1
|
Ahmed SMQ, Sasikumar J, Laha S, Das SP. Multifaceted role of the DNA replication protein MCM10 in maintaining genome stability and its implication in human diseases. Cancer Metastasis Rev 2024; 43:1353-1371. [PMID: 39240414 DOI: 10.1007/s10555-024-10209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
MCM10 plays a vital role in genome duplication and is crucial for DNA replication initiation, elongation, and termination. It coordinates several proteins to assemble at the fork, form a functional replisome, trigger origin unwinding, and stabilize the replication bubble. MCM10 overexpression is associated with increased aggressiveness in breast, cervical, and several other cancers. Disruption of MCM10 leads to altered replication timing associated with initiation site gains and losses accompanied by genome instability. Knockdown of MCM10 affects the proliferation and migration of cancer cells, manifested by DNA damage and replication fork arrest, and has recently been shown to be associated with clinical conditions like CNKD and RCM. Loss of MCM10 function is associated with impaired telomerase activity, leading to the accumulation of abnormal replication forks and compromised telomere length. MCM10 interacts with histones, aids in nucleosome assembly, binds BRCA2 to maintain genome integrity during DNA damage, prevents lesion skipping, and inhibits PRIMPOL-mediated repriming. It also interacts with the fork reversal enzyme SMARCAL1 and inhibits fork regression. Additionally, MCM10 undergoes several post-translational modifications and contributes to transcriptional silencing by interacting with the SIR proteins. This review explores the mechanism associated with MCM10's multifaceted role in DNA replication initiation, chromatin organization, transcriptional silencing, replication stress, fork stability, telomere length maintenance, and DNA damage response. Finally, we discuss the role of MCM10 in the early detection of cancer, its prognostic significance, and its potential use in therapeutics for cancer treatment.
Collapse
Affiliation(s)
- Sumayyah M Q Ahmed
- Cell Biology and Molecular Genetics (CBMG), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Jayaprakash Sasikumar
- Cell Biology and Molecular Genetics (CBMG), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Suparna Laha
- Cell Biology and Molecular Genetics (CBMG), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Shankar Prasad Das
- Cell Biology and Molecular Genetics (CBMG), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, 575018, India.
| |
Collapse
|
2
|
Wang X, Liu L, Chen M, Quan Y, Zhang J, Lou H, Xia Y, Chen H, Hou W. S-CDK-regulated bipartite interaction of Mcm10 with MCM is essential for DNA replication. Front Cell Dev Biol 2024; 12:1420033. [PMID: 39364137 PMCID: PMC11446879 DOI: 10.3389/fcell.2024.1420033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/27/2024] [Indexed: 10/05/2024] Open
Abstract
Mcm10 plays an essential role in the activation of replicative helicase CMG through the cell cycle-regulated interaction with the prototype MCM double hexamer in Saccharomyces cerevisiae. In this study, we reported that Mcm10 is phosphorylated by S-phase cyclin-dependent kinases (S-CDKs) at S66, which enhances Mcm10--MCM association during the S phase. S66A single mutation or even deletion of whole N-terminus (a.a. 1-128) only causes mild growth defects. Nevertheless, S66 becomes indispensable in the absence of the Mcm10 C-terminus ((a.a. 463-571), the major MCM-binding domain. Using a two-degron strategy to efficiently deplete Mcm10, we show that mcm10-S66AΔC has a severe defect in proceeding into the S phase. Notably, both lethality and S-phase deficiency can be rescued by artificially tethering mcm10-S66AΔC to MCM. These findings illustrate how the Mcm10-MCM association is regulated as a crucial event in DNA replication initiation.
