Anita Zuidema
- Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland.,Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
| | - Valeria Merlo
- Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland.,Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
| | - David R Johnson
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
| |
Collapse
|
28
|
König S, Vogel HJ, Harms H, Worrich A. Physical, Chemical and Biological Effects on Soil Bacterial Dynamics in Microscale Models. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00053] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
29
|
Cremer J, Melbinger A, Wienand K, Henriquez T, Jung H, Frey E. Cooperation in Microbial Populations: Theory and Experimental Model Systems. J Mol Biol 2019; 431:4599-4644. [PMID: 31634468 DOI: 10.1016/j.jmb.2019.09.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 01/07/2023]
Abstract
Cooperative behavior, the costly provision of benefits to others, is common across all domains of life. This review article discusses cooperative behavior in the microbial world, mediated by the exchange of extracellular products called public goods. We focus on model species for which the production of a public good and the related growth disadvantage for the producing cells are well described. To unveil the biological and ecological factors promoting the emergence and stability of cooperative traits we take an interdisciplinary perspective and review insights gained from both mathematical models and well-controlled experimental model systems. Ecologically, we include crucial aspects of the microbial life cycle into our analysis and particularly consider population structures where ensembles of local communities (subpopulations) continuously emerge, grow, and disappear again. Biologically, we explicitly consider the synthesis and regulation of public good production. The discussion of the theoretical approaches includes general evolutionary concepts, population dynamics, and evolutionary game theory. As a specific but generic biological example, we consider populations of Pseudomonas putida and its regulation and use of pyoverdines, iron scavenging molecules, as public goods. The review closes with an overview on cooperation in spatially extended systems and also provides a critical assessment of the insights gained from the experimental and theoretical studies discussed. Current challenges and important new research opportunities are discussed, including the biochemical regulation of public goods, more realistic ecological scenarios resembling native environments, cell-to-cell signaling, and multispecies communities.
Collapse
Affiliation(s)
- J Cremer
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - A Melbinger
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for Nanoscience, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany
| | - K Wienand
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for Nanoscience, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany
| | - T Henriquez
- Microbiology, Department of Biology I, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2-4, Martinsried, Germany
| | - H Jung
- Microbiology, Department of Biology I, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2-4, Martinsried, Germany.
| | - E Frey
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for Nanoscience, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany.
| |
Collapse
|
30
|
Gralka M, Hallatschek O. Environmental heterogeneity can tip the population genetics of range expansions. eLife 2019; 8:e44359. [PMID: 30977724 PMCID: PMC6513619 DOI: 10.7554/elife.44359] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/11/2019] [Indexed: 12/12/2022] Open
Abstract
The population genetics of most range expansions is thought to be shaped by the competition between Darwinian selection and random genetic drift at the range margins. Here, we show that the evolutionary dynamics during range expansions is highly sensitive to additional fluctuations induced by environmental heterogeneities. Tracking mutant clones with a tunable fitness effect in bacterial colonies grown on randomly patterned surfaces we found that environmental heterogeneity can dramatically reduce the efficacy of selection. Time-lapse microscopy and computer simulations suggest that this effect arises generically from a local 'pinning' of the expansion front, whereby stretches of the front are slowed down on a length scale that depends on the structure of the environmental heterogeneity. This pinning focuses the range expansion into a small number of 'lucky' individuals with access to expansion paths, altering the neutral evolutionary dynamics and increasing the importance of chance relative to selection.
Collapse
Affiliation(s)
- Matti Gralka
- Department of PhysicsUniversity of California, BerkeleyBerkeleyUnited States
| | - Oskar Hallatschek
- Department of PhysicsUniversity of California, BerkeleyBerkeleyUnited States
- Department of Integrative BiologyUniversity of California, BerkeleyBerkeleyUnited States
| |
Collapse
|