1
|
Joseph TT, Bu W, Haji-Ghassemi O, Chen YS, Woll K, Allen PD, Brannigan G, van Petegem F, Eckenhoff RG. Propofol binds and inhibits skeletal muscle ryanodine receptor 1. Br J Anaesth 2024; 133:1093-1100. [PMID: 39304470 PMCID: PMC11488158 DOI: 10.1016/j.bja.2024.06.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND As the primary Ca2+ release channel in skeletal muscle sarcoplasmic reticulum (SR), mutations in type 1 ryanodine receptor (RyR1) or its binding partners underlie a constellation of muscle disorders, including malignant hyperthermia (MH). In patients with MH mutations, triggering agents including halogenated volatile anaesthetics bias RyR1 to an open state resulting in uncontrolled Ca2+ release, increased sarcomere tension, and heat production. Propofol does not trigger MH and is commonly used for patients at risk of MH. The atomic-level interactions of any anaesthetic with RyR1 are unknown. METHODS RyR1 opening was measured by [3H]ryanodine binding in heavy SR vesicles (wild type) and single-channel recordings of MH mutant R615C RyR1 in planar lipid bilayers, each exposed to propofol or the photoaffinity ligand analogue m-azipropofol (AziPm). Activator-mediated wild-type RyR1 opening as a function of propofol concentration was measured by Fura-2 Ca2+ imaging of human skeletal myotubes. AziPm binding sites, reflecting propofol binding, were identified on RyR1 using photoaffinity labelling. Propofol binding affinity to a photoadducted site was predicted using molecular dynamics (MD) simulation. RESULTS Both propofol and AziPm decreased RyR1 opening in planar lipid bilayers (P<0.01) and heavy SR vesicles, and inhibited activator-induced Ca2+ release from human skeletal myotube SR. Several putative propofol binding sites on RyR1 were photoadducted by AziPm. MD simulation predicted propofol KD values of 55.8 μM and 1.4 μM in the V4828 pocket in open and closed RyR1, respectively. CONCLUSIONS Propofol demonstrated direct binding and inhibition of RyR1 at clinically plausible concentrations, consistent with the hypothesis that propofol partially mitigates malignant hyperthermia by inhibition of induced Ca2+ flux through RyR1.
Collapse
Affiliation