Collapse
Affiliation(s)
- Xueting Wang
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Nation Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Lu Liu
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University General Hospital and Medical School, Shenzhen, China
| | - Mengke Chen
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University General Hospital and Medical School, Shenzhen, China
| | - Yun Quan
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University General Hospital and Medical School, Shenzhen, China
| | - Jiaxin Zhang
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University General Hospital and Medical School, Shenzhen, China
| | - Huiqiang Lou
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University General Hospital and Medical School, Shenzhen, China
| | - Yisui Xia
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University General Hospital and Medical School, Shenzhen, China
| | - Hongxiang Chen
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Nation Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Wenya Hou
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University General Hospital and Medical School, Shenzhen, China
| |
Collapse
|
3
|
You Z, Masai H. Assembly, Activation, and Helicase Actions of MCM2-7: Transition from Inactive MCM2-7 Double Hexamers to Active Replication Forks. BIOLOGY 2024; 13:629. [PMID: 39194567 DOI: 10.3390/biology13080629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
In this review, we summarize the processes of the assembly of multi-protein replisomes at the origins of replication. Replication licensing, the loading of inactive minichromosome maintenance double hexamers (dhMCM2-7) during the G1 phase, is followed by origin firing triggered by two serine-threonine kinases, Cdc7 (DDK) and CDK, leading to the assembly and activation of Cdc45/MCM2-7/GINS (CMG) helicases at the entry into the S phase and the formation of replisomes for bidirectional DNA synthesis. Biochemical and structural analyses of the recruitment of initiation or firing factors to the dhMCM2-7 for the formation of an active helicase and those of origin melting and DNA unwinding support the steric exclusion unwinding model of the CMG helicase.
Collapse
Affiliation(s)
- Zhiying You
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hisao Masai
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| |
Collapse
|
4
|
Oram MK, Baxley RM, Simon EM, Lin K, Chang YC, Wang L, Myers CL, Bielinsky AK. RNF4 prevents genomic instability caused by chronic DNA under-replication. DNA Repair (Amst) 2024; 135:103646. [PMID: 38340377 PMCID: PMC10948022 DOI: 10.1016/j.dnarep.2024.103646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Eukaryotic genome stability is maintained by a complex and diverse set of molecular processes. One class of enzymes that promotes proper DNA repair, replication and cell cycle progression comprises small ubiquitin-like modifier (SUMO)-targeted E3 ligases, or STUbLs. Previously, we reported a role for the budding yeast STUbL synthetically lethal with sgs1 (Slx) 5/8 in preventing G2/M-phase arrest in a minichromosome maintenance protein 10 (Mcm10)-deficient model of replication stress. Here, we extend these studies to human cells, examining the requirement for the human STUbL RING finger protein 4 (RNF4) in MCM10 mutant cancer cells. We find that MCM10 and RNF4 independently promote origin firing but regulate DNA synthesis epistatically and, unlike in yeast, the negative genetic interaction between RNF4 and MCM10 causes cells to accumulate in G1-phase. When MCM10 is deficient, RNF4 prevents excessive DNA under-replication at hard-to-replicate regions that results in large DNA copy number alterations and severely reduced viability. Overall, our findings highlight that STUbLs participate in species-specific mechanisms to maintain genome stability, and that human RNF4 is required for origin activation in the presence of chronic replication stress.
Collapse
Affiliation(s)
- Marissa K Oram
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ryan M Baxley
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Emily M Simon
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kevin Lin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Department of Computer Science & Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ya-Chu Chang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Liangjun Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chad L Myers
- Department of Computer Science & Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
5
|
Langston LD, Georgescu RE, O'Donnell ME. Mechanism of eukaryotic origin unwinding is a dual helicase DNA shearing process. Proc Natl Acad Sci U S A 2023; 120:e2316466120. [PMID: 38109526 PMCID: PMC10756200 DOI: 10.1073/pnas.2316466120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
DNA replication in all cells begins with the melting of base pairs at the duplex origin to allow access to single-stranded DNA templates which are replicated by DNA polymerases. In bacteria, origin DNA is presumed to be melted by accessory proteins that allow loading of two ring-shaped replicative helicases around single-strand DNA (ssDNA) for bidirectional unwinding and DNA replication. In eukaryotes, by contrast, two replicative CMG (Cdc45-Mcm2-7-GINS) helicases are initially loaded head to head around origin double-strand DNA (dsDNA), and there does not appear to be a separate origin unwinding factor. This led us to investigate whether head-to-head CMGs use their adenosine triphosphate (ATP)-driven motors to initiate duplex DNA unwinding at the origin. Here, we show that CMG tracks on one strand of the duplex while surrounding it, and this feature allows two head-to-head CMGs to unwind dsDNA by using their respective motors to pull on opposite strands of the duplex. We further show that while CMG is capable of limited duplex unwinding on its own, the extent of unwinding is greatly and rapidly stimulated by addition of the multifunctional CMG-binding protein Mcm10 that is critical for productive initiation of DNA replication in vivo. On the basis of these findings, we propose that Mcm10 is a processivity or positioning factor that helps translate the work performed by the dual CMG motors at the origin into productive unwinding that facilitates bidirectional DNA replication.
