1
|
Thobor BM, Haas AF, Wild C, Nelson CE, Wegley Kelly L, Hehemann JH, Arts MGI, Boer M, Buck-Wiese H, Nguyen NP, Hellige I, Mueller B. Coral high molecular weight carbohydrates support opportunistic microbes in bacterioplankton from an algae-dominated reef. mSystems 2024; 9:e0083224. [PMID: 39436143 PMCID: PMC11575353 DOI: 10.1128/msystems.00832-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
High molecular weight (HMW; >1 kDa) carbohydrates are a major component of dissolved organic matter (DOM) released by benthic primary producers. Despite shifts from coral to algae dominance on many reefs, little is known about the effects of exuded carbohydrates on bacterioplankton communities in reef waters. We compared the monosaccharide composition of HMW carbohydrates exuded by hard corals and brown macroalgae and investigated the response of the bacterioplankton community of an algae-dominated Caribbean reef to the respective HMW fractions. HMW coral exudates were compositionally distinct from the ambient, algae-dominated reef waters and similar to coral mucus (high in arabinose). They further selected for opportunistic bacterioplankton taxa commonly associated with coral stress (i.e., Rhodobacteraceae, Phycisphaeraceae, Vibrionaceae, and Flavobacteriales) and significantly increased the predicted energy-, amino acid-, and carbohydrate-metabolism by 28%, 44%, and 111%, respectively. In contrast, HMW carbohydrates exuded by algae were similar to those in algae tissue extracts and reef water (high in fucose) and did not significantly alter the composition and predicted metabolism of the bacterioplankton community. These results confirm earlier findings of coral exudates supporting efficient trophic transfer, while algae exudates may have stimulated microbial respiration instead of biomass production, thereby supporting the microbialization of reefs. In contrast to previous studies, HMW coral and not algal exudates selected for opportunistic microbes, suggesting that a shift in the prevalent DOM composition and not the exudate type (i.e., coral vs algae) per se, may induce the rise of opportunistic microbial taxa. IMPORTANCE Dissolved organic matter (DOM) released by benthic primary producers fuels coral reef food webs. Anthropogenic stressors cause shifts from coral to algae dominance on many reefs, and resulting alterations in the DOM pool can promote opportunistic microbes and potential coral pathogens in reef water. To better understand these DOM-induced effects on bacterioplankton communities, we compared the carbohydrate composition of coral- and macroalgae-DOM and analyzed the response of bacterioplankton from an algae-dominated reef to these DOM types. In line with the proposed microbialization of reefs, coral-DOM was efficiently utilized, promoting energy transfer to higher trophic levels, whereas macroalgae-DOM likely stimulated microbial respiration over biomass production. Contrary to earlier findings, coral- and not algal-DOM selected for opportunistic microbial taxa, indicating that a change in the prevalent DOM composition, and not DOM type, may promote the rise of opportunistic microbes. Presented results may also apply to other coastal marine ecosystems undergoing benthic community shifts.
Collapse
Affiliation(s)
- Bianca M Thobor
- Department of Marine Ecology, University of Bremen, Bremen, Germany
| | - Andreas F Haas
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | - Christian Wild
- Department of Marine Ecology, University of Bremen, Bremen, Germany
| | - Craig E Nelson
- Department of Oceanography and Sea Grant College Program, Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Linda Wegley Kelly
- Marine Biology Research Division, Scripps Institute of Oceanography, University of California, San Diego, California, USA
| | - Jan-Hendrik Hehemann
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Department of Marine Glycobiology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Milou G I Arts
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | - Meine Boer
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | - Hagen Buck-Wiese
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Department of Marine Glycobiology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Nguyen P Nguyen
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Department of Marine Glycobiology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Inga Hellige
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Department of Marine Glycobiology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Benjamin Mueller
- Department of Marine Ecology, University of Bremen, Bremen, Germany
- Department of Oceanography and Sea Grant College Program, Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
- Department of Freshwater and Marine Ecology, University of Amsterdam, Amsterdam, Netherlands
- CARMABI Foundation, Willemstad, Curaçao, Netherlands
| |
Collapse
|
2
|
Barno AR, Green K, Rohwer F, Silveira CB. Snow viruses and their implications on red snow algal blooms. mSystems 2024; 9:e0008324. [PMID: 38647296 PMCID: PMC11097641 DOI: 10.1128/msystems.00083-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/23/2024] [Indexed: 04/25/2024] Open
Abstract
Algal blooms can give snowmelt a red color, reducing snow albedo and creating a runaway effect that accelerates snow melting. The occurrence of red snow is predicted to grow in polar and subpolar regions with increasing global temperatures. We hypothesize that these algal blooms affect virus-bacteria interactions in snow, with potential effects on snowmelt dynamics. A genomic analysis of double-stranded DNA virus communities in red and white snow from the Whistler region of British Columbia, Canada, identified 792 putative viruses infecting bacteria. The most abundant putative snow viruses displayed low genomic similarity with known viruses. We recovered the complete circular genomes of nine putative viruses, two of which were classified as temperate. Putative snow viruses encoded genes involved in energy metabolisms, such as NAD+ synthesis and salvage pathways. In model phages, these genes facilitate increased viral particle production and lysis rates. The frequency of temperate phages was positively correlated with microbial abundance in the snow samples. These results suggest the increased frequency of temperate virus-bacteria interactions as microbial densities increase during snowmelt. We propose that this virus-bacteria dynamic may facilitate the red snow algae growth stimulated by bacteria.IMPORTANCEMicrobial communities in red snow algal blooms contribute to intensifying snowmelt rates. The role of viruses in snow during this environmental shift, however, has yet to be elucidated. Here, we characterize novel viruses extracted from snow viral metagenomes and define the functional capacities of snow viruses in both white and red snow. These results are contextualized using the composition and functions observed in the bacterial communities from the same snow samples. Together, these data demonstrate the energy metabolism performed by viruses and bacteria in a snow algal bloom, as well as expand the overall knowledge of viral genomes in extreme environments.