Collapse
Affiliation(s)
- Lance D. Langston
- The Rockefeller University, New York City, NY10065
- HHMI, New York City, NY10065
| | - Roxana E. Georgescu
- The Rockefeller University, New York City, NY10065
- HHMI, New York City, NY10065
| | | |
Collapse
|
6
|
Pike AM, Friend CM, Bell SP. Distinct RPA functions promote eukaryotic DNA replication initiation and elongation. Nucleic Acids Res 2023; 51:10506-10518. [PMID: 37739410 PMCID: PMC10602884 DOI: 10.1093/nar/gkad765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 08/14/2023] [Accepted: 09/10/2023] [Indexed: 09/24/2023] Open
Abstract
Replication protein A (RPA) binds single-stranded DNA (ssDNA) and serves critical functions in eukaryotic DNA replication, the DNA damage response, and DNA repair. During DNA replication, RPA is required for extended origin DNA unwinding and DNA synthesis. To determine the requirements for RPA during these processes, we tested ssDNA-binding proteins (SSBs) from different domains of life in reconstituted Saccharomyces cerevisiae origin unwinding and DNA replication reactions. Interestingly, Escherichia coli SSB, but not T4 bacteriophage Gp32, fully substitutes for RPA in promoting origin DNA unwinding. Using RPA mutants, we demonstrated that specific ssDNA-binding properties of RPA are required for origin unwinding but that its protein-interaction domains are dispensable. In contrast, we found that each of these auxiliary RPA domains have distinct functions at the eukaryotic replication fork. The Rfa1 OB-F domain negatively regulates lagging-strand synthesis, while the Rfa2 winged-helix domain stimulates nascent strand initiation. Together, our findings reveal a requirement for specific modes of ssDNA binding in the transition to extensive origin DNA unwinding and identify RPA domains that differentially impact replication fork function.
Collapse
Affiliation(s)
- Alexandra M Pike
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Department of Biology, Cambridge, MA 02139, USA
| | - Caitlin M Friend
- Massachusetts Institute of Technology, Department of Biology, Cambridge, MA 02139, USA
| | - Stephen P Bell
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Department of Biology, Cambridge, MA 02139, USA
| |
Collapse
|
7
|
Wan L, Toland S, Robinson-McCarthy LR, Lee N, Schaich MA, Hengel SR, Li X, Bernstein KA, Van Houten B, Chang Y, Moore PS. Unlicensed origin DNA melting by MCV and SV40 polyomavirus LT proteins is independent of ATP-dependent helicase activity. Proc Natl Acad Sci U S A 2023; 120:e2308010120. [PMID: 37459531 PMCID: PMC10372695 DOI: 10.1073/pnas.2308010120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/21/2023] [Indexed: 07/20/2023] Open
Abstract
Cellular eukaryotic replication initiation helicases are first loaded as head-to-head double hexamers on double-stranded (ds) DNA origins and then initiate S-phase DNA melting during licensed (once per cell cycle) replication. Merkel cell polyomavirus (MCV) large T (LT) helicase oncoprotein similarly binds and melts its own 98-bp origin but replicates multiple times in a single cell cycle. To examine the actions of this unlicensed viral helicase, we quantitated multimerization of MCV LT molecules as they assembled on MCV DNA origins using real-time single-molecule microscopy. MCV LT formed highly stable double hexamers having 17-fold longer mean lifetime (τ, >1,500 s) on DNA than single hexamers. Unexpectedly, partial MCV LT assembly without double-hexamer formation was sufficient to melt origin dsDNA as measured by RAD51, RPA70, or S1 nuclease cobinding. DNA melting also occurred with truncated MCV LT proteins lacking the helicase domain, but was lost from a protein without the multimerization domain that could bind only as a monomer to DNA. SV40 polyomavirus LT also multimerized to the MCV origin without forming a functional hexamer but still melted origin DNA. MCV origin melting did not require ATP hydrolysis and occurred for both MCV and SV40 LT proteins using the nonhydrolyzable ATP analog, adenylyl-imidodiphosphate (AMP-PNP). LT double hexamers formed in AMP-PNP, and melted DNA, consistent with direct LT hexamer assembly around single-stranded (ss) DNA without the energy-dependent dsDNA-to-ssDNA melting and remodeling steps used by cellular helicases. These results indicate that LT multimerization rather than helicase activity is required for origin DNA melting during unlicensed virus replication.
Collapse
Affiliation(s)
- Li Wan
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA15213
| | - Sabrina Toland
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA15213
| | | | - Nara Lee
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA15219
| | - Matthew A. Schaich
- Genome Stability Program, Hillman Cancer Center, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA15232
| | - Sarah R. Hengel
- Department of Pharmacology, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA15232
| | - Xiaochen Li
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA15213
- School of Medicine, Tsinghua University, Beijing100084, China
| | - Kara A. Bernstein
- Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Bennett Van Houten
- Genome Stability Program, Hillman Cancer Center, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA15232
| | - Yuan Chang
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA15213
| | - Patrick S. Moore
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA15213
| |
Collapse
|
8
|
SV40 T-antigen uses a DNA shearing mechanism to initiate origin unwinding. Proc Natl Acad Sci U S A 2022; 119:e2216240119. [PMID: 36442086 PMCID: PMC9894130 DOI: 10.1073/pnas.2216240119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Duplication of DNA genomes requires unwinding of the double-strand (ds) DNA so that each single strand (ss) can be copied by a DNA polymerase. The genomes of eukaryotic cells are unwound by two ring-shaped hexameric helicases that initially encircle dsDNA but transition to ssDNA for function as replicative helicases. How the duplex is initially unwound, and the role of the two helicases in this process, is poorly understood. We recently described an initiation mechanism for eukaryotes in which the two helicases are directed inward toward one another and shear the duplex open by pulling on opposite strands of the duplex while encircling dsDNA [L. D. Langston, M. E. O'Donnell, eLife 8, e46515 (2019)]. Two head-to-head T-Antigen helicases are long known to be loaded at the SV40 origin. We show here that T-Antigen tracks head (N-tier) first on ssDNA, opposite the direction proposed for decades. We also find that SV40 T-Antigen tracks directionally while encircling dsDNA and mainly tracks on one strand of the duplex in the same orientation as during ssDNA translocation. Further, two inward directed T-Antigen helicases on dsDNA are able to melt a 150-bp duplex. These findings explain the "rabbit ear" DNA loops observed at the SV40 origin by electron microscopy and reconfigure how the DNA loops emerge from the double hexamer relative to earlier models. Thus, the mechanism of DNA shearing by two opposing helicases is conserved in a eukaryotic viral helicase and may be widely used to initiate origin unwinding of dsDNA genomes.
Collapse
|
9
|
Origin recognition complex harbors an intrinsic nucleosome remodeling activity. Proc Natl Acad Sci U S A 2022; 119:e2211568119. [PMID: 36215487 PMCID: PMC9586268 DOI: 10.1073/pnas.2211568119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleosomes package the entire eukaryotic genome, yet enzymes need access to the DNA for numerous metabolic activities, such as replication and transcription. Eukaryotic origins of replication in Saccharomyces cerevisiae are AT rich and are generally nucleosome free for the binding of ORC (origin recognition complex). However, the nucleosome-free region often undergoes expansion during G1/S phase, presumably to make room for MCM double-hexamer formation that nucleates the 11-subunit helicase, CMG (Cdc45, Mcm2–7, Cdc45). While nucleosome remodelers could perform this function, in vitro studies indicate that nucleosome remodeling may be intrinsic to the replication machinery. Indeed, we find here that ORC contains an intrinsic nucleosome remodeling activity that is capable of ATP-stimulated removal of H2A-H2B from nucleosomes. Eukaryotic DNA replication is initiated at multiple chromosomal sites known as origins of replication that are specifically recognized by the origin recognition complex (ORC) containing multiple ATPase sites. In budding yeast, ORC binds to specific DNA sequences known as autonomously replicating sequences (ARSs) that are mostly nucleosome depleted. However, nucleosomes may still inhibit the licensing of some origins by occluding ORC binding and subsequent MCM helicase loading. Using purified proteins and single-molecule visualization, we find here that the ORC can eject histones from a nucleosome in an ATP-dependent manner. The ORC selectively evicts H2A-H2B dimers but leaves the (H3-H4)2 tetramer on DNA. It also discriminates canonical H2A from the H2A.Z variant, evicting the former while retaining the latter. Finally, the bromo-adjacent homology (BAH) domain of the Orc1 subunit is essential for ORC-mediated histone eviction. These findings suggest that the ORC is a bona fide nucleosome remodeler that functions to create a local chromatin environment optimal for origin activity.