Collapse
Affiliation(s)
- Adam R. Barno
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kevin Green
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Forest Rohwer
- Department of Biology, San Diego State University, San Diego, California, USA
- Viral Information Institute, San Diego State University, San Diego, California, USA
| | | |
Collapse
|
3
|
Terzin M, Laffy PW, Robbins S, Yeoh YK, Frade PR, Glasl B, Webster NS, Bourne DG. The road forward to incorporate seawater microbes in predictive reef monitoring. ENVIRONMENTAL MICROBIOME 2024; 19:5. [PMID: 38225668 PMCID: PMC10790441 DOI: 10.1186/s40793-023-00543-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/11/2023] [Indexed: 01/17/2024]
Abstract
Marine bacterioplankton underpin the health and function of coral reefs and respond in a rapid and sensitive manner to environmental changes that affect reef ecosystem stability. Numerous meta-omics surveys over recent years have documented persistent associations of opportunistic seawater microbial taxa, and their associated functions, with metrics of environmental stress and poor reef health (e.g. elevated temperature, nutrient loads and macroalgae cover). Through positive feedback mechanisms, disturbance-triggered heterotrophic activity of seawater microbes is hypothesised to drive keystone benthic organisms towards the limit of their resilience and translate into shifts in biogeochemical cycles which influence marine food webs, ultimately affecting entire reef ecosystems. However, despite nearly two decades of work in this space, a major limitation to using seawater microbes in reef monitoring is a lack of a unified and focused approach that would move beyond the indicator discovery phase and towards the development of rapid microbial indicator assays for (near) real-time reef management and decision-making. By reviewing the current state of knowledge, we provide a comprehensive framework (defined as five phases of research and innovation) to catalyse a shift from fundamental to applied research, allowing us to move from descriptive to predictive reef monitoring, and from reactive to proactive reef management.
Collapse
Affiliation(s)
- Marko Terzin
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia.
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia.
| | - Patrick W Laffy
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia
| | - Steven Robbins
- Australian Centre for Ecogenomics, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Yun Kit Yeoh
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia
| | - Pedro R Frade
- Natural History Museum Vienna, 1010, Vienna, Austria
| | - Bettina Glasl
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030, Vienna, Austria
| | - Nicole S Webster
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia
- Australian Centre for Ecogenomics, University of Queensland, St. Lucia, QLD, 4072, Australia
- Australian Antarctic Program, Department of Climate Change, Energy, the Environment and Water, Kingston, TAS, 7050, Australia
| | - David G Bourne
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia.
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|
4
|
Hou Z, Zhou Q, Xie Y, Mo F, Kang W, Wang Q. Potential contribution of chlorella vulgaris to carbon-nitrogen turnover in freshwater ecosystems after a great sandstorm event. ENVIRONMENTAL RESEARCH 2023; 234:116569. [PMID: 37422116 DOI: 10.1016/j.envres.2023.116569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Urban lakes represent important land-water and nature-human dual interfaces that promote the cycling of elements from terrestrials to sediments and consequently modulating the stabilization of regional climate. However, whether disturbances caused by extreme weather events can have substantial effects on carbon-nitrogen (C-N) cycling in these ecosystems are vague. To explore the impact of phytoplankton on the ecological retention time of C-N, two kinds of freshwater (natural and landscape) were collected and conducted a microcosm experiment using a freshwater algal species Chlorella vulgaris. Sandstorm events increased dissolved inorganic carbon in freshwater (65.55 ± 3.09 and 39.46 ± 2.51 mg·L-1 for samples from Jinyang and Nankai, respectively) and significantly affected the relevant pathways of photosynthesis in Chlorella vulgaris, including enhancing chlorophyll fluorescence (The effective quantum yield of PSII at the fifth day of incubation was 0.34 and 0.35 for Nankai and Jinyang, respectively), promoting the synthesis of sugars and inhibiting the synthesis of glycine and serine related proteins. Besides, carbon from plant biomass accumulation and cellular metabolism (fulvic acid-like, polyaromatic-type humic acid and polycarboxylate-type humic acid, etc.) was enriched into residues and become a kind of energy source for the decomposer (TC mass increased by 1.63-2.13 times after 21 days of incubation). This means that the accumulation and consumption of carbon and nitrogen in the residue can be used to track the processes controlling the long-term C-N cycle. Our findings shed light on the plant residues were key factors contributing to the formation of water carbon pool, breaks the traditional theory that dissolved carbonates cannot produce carbon sinks.