Collapse
|
10
|
Convergent evolution in two bacterial replicative helicase loaders. Trends Biochem Sci 2022; 47:620-630. [DOI: 10.1016/j.tibs.2022.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/23/2022]
|
11
|
Optimizing CMG helicase and CMG-dependent replication assays by designing DNA fork substrates and choosing nucleotide analogues for helicase preloading. Methods Enzymol 2022; 672:173-202. [DOI: 10.1016/bs.mie.2022.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Abstract
Ring-shaped hexameric helicases are essential motor proteins that separate duplex nucleic acid strands for DNA replication, recombination, and transcriptional regulation. Two evolutionarily distinct lineages of these enzymes, predicated on RecA and AAA+ ATPase folds, have been identified and characterized to date. Hexameric helicases couple NTP hydrolysis with conformational changes that move nucleic acid substrates through a central pore in the enzyme. How hexameric helicases productively engage client DNA or RNA segments and use successive rounds of NTPase activity to power translocation and unwinding have been longstanding questions in the field. Recent structural and biophysical findings are beginning to reveal commonalities in NTP hydrolysis and substrate translocation by diverse hexameric helicase families. Here, we review these molecular mechanisms and highlight aspects of their function that are yet to be understood.
Collapse
|
13
|
Jenkyn-Bedford M, Jones ML, Baris Y, Labib KPM, Cannone G, Yeeles JTP, Deegan TD. A conserved mechanism for regulating replisome disassembly in eukaryotes. Nature 2021; 600:743-747. [PMID: 34700328 PMCID: PMC8695382 DOI: 10.1038/s41586-021-04145-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/14/2021] [Indexed: 11/28/2022]
Abstract
Replisome disassembly is the final step of eukaryotic DNA replication and is triggered by ubiquitylation of the CDC45-MCM-GINS (CMG) replicative helicase1-3. Despite being driven by evolutionarily diverse E3 ubiquitin ligases in different eukaryotes (SCFDia2 in budding yeast1, CUL2LRR1 in metazoa4-7), replisome disassembly is governed by a common regulatory principle, in which ubiquitylation of CMG is suppressed before replication termination, to prevent replication fork collapse. Recent evidence suggests that this suppression is mediated by replication fork DNA8-10. However, it is unknown how SCFDia2 and CUL2LRR1 discriminate terminated from elongating replisomes, to selectively ubiquitylate CMG only after termination. Here we used cryo-electron microscopy to solve high-resolution structures of budding yeast and human replisome-E3 ligase assemblies. Our structures show that the leucine-rich repeat domains of Dia2 and LRR1 are structurally distinct, but bind to a common site on CMG, including the MCM3 and MCM5 zinc-finger domains. The LRR-MCM interaction is essential for replisome disassembly and, crucially, is occluded by the excluded DNA strand at replication forks, establishing the structural basis for the suppression of CMG ubiquitylation before termination. Our results elucidate a conserved mechanism for the regulation of replisome disassembly in eukaryotes, and reveal a previously unanticipated role for DNA in preserving replisome integrity.
Collapse
Affiliation(s)
| | | | | | - Karim P M Labib
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, UK
| | | | | | - Tom D Deegan
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, UK.
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK.
| |
Collapse
|
14
|
Baxley RM, Leung W, Schmit MM, Matson JP, Yin L, Oram MK, Wang L, Taylor J, Hedberg J, Rogers CB, Harvey AJ, Basu D, Taylor JC, Pagnamenta AT, Dreau H, Craft J, Ormondroyd E, Watkins H, Hendrickson EA, Mace EM, Orange JS, Aihara H, Stewart GS, Blair E, Cook JG, Bielinsky AK. Bi-allelic MCM10 variants associated with immune dysfunction and cardiomyopathy cause telomere shortening. Nat Commun 2021; 12:1626. [PMID: 33712616 PMCID: PMC7955084 DOI: 10.1038/s41467-021-21878-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 02/11/2021] [Indexed: 12/22/2022] Open
Abstract
Minichromosome maintenance protein 10 (MCM10) is essential for eukaryotic DNA replication. Here, we describe compound heterozygous MCM10 variants in patients with distinctive, but overlapping, clinical phenotypes: natural killer (NK) cell deficiency (NKD) and restrictive cardiomyopathy (RCM) with hypoplasia of the spleen and thymus. To understand the mechanism of MCM10-associated disease, we modeled these variants in human cell lines. MCM10 deficiency causes chronic replication stress that reduces cell viability due to increased genomic instability and telomere erosion. Our data suggest that loss of MCM10 function constrains telomerase activity by accumulating abnormal replication fork structures enriched with single-stranded DNA. Terminally-arrested replication forks in MCM10-deficient cells require endonucleolytic processing by MUS81, as MCM10:MUS81 double mutants display decreased viability and accelerated telomere shortening. We propose that these bi-allelic variants in MCM10 predispose specific cardiac and immune cell lineages to prematurely arrest during differentiation, causing the clinical phenotypes observed in both NKD and RCM patients.
Collapse
Affiliation(s)
- Ryan M Baxley
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wendy Leung
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Megan M Schmit
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jacob Peter Matson
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Lulu Yin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Marissa K Oram
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Liangjun Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - John Taylor
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jack Hedberg
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Colette B Rogers
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Adam J Harvey
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Debashree Basu
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jenny C Taylor
- Wellcome Centre Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Oxford NIHR Biomedical Research Centre, Oxford, OX3 7BN, UK
| | - Alistair T Pagnamenta
- Wellcome Centre Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Oxford NIHR Biomedical Research Centre, Oxford, OX3 7BN, UK
| | - Helene Dreau
- Department of Haematology, University of Oxford, Oxford, OX3 7BN, UK
| | - Jude Craft
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Elizabeth Ormondroyd
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Emily M Mace
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Jordan S Orange
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Edward Blair
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jeanette Gowen Cook
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
15
|
Abstract
In all cell types, a multi-protein machinery is required to accurately duplicate the large duplex DNA genome. This central life process requires five core replisome factors in all cellular life forms studied thus far. Unexpectedly, three of the five core replisome factors have no common ancestor between bacteria and eukaryotes. Accordingly, the replisome machines of bacteria and eukaryotes have important distinctions in the way that they are organized and function. This chapter outlines the major replication proteins that perform DNA duplication at replication forks, with particular attention to differences and similarities in the strategies used by eukaryotes and bacteria.
Collapse
Affiliation(s)
- Nina Y Yao
- DNA Replication Laboratory, The Rockefeller University, New York, USA, 10065
| | - Michael E O'Donnell
- DNA Replication Laboratory, The Rockefeller University, New York, USA, 10065. .,Howard Hughes Medical Institute, The Rockefeller University, New York, USA, 10065.
| |
Collapse
|
16
|
Anatomy of a twin DNA replication factory. Biochem Soc Trans 2020; 48:2769-2778. [PMID: 33300972 PMCID: PMC7752080 DOI: 10.1042/bst20200640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 11/30/2022]
Abstract
The replication of DNA in chromosomes is initiated at sequences called origins at which two replisome machines are assembled at replication forks that move in opposite directions. Interestingly, in vivo studies observe that the two replication forks remain fastened together, often referred to as a replication factory. Replication factories containing two replisomes are well documented in cellular studies of bacteria (Escherichia coli and Bacillus subtilis) and the eukaryote, Saccharomyces cerevisiae. This basic twin replisome factory architecture may also be preserved in higher eukaryotes. Despite many years of documenting the existence of replication factories, the molecular details of how the two replisome machines are tethered together has been completely unknown in any organism. Recent structural studies shed new light on the architecture of a eukaryote replisome factory, which brings with it a new twist on how a replication factory may function.