Collapse
Affiliation(s)
- Zelin Hou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Yingying Xie
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Fan Mo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Weilu Kang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
5
|
Barrows AR, Hancock JR, Cohen DL, Gorong P, Lewis M, Louie S, Musselman L, Caruso C, Miller S, Drury C. Enhancing survivorship and growth of juvenile Montipora capitata using the Hawaiian collector urchin Tripneustes gratilla. PeerJ 2023; 11:e16113. [PMID: 37790625 PMCID: PMC10542273 DOI: 10.7717/peerj.16113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/27/2023] [Indexed: 10/05/2023] Open
Abstract
The biodiversity of coral reef habitats is rapidly declining due to the effects of anthropogenic climate change, prompting the use of active restoration as a mitigation strategy. Sexual propagation can maintain or enhance genetic diversity in restoration of these ecosystems, but these approaches suffer from a range of inefficiencies in rearing and husbandry. Algal overgrowth of juveniles is a major bottleneck in the production of sexually propagated corals that may be alleviated by co-culture with herbivores. We reared juvenile Montipora capitata alongside juvenile native Hawaiian collector urchins, Tripneustes gratilla, for 15 weeks and documented significant ecological benefits of co-culture. Urchin treatments significantly increased the survivorship of coral aggregates (14%) and individual settlers (24%). We also documented a significant increase in coral growth in the presence of urchins. These results demonstrate the utility of microherbivory in promoting coral growth and survivorship in ex situ conditions, providing valuable insight for restoration pipelines of native Hawaiian coral species.
Collapse
Affiliation(s)
- Andrew R. Barrows
- Hawai‘i Institute of Marine Biology, University of Hawai‘i, Kāne‘ohe, HI, United States
| | - Joshua R. Hancock
- Hawai‘i Institute of Marine Biology, University of Hawai‘i, Kāne‘ohe, HI, United States
| | - David L. Cohen
- Department of Land and Natural Resources, Division of Aquatic Resources, Honolulu, Hawai‘i, United States
| | - Patrick Gorong
- Department of Land and Natural Resources, Division of Aquatic Resources, Honolulu, Hawai‘i, United States
| | - Matthew Lewis
- Department of Land and Natural Resources, Division of Aquatic Resources, Honolulu, Hawai‘i, United States
| | - Sean Louie
- Department of Land and Natural Resources, Division of Aquatic Resources, Honolulu, Hawai‘i, United States
| | - Lani Musselman
- Department of Land and Natural Resources, Division of Aquatic Resources, Honolulu, Hawai‘i, United States
| | - Carlo Caruso
- Hawai‘i Institute of Marine Biology, University of Hawai‘i, Kāne‘ohe, HI, United States
| | - Spencer Miller
- Hawai‘i Institute of Marine Biology, University of Hawai‘i, Kāne‘ohe, HI, United States
| | - Crawford Drury
- Hawai‘i Institute of Marine Biology, University of Hawai‘i, Kāne‘ohe, HI, United States
| |
Collapse
|
6
|
Silveira CB, Luque A, Haas AF, Roach TNF, George EE, Knowles B, Little M, Sullivan CJ, Varona NS, Wegley Kelly L, Brainard R, Rohwer F, Bailey B. Viral predation pressure on coral reefs. BMC Biol 2023; 21:77. [PMID: 37038111 PMCID: PMC10088212 DOI: 10.1186/s12915-023-01571-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 03/17/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Predation pressure and herbivory exert cascading effects on coral reef health and stability. However, the extent of these cascading effects can vary considerably across space and time. This variability is likely a result of the complex interactions between coral reefs' biotic and abiotic dimensions. A major biological component that has been poorly integrated into the reefs' trophic studies is the microbial community, despite its role in coral death and bleaching susceptibility. Viruses that infect bacteria can control microbial densities and may positively affect coral health by controlling microbialization. We hypothesize that viral predation of bacteria has analogous effects to the top-down pressure of macroorganisms on the trophic structure and reef health. RESULTS Here, we investigated the relationships between live coral cover and viruses, bacteria, benthic algae, fish biomass, and water chemistry in 110 reefs spanning inhabited and uninhabited islands and atolls across the Pacific Ocean. Statistical learning showed that the abundance of turf algae, viruses, and bacteria, in that order, were the variables best predicting the variance in coral cover. While fish biomass was not a strong predictor of coral cover, the relationship between fish and corals became apparent when analyzed in the context of viral predation: high coral cover (> 50%) occurred on reefs with a combination of high predator fish biomass (sum of sharks and piscivores > 200 g m-2) and high virus-to-bacteria ratios (> 10), an indicator of viral predation pressure. However, these relationships were non-linear, with reefs at the higher and lower ends of the coral cover continuum displaying a narrow combination of abiotic and biotic variables, while reefs at intermediate coral cover showed a wider range of parameter combinations. CONCLUSIONS The results presented here support the hypothesis that viral predation of bacteria is associated with high coral cover and, thus, coral health and stability. We propose that combined predation pressures from fishes and viruses control energy fluxes, inhibiting the detrimental accumulation of ecosystem energy in the microbial food web.
Collapse
Affiliation(s)
- Cynthia B Silveira
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA.
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, 33149, USA.
| | - Antoni Luque
- Viral Information Institute, San Diego State University, San Diego, CA, 92182, USA
- Computational Science Research Center, San Diego State University, San Diego, CA, 92182, USA
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA, 92182, USA
| | - Andreas F Haas
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Ty N F Roach
- Viral Information Institute, San Diego State University, San Diego, CA, 92182, USA
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - Emma E George
- Botany Department, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Ben Knowles
- Department of Ecology and Evolutionary Biology, UC Los Angeles, Los Angeles, CA, 90095, USA
| | - Mark Little
- Viral Information Institute, San Diego State University, San Diego, CA, 92182, USA
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | | | - Natascha S Varona
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
| | - Linda Wegley Kelly
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, 92037, USA
| | - Russel Brainard
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Pacific Islands Fisheries Science Center, National Oceanic & Atmospheric Administration, Honolulu, HI, 96818, USA
| | - Forest Rohwer
- Viral Information Institute, San Diego State University, San Diego, CA, 92182, USA
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - Barbara Bailey
- Viral Information Institute, San Diego State University, San Diego, CA, 92182, USA.
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA, 92182, USA.
| |
Collapse
|
7
|
Alderdice R, Perna G, Cárdenas A, Hume BCC, Wolf M, Kühl M, Pernice M, Suggett DJ, Voolstra CR. Deoxygenation lowers the thermal threshold of coral bleaching. Sci Rep 2022; 12:18273. [PMID: 36316371 PMCID: PMC9622859 DOI: 10.1038/s41598-022-22604-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/17/2022] [Indexed: 12/02/2022] Open
Abstract
Exposure to deoxygenation from climate warming and pollution is emerging as a contributing factor of coral bleaching and mortality. However, the combined effects of heating and deoxygenation on bleaching susceptibility remain unknown. Here, we employed short-term thermal stress assays to show that deoxygenated seawater can lower the thermal limit of an Acropora coral by as much as 1 °C or 0.4 °C based on bleaching index scores or dark-acclimated photosynthetic efficiencies, respectively. Using RNA-Seq, we show similar stress responses to heat with and without deoxygenated seawater, both activating putative key genes of the hypoxia-inducible factor response system indicative of cellular hypoxia. We also detect distinct deoxygenation responses, including a disruption of O2-dependent photo-reception/-protection, redox status, and activation of an immune response prior to the onset of bleaching. Thus, corals are even more vulnerable when faced with heat stress in deoxygenated waters. This highlights the need to integrate dissolved O2 measurements into global monitoring programs of coral reefs.
Collapse
Affiliation(s)
- Rachel Alderdice
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany.
| | - Gabriela Perna
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Anny Cárdenas
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Benjamin C C Hume
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Martin Wolf
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Michael Kühl
- Marine Biology Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000, Helsingør, Denmark
| | - Mathieu Pernice
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - David J Suggett
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | | |
Collapse
|
8
|
Mueller B, Brocke HJ, Rohwer FL, Dittmar T, Huisman J, Vermeij MJA, de Goeij JM. Nocturnal dissolved organic matter release by turf algae and its role in the microbialization of reefs. Funct Ecol 2022; 36:2104-2118. [PMID: 36247100 PMCID: PMC9543674 DOI: 10.1111/1365-2435.14101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 04/29/2022] [Indexed: 11/27/2022]
Abstract
The increased release of dissolved organic matter (DOM) by algae has been associated with the fast but inefficient growth of opportunistic microbial pathogens and the ongoing degradation of coral reefs. Turf algae (consortia of microalgae and macroalgae commonly including cyanobacteria) dominate benthic communities on many reefs worldwide. Opposite to other reef algae that predominantly release DOM during the day, turf algae containing cyanobacteria may additionally release large amounts of DOM at night. However, this night-DOM release and its potential contribution to the microbialization of reefs remains to be investigated.We first tested the occurrence of hypoxic conditions at the turf algae-water interface, as a lack of oxygen will facilitate the production and release of fermentation intermediates as night-time DOM. Second, the dissolved organic carbon (DOC) release by turf algae was quantified during day time and nighttime, and the quality of day and night exudates as food for bacterioplankton was tested. Finally, DOC release rates of turf algae were combined with estimates of DOC release based on benthic community composition in 1973 and 2013 to explore how changes in benthic community composition affected the contribution of night-DOC to the reef-wide DOC production.A rapid shift from supersaturated to hypoxic conditions at the turf algae-water interface occurred immediately after the onset of darkness, resulting in night-DOC release rates similar to those during daytime. Bioassays revealed major differences in the quality between day and night exudates: Night-DOC was utilized by bacterioplankton two times faster than day-DOC, but yielded a four times lower growth efficiency. Changes in benthic community composition were estimated to have resulted in a doubling of DOC release since 1973, due to an increasing abundance of benthic cyanobacterial mats (BCMs), with night-DOC release by BCMs and turf algae accounting for >50% of the total release over a diurnal cycle.Night-DOC released by BCMs and turf algae is likely an important driver in the microbialization of reefs by stimulating microbial respiration at the expense of energy and nutrient transfer to higher trophic levels via the microbial loop, thereby threatening the productivity and biodiversity of these unique ecosystems. Read the free Plain Language Summary for this article on the Journal blog.