Collapse
|
17
|
Schauer GD, Spenkelink LM, Lewis JS, Yurieva O, Mueller SH, van Oijen AM, O'Donnell ME. Replisome bypass of a protein-based R-loop block by Pif1. Proc Natl Acad Sci U S A 2020; 117:30354-30361. [PMID: 33199603 PMCID: PMC7720201 DOI: 10.1073/pnas.2020189117] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Efficient and faithful replication of the genome is essential to maintain genome stability. Replication is carried out by a multiprotein complex called the replisome, which encounters numerous obstacles to its progression. Failure to bypass these obstacles results in genome instability and may facilitate errors leading to disease. Cells use accessory helicases that help the replisome bypass difficult barriers. All eukaryotes contain the accessory helicase Pif1, which tracks in a 5'-3' direction on single-stranded DNA and plays a role in genome maintenance processes. Here, we reveal a previously unknown role for Pif1 in replication barrier bypass. We use an in vitro reconstituted Saccharomyces cerevisiae replisome to demonstrate that Pif1 enables the replisome to bypass an inactive (i.e., dead) Cas9 (dCas9) R-loop barrier. Interestingly, dCas9 R-loops targeted to either strand are bypassed with similar efficiency. Furthermore, we employed a single-molecule fluorescence visualization technique to show that Pif1 facilitates this bypass by enabling the simultaneous removal of the dCas9 protein and the R-loop. We propose that Pif1 is a general displacement helicase for replication bypass of both R-loops and protein blocks.
Collapse
Affiliation(s)
- Grant D Schauer
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523;
| | - Lisanne M Spenkelink
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Jacob S Lewis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Olga Yurieva
- HHMI, Rockefeller University, New York, NY 10065
- Laboratory of DNA Replication, Rockefeller University, New York, NY 10065
| | - Stefan H Mueller
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia;
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Michael E O'Donnell
- HHMI, Rockefeller University, New York, NY 10065;
- Laboratory of DNA Replication, Rockefeller University, New York, NY 10065
| |
Collapse
|
18
|
Yuan Z, Li H. Molecular mechanisms of eukaryotic origin initiation, replication fork progression, and chromatin maintenance. Biochem J 2020; 477:3499-3525. [PMID: 32970141 PMCID: PMC7574821 DOI: 10.1042/bcj20200065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/29/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022]
Abstract
Eukaryotic DNA replication is a highly dynamic and tightly regulated process. Replication involves several dozens of replication proteins, including the initiators ORC and Cdc6, replicative CMG helicase, DNA polymerase α-primase, leading-strand DNA polymerase ε, and lagging-strand DNA polymerase δ. These proteins work together in a spatially and temporally controlled manner to synthesize new DNA from the parental DNA templates. During DNA replication, epigenetic information imprinted on DNA and histone proteins is also copied to the daughter DNA to maintain the chromatin status. DNA methyltransferase 1 is primarily responsible for copying the parental DNA methylation pattern into the nascent DNA. Epigenetic information encoded in histones is transferred via a more complex and less well-understood process termed replication-couple nucleosome assembly. Here, we summarize the most recent structural and biochemical insights into DNA replication initiation, replication fork elongation, chromatin assembly and maintenance, and related regulatory mechanisms.
Collapse
Affiliation(s)
- Zuanning Yuan
- Structural Biology Program, Van Andel Institute, Grand Rapids, Michigan, U.S.A
| | - Huilin Li
- Structural Biology Program, Van Andel Institute, Grand Rapids, Michigan, U.S.A
| |
Collapse
|
19
|
Abd Wahab S, Remus D. Antagonistic control of DDK binding to licensed replication origins by Mcm2 and Rad53. eLife 2020; 9:58571. [PMID: 32701054 PMCID: PMC7398698 DOI: 10.7554/elife.58571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic replication origins are licensed by the loading of the replicative DNA helicase, Mcm2-7, in inactive double hexameric form around DNA. Subsequent origin activation is under control of multiple protein kinases that either promote or inhibit origin activation, which is important for genome maintenance. Using the reconstituted budding yeast DNA replication system, we find that the flexible N-terminal extension (NTE) of Mcm2 promotes the stable recruitment of Dbf4-dependent kinase (DDK) to Mcm2-7 double hexamers, which in turn promotes DDK phosphorylation of Mcm4 and −6 and subsequent origin activation. Conversely, we demonstrate that the checkpoint kinase, Rad53, inhibits DDK binding to Mcm2-7 double hexamers. Unexpectedly, this function is not dependent on Rad53 kinase activity, suggesting steric inhibition of DDK by activated Rad53. These findings identify critical determinants of the origin activation reaction and uncover a novel mechanism for checkpoint-dependent origin inhibition.