Collapse
Affiliation(s)
- Benjamin Mueller
- Department for Freshwater and Marine EcologyUniversity of AmsterdamAmsterdamThe Netherlands
- CARMABI FoundationWillemstadCuraçao
- Department of Oceanography and Sea Grant College ProgramCenter for Microbial Oceanography: Research and Education, University of Hawai'i at MānoaHonoluluHawaiiUSA
| | - Hannah J. Brocke
- Max‐Plank Institute for Marine Microbiology (MPI Bremen)BremenGermany
| | - Forest L. Rohwer
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Thorsten Dittmar
- Institute for Chemistry and Biology of the Marine EnvironmentUniversity of OldenburgOldenburgGermany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB)University of OldenburgOldenburgGermany
| | - Jef Huisman
- Department for Freshwater and Marine EcologyUniversity of AmsterdamAmsterdamThe Netherlands
| | - Mark J. A. Vermeij
- Department for Freshwater and Marine EcologyUniversity of AmsterdamAmsterdamThe Netherlands
- CARMABI FoundationWillemstadCuraçao
| | - Jasper M. de Goeij
- Department for Freshwater and Marine EcologyUniversity of AmsterdamAmsterdamThe Netherlands
- CARMABI FoundationWillemstadCuraçao
| |
Collapse
|
9
|
Coastal Transient Niches Shape the Microdiversity Pattern of a Bacterioplankton Population with Reduced Genomes. mBio 2022; 13:e0057122. [PMID: 35880883 PMCID: PMC9426536 DOI: 10.1128/mbio.00571-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Globally dominant marine bacterioplankton lineages are often limited in metabolic versatility, owing to their extensive genome reductions, and thus cannot take advantage of transient nutrient patches. It is therefore perplexing how the nutrient-poor bulk seawater sustains the pelagic streamlined lineages, each containing numerous populations. Here, we sequenced the genomes of 33 isolates of the recently discovered CHUG lineage (~2.6 Mbp), which have some of the smallest genomes in the globally abundant Roseobacter group (commonly over 4 Mbp). These genome-reduced bacteria were isolated from a transient habitat: seawater surrounding the brown alga, Sargassum hemiphyllum. Population genomic analyses showed that: (i) these isolates, despite sharing identical 16S rRNA genes, were differentiated into several genetically isolated populations through successive speciation events; (ii) only the first speciation event led to the genetic separation of both core and accessory genomes; and (iii) populations resulting from this event are differentiated at many loci involved in carbon utilization and oxygen respiration, corroborated by BiOLOG phenotype microarray assays and oxygen uptake kinetics experiments, respectively. These differentiated traits match well with the dynamic nature of the macroalgal seawater, in which the quantity and quality of carbon sources and the concentration of oxygen likely vary spatially and temporally, though other habitats, like fresh organic aggregates, cannot be ruled out. Our study implies that transient habitats in the overall nutrient-poor ocean can shape the microdiversity and population structure of genome-reduced bacterioplankton lineages.
Collapse
|
10
|
George EE, Mullinix JA, Meng F, Bailey BA, Edwards C, Felts B, Haas AF, Hartmann AC, Mueller B, Roach TN, Salamon P, Silveira C, Vermeij MJ, Rohwer F, Luque A. Space-filling and benthic competition on coral reefs. PeerJ 2021; 9:e11213. [PMID: 34249480 PMCID: PMC8253116 DOI: 10.7717/peerj.11213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/15/2021] [Indexed: 12/28/2022] Open
Abstract
Reef-building corals are ecosystem engineers that compete with other benthic organisms for space and resources. Corals harvest energy through their surface by photosynthesis and heterotrophic feeding, and they divert part of this energy to defend their outer colony perimeter against competitors. Here, we hypothesized that corals with a larger space-filling surface and smaller perimeters increase energy gain while reducing the exposure to competitors. This predicted an association between these two geometric properties of corals and the competitive outcome against other benthic organisms. To test the prediction, fifty coral colonies from the Caribbean island of Curaçao were rendered using digital 3D and 2D reconstructions. The surface areas, perimeters, box-counting dimensions (as a proxy of surface and perimeter space-filling), and other geometric properties were extracted and analyzed with respect to the percentage of the perimeter losing or winning against competitors based on the coral tissue apparent growth or damage. The increase in surface space-filling dimension was the only significant single indicator of coral winning outcomes, but the combination of surface space-filling dimension with perimeter length increased the statistical prediction of coral competition outcomes. Corals with larger surface space-filling dimensions (Ds > 2) and smaller perimeters displayed more winning outcomes, confirming the initial hypothesis. We propose that the space-filling property of coral surfaces complemented with other proxies of coral competitiveness, such as life history traits, will provide a more accurate quantitative characterization of coral competition outcomes on coral reefs. This framework also applies to other organisms or ecological systems that rely on complex surfaces to obtain energy for competition.