Collapse
Affiliation(s)
- Syafiq Abd Wahab
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States.,Weill-Cornell Graduate School of Medical Sciences, New York, United States
| | - Dirk Remus
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States.,Weill-Cornell Graduate School of Medical Sciences, New York, United States
| |
Collapse
|
20
|
Jin Y, Liang Z, Lou H. The Emerging Roles of Fox Family Transcription Factors in Chromosome Replication, Organization, and Genome Stability. Cells 2020; 9:cells9010258. [PMID: 31968679 PMCID: PMC7016735 DOI: 10.3390/cells9010258] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/13/2022] Open
Abstract
The forkhead box (Fox) transcription factors (TFs) are widespread from yeast to humans. Their mutations and dysregulation have been linked to a broad spectrum of malignant neoplasias. They are known as critical players in DNA repair, metabolism, cell cycle control, differentiation, and aging. Recent studies, especially those from the simple model eukaryotes, revealed unexpected contributions of Fox TFs in chromosome replication and organization. More importantly, besides functioning as a canonical TF in cell signaling cascades and gene expression, Fox TFs can directly participate in DNA replication and determine the global replication timing program in a transcription-independent mechanism. Yeast Fox TFs preferentially recruit the limiting replication factors to a subset of early origins on chromosome arms. Attributed to their dimerization capability and distinct DNA binding modes, Fkh1 and Fkh2 also promote the origin clustering and assemblage of replication elements (replication factories). They can mediate long-range intrachromosomal and interchromosomal interactions and thus regulate the four-dimensional chromosome organization. The novel aspects of Fox TFs reviewed here expand their roles in maintaining genome integrity and coordinating the multiple essential chromosome events. These will inevitably be translated to our knowledge and new treatment strategies of Fox TF-associated human diseases including cancer.
Collapse
|
21
|
Gao Y, Yang W. Different mechanisms for translocation by monomeric and hexameric helicases. Curr Opin Struct Biol 2019; 61:25-32. [PMID: 31783299 DOI: 10.1016/j.sbi.2019.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 11/24/2022]
Abstract
Helicases are ATP-dependent motor proteins that translocate along single-stranded or double-stranded nucleic acids to alter base-pairing structures or molecular interactions. Helicases can be divided to monomeric and hexameric types, each with distinct ternary structures, nucleic acid-binding modes, and translocation mechanisms. It is well established that monomeric helicases translocate by the inchworm mechanism. Recent structures of different superfamilies of hexameric helicases reveal that they use a hand-over hand mechanism for translocation. Structures of bacteriophage T7 replisome illustrate how helicase and polymerase cooperatively catalyze DNA unwinding. In this review, we survey structures of monomeric and hexameric helicases and compare different mechanisms for translocation.
Collapse
Affiliation(s)
- Yang Gao
- Department of Biosciences, Rice University, Houston, TX 77030, USA.
| | - Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
22
|
Champasa K, Blank C, Friedman LJ, Gelles J, Bell SP. A conserved Mcm4 motif is required for Mcm2-7 double-hexamer formation and origin DNA unwinding. eLife 2019; 8:45538. [PMID: 31385807 PMCID: PMC6701924 DOI: 10.7554/elife.45538] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 08/05/2019] [Indexed: 11/13/2022] Open
Abstract
Licensing of eukaryotic origins of replication requires DNA loading of two copies of the Mcm2-7 replicative helicase to form a head-to-head double-hexamer, ensuring activated helicases depart the origin bidirectionally. To understand the formation and importance of this double-hexamer, we identified mutations in a conserved and essential Mcm4 motif that permit loading of two Mcm2-7 complexes but are defective for double-hexamer formation. Single-molecule studies show mutant Mcm2-7 forms initial hexamer-hexamer interactions; however, the resulting complex is unstable. Kinetic analyses of wild-type and mutant Mcm2-7 reveal a limited time window for double-hexamer formation following second Mcm2-7 association, suggesting that this process is facilitated. Double-hexamer formation is required for extensive origin DNA unwinding but not initial DNA melting or recruitment of helicase-activation proteins (Cdc45, GINS, Mcm10). Our findings elucidate dynamic mechanisms of origin licensing, and identify the transition between initial DNA melting and extensive unwinding as the first initiation event requiring double-hexamer formation.
Collapse
Affiliation(s)
- Kanokwan Champasa
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Caitlin Blank
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States.,Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, United States
| | - Larry J Friedman
- Department of Biochemistry, Brandeis University, Waltham, United States
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, United States
| | - Stephen P Bell
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|