Collapse
Affiliation(s)
- Emma E. George
- Department of Biology, San Diego State University, San Diego, CA, United States of America
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - James A. Mullinix
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA, United States of America
- Computational Science Research Center, San Diego State University, San Diego, CA, United States of America
- Viral Information Institute, San Diego State University, San Diego, CA, United States of America
| | - Fanwei Meng
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA, United States of America
| | - Barbara A. Bailey
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA, United States of America
- Viral Information Institute, San Diego State University, San Diego, CA, United States of America
| | - Clinton Edwards
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States of America
| | - Ben Felts
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA, United States of America
- Viral Information Institute, San Diego State University, San Diego, CA, United States of America
| | - Andreas F. Haas
- NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Texel, Netherlands
| | - Aaron C. Hartmann
- Department of Biology, San Diego State University, San Diego, CA, United States of America
- Smithsonian National Museum of Natural History, Washington, DC, United States of America
- Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States of America
| | - Benjamin Mueller
- CARMABI Foundation, Willemstad, Curaçao
- Department of Freshwater and Marine Ecology/Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Ty N.F. Roach
- Department of Biology, San Diego State University, San Diego, CA, United States of America
- Viral Information Institute, San Diego State University, San Diego, CA, United States of America
- Hawai’i Institute of Marine Biology, University of Hawai’i at Mãnoa, Kãne’ohe, HI, United States of America
| | - Peter Salamon
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA, United States of America
- Viral Information Institute, San Diego State University, San Diego, CA, United States of America
| | - Cynthia Silveira
- Department of Biology, San Diego State University, San Diego, CA, United States of America
- Viral Information Institute, San Diego State University, San Diego, CA, United States of America
- Department of Biology, University of Miami, Coral Gables, FL, United States of America
| | - Mark J.A. Vermeij
- CARMABI Foundation, Willemstad, Curaçao
- Department of Freshwater and Marine Ecology/Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Forest Rohwer
- Department of Biology, San Diego State University, San Diego, CA, United States of America
- Viral Information Institute, San Diego State University, San Diego, CA, United States of America
| | - Antoni Luque
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA, United States of America
- Computational Science Research Center, San Diego State University, San Diego, CA, United States of America
- Viral Information Institute, San Diego State University, San Diego, CA, United States of America
| |
Collapse
|
11
|
Silveira CB, Luque A, Rohwer F. The landscape of lysogeny across microbial community density, diversity and energetics. Environ Microbiol 2021; 23:4098-4111. [PMID: 34121301 DOI: 10.1111/1462-2920.15640] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022]
Abstract
Lysogens are common at high bacterial densities, an observation that contrasts with the prevailing view of lysogeny as a low-density refugium strategy. Here, we review the mechanisms regulating lysogeny in complex communities and show that the additive effects of coinfections, diversity and host energic status yield a bimodal distribution of lysogeny as a function of microbial densities. At high cell densities (above 106 cells ml-1 or g-1 ) and low diversity, coinfections by two or more phages are frequent and excess energy availability stimulates inefficient metabolism. Both mechanisms favour phage integration and characterize the Piggyback-the-Winner dynamic. At low densities (below 105 cells ml-1 or g-1 ), starvation represses lytic genes and extends the time window for lysogenic commitment, resulting in a higher frequency of coinfections that cause integration. This pattern follows the predictions of the refugium hypothesis. At intermediary densities (between 105 and 106 cells ml-1 or g-1 ), encounter rates and efficient energy metabolism favour lysis. This may involve Kill-the-Winner lytic dynamics and induction. Based on these three regimes, we propose a framework wherein phage integration occurs more frequently at both ends of the host density gradient, with distinct underlying molecular mechanisms (coinfections and host metabolism) dominating at each extreme.
Collapse
Affiliation(s)
- Cynthia B Silveira
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33143, USA.,Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, 4600 Rickenbacker Causeway, Miami, FL, 33149, USA
| | - Antoni Luque
- Viral Information Institute, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA.,Department of Mathematics and Statistics, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA.,Computational Science Research Center, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA
| | - Forest Rohwer
- Viral Information Institute, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA.,Department of Biology, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA
| |
Collapse
|
12
|
Silva L, Calleja ML, Ivetic S, Huete-Stauffer T, Roth F, Carvalho S, Morán XAG. Heterotrophic bacterioplankton responses in coral- and algae-dominated Red Sea reefs show they might benefit from future regime shift. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141628. [PMID: 32896805 DOI: 10.1016/j.scitotenv.2020.141628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/06/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
In coral reefs, dissolved organic matter (DOM) cycling is a critical process for sustaining ecosystem functioning. However, global and local stressors have caused persistent shifts from coral- to algae-dominated benthic communities. The influence of such phase shifts on DOM nature and its utilization by heterotrophic bacterioplankton remains poorly studied. Every second month for one year, we retrieved seawater samples enriched in DOM produced by coral- and algae-dominated benthic communities in a central Red Sea reef during a full annual cycle. Seawater incubations were conducted in the laboratory under in situ temperature and light conditions by inoculating enriched DOM samples with bacterial assemblages collected in the surrounding waters. Dissolved organic carbon (DOC) concentrations were higher in the warmer months (May-September) in both communities, resulting in higher specific growth rates and bacterial growth efficiencies (BGE). However, these high summer values were significantly enhanced in algal-DOM relative to coral-DOM, suggesting the potential for bacterioplankton biomass increase in reefs with algae replacing healthy coral cover under warmer conditions. The potential exacerbation of heterotrophic bacterial activity in the ongoing widespread regime shift from coral- to algae-dominated communities may have detrimental consequences for the overall health of tropical coral reefs.
Collapse
Affiliation(s)
- Luis Silva
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal 23955-6900, Saudi Arabia.
| | - Maria Ll Calleja
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal 23955-6900, Saudi Arabia; Department of Climate Geochemistry, Max Planck Institute for Chemistry (MPIC), Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | | | - Tamara Huete-Stauffer
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal 23955-6900, Saudi Arabia
| | - Florian Roth
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal 23955-6900, Saudi Arabia; Baltic Sea Centre, Stockholm University, 11418 Stockholm, Sweden; Tvärminne Zoological Station, University of Helsinki, 00100 Helsinki, Finland
| | - Susana Carvalho
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal 23955-6900, Saudi Arabia
| | - Xosé Anxelu G Morán
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
13
|
Aquino CA, Besemer RM, DeRito CM, Kocian J, Porter IR, Raimondi PT, Rede JE, Schiebelhut LM, Sparks JP, Wares JP, Hewson I. Evidence That Microorganisms at the Animal-Water Interface Drive Sea Star Wasting Disease. Front Microbiol 2021; 11:610009. [PMID: 33488550 PMCID: PMC7815596 DOI: 10.3389/fmicb.2020.610009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
Sea star wasting (SSW) disease describes a condition affecting asteroids that resulted in significant Northeastern Pacific population decline following a mass mortality event in 2013. The etiology of SSW is unresolved. We hypothesized that SSW is a sequela of microbial organic matter remineralization near respiratory surfaces, one consequence of which may be limited O2 availability at the animal-water interface. Microbial assemblages inhabiting tissues and at the asteroid-water interface bore signatures of copiotroph proliferation before SSW onset, followed by the appearance of putatively facultative and strictly anaerobic taxa at the time of lesion genesis and as animals died. SSW lesions were induced in Pisaster ochraceus by enrichment with a variety of organic matter (OM) sources. These results together illustrate that depleted O2 conditions at the animal-water interface may be established by heterotrophic microbial activity in response to organic matter loading. SSW was also induced by modestly (∼39%) depleted O2 conditions in aquaria, suggesting that small perturbations in dissolved O2 may exacerbate the condition. SSW susceptibility between species was significantly and positively correlated with surface rugosity, a key determinant of diffusive boundary layer thickness. Tissues of SSW-affected individuals collected in 2013–2014 bore δ15N signatures reflecting anaerobic processes, which suggests that this phenomenon may have affected asteroids during mass mortality at the time. The impacts of enhanced microbial activity and subsequent O2 diffusion limitation may be more pronounced under higher temperatures due to lower O2 solubility, in more rugose asteroid species due to restricted hydrodynamic flow, and in larger specimens due to their lower surface area to volume ratios which affects diffusive respiratory potential.
Collapse
Affiliation(s)
- Citlalli A Aquino
- Department of Biology, Estuary and Ocean Science Center, San Francisco State University, Tiburon, CA, United States
| | - Ryan M Besemer
- Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, United States
| | | | - Jan Kocian
- Unaffiliated Researcher, Freeland, WA, United States
| | - Ian R Porter
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Peter T Raimondi
- Institute of Marine Sciences, Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Jordan E Rede
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| | - Lauren M Schiebelhut
- Life and Environmental Sciences, University of California, Merced, Merced, CA, United States
| | - Jed P Sparks
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States
| | - John P Wares
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
14
|
Roach TNF, Little M, Arts MGI, Huckeba J, Haas AF, George EE, Quinn RA, Cobián-Güemes AG, Naliboff DS, Silveira CB, Vermeij MJA, Kelly LW, Dorrestein PC, Rohwer F. A multiomic analysis of in situ coral-turf algal interactions. Proc Natl Acad Sci U S A 2020; 117:13588-13595. [PMID: 32482859 PMCID: PMC7306781 DOI: 10.1073/pnas.1915455117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Viruses, microbes, and host macroorganisms form ecological units called holobionts. Here, a combination of metagenomic sequencing, metabolomic profiling, and epifluorescence microscopy was used to investigate how the different components of the holobiont including bacteria, viruses, and their associated metabolites mediate ecological interactions between corals and turf algae. The data demonstrate that there was a microbial assemblage unique to the coral-turf algae interface displaying higher microbial abundances and larger microbial cells. This was consistent with previous studies showing that turf algae exudates feed interface and coral-associated microbial communities, often at the detriment of the coral. Further supporting this hypothesis, when the metabolites were assigned a nominal oxidation state of carbon (NOSC), we found that the turf algal metabolites were significantly more reduced (i.e., have higher potential energy) compared to the corals and interfaces. The algae feeding hypothesis was further supported when the ecological outcomes of interactions (e.g., whether coral was winning or losing) were considered. For example, coral holobionts losing the competition with turf algae had higher Bacteroidetes-to-Firmicutes ratios and an elevated abundance of genes involved in bacterial growth and division. These changes were similar to trends observed in the obese human gut microbiome, where overfeeding of the microbiome creates a dysbiosis detrimental to the long-term health of the metazoan host. Together these results show that there are specific biogeochemical changes at coral-turf algal interfaces that predict the competitive outcomes between holobionts and are consistent with algal exudates feeding coral-associated microbes.
Collapse
Affiliation(s)
- Ty N F Roach
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744;
- Biosphere 2, University of Arizona, Oracle, AZ 85739
- Department of Biology, San Diego State University, San Diego, CA 92182
- Viral Information Institute, San Diego State University, San Diego, CA 92182
| | - Mark Little
- Department of Biology, San Diego State University, San Diego, CA 92182
- Viral Information Institute, San Diego State University, San Diego, CA 92182
| | - Milou G I Arts
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE, Amsterdam, The Netherlands
- Royal Netherlands Institute for Sea Research (NIOZ), Utrecht University, 1790 AB, Den Burg, Texel, The Netherlands
- Department of Botany, University of British Columbia, Vancouver, BC, Canada V6T1Z4
| | - Joel Huckeba
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE, Amsterdam, The Netherlands
| | - Andreas F Haas
- Royal Netherlands Institute for Sea Research (NIOZ), Utrecht University, 1790 AB, Den Burg, Texel, The Netherlands
| | - Emma E George
- Department of Botany, University of British Columbia, Vancouver, BC, Canada V6T1Z4
| | - Robert A Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48823
| | | | | | - Cynthia B Silveira
- Department of Biology, San Diego State University, San Diego, CA 92182
- Viral Information Institute, San Diego State University, San Diego, CA 92182
| | - Mark J A Vermeij
- Royal Netherlands Institute for Sea Research (NIOZ), Utrecht University, 1790 AB, Den Burg, Texel, The Netherlands
- Caribbean Research and Management of Biodiversity (CARMABI), Willemstad, Curaçao
| | | | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Forest Rohwer
- Department of Biology, San Diego State University, San Diego, CA 92182;
- Viral Information Institute, San Diego State University, San Diego, CA 92182
| |
Collapse
|
15
|
Silveira CB, Coutinho FH, Cavalcanti GS, Benler S, Doane MP, Dinsdale EA, Edwards RA, Francini-Filho RB, Thompson CC, Luque A, Rohwer FL, Thompson F. Genomic and ecological attributes of marine bacteriophages encoding bacterial virulence genes. BMC Genomics 2020; 21:126. [PMID: 32024463 PMCID: PMC7003362 DOI: 10.1186/s12864-020-6523-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
Background Bacteriophages encode genes that modify bacterial functions during infection. The acquisition of phage-encoded virulence genes is a major mechanism for the rise of bacterial pathogens. In coral reefs, high bacterial density and lysogeny has been proposed to exacerbate reef decline through the transfer of phage-encoded virulence genes. However, the functions and distribution of these genes in phage virions on the reef remain unknown. Results Here, over 28,000 assembled viral genomes from the free viral community in Atlantic and Pacific Ocean coral reefs were queried against a curated database of virulence genes. The diversity of virulence genes encoded in the viral genomes was tested for relationships with host taxonomy and bacterial density in the environment. These analyses showed that bacterial density predicted the profile of virulence genes encoded by phages. The Shannon diversity of virulence-encoding phages was negatively related with bacterial density, leading to dominance of fewer genes at high bacterial abundances. A statistical learning analysis showed that reefs with high microbial density were enriched in viruses encoding genes enabling bacterial recognition and invasion of metazoan epithelium. Over 60% of phages could not have their hosts identified due to limitations of host prediction tools; for those which hosts were identified, host taxonomy was not an indicator of the presence of virulence genes. Conclusions This study described bacterial virulence factors encoded in the genomes of bacteriophages at the community level. The results showed that the increase in microbial densities that occurs during coral reef degradation is associated with a change in the genomic repertoire of bacteriophages, specifically in the diversity and distribution of bacterial virulence genes. This suggests that phages are implicated in the rise of pathogens in disturbed marine ecosystems.
Collapse
Affiliation(s)
- Cynthia B Silveira
- Department of Biology, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA. .,Viral Information Institute, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA. .,Department of Biology, University of Miami, 1301 Memorial Dr., Coral Gables, FL, 33146, USA.
| | - Felipe H Coutinho
- Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Apartado 18, 03550, San Juan de Alicante, Spain
| | - Giselle S Cavalcanti
- Department of Biology, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA.,Viral Information Institute, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA
| | - Sean Benler
- Department of Biology, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA.,Viral Information Institute, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA
| | - Michael P Doane
- Department of Biology, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA.,Viral Information Institute, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA.,Sydney Institute of Marine Science, 19 Chowder Bay Rd, Mosman, NSW, 2088, Australia
| | - Elizabeth A Dinsdale
- Department of Biology, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA.,Viral Information Institute, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA
| | - Robert A Edwards
- Department of Biology, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA.,Viral Information Institute, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA
| | - Ronaldo B Francini-Filho
- Centro de Biologia Marinha, Universidade de São Paulo, Rodovia Manoel Hypólito do Rego, Km 131,50, São Sebastião, SP, 11600-000, Brazil
| | - Cristiane C Thompson
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, RJ, 21941- 599, Brazil
| | - Antoni Luque
- Viral Information Institute, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA.,Department of Mathematics and Statistics, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA.,Computational Science Research Center, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA
| | - Forest L Rohwer
- Department of Biology, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA.,Viral Information Institute, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA
| | - Fabiano Thompson
- SAGE/COPPE, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, RJ, 21941- 599, Brazil
| |
Collapse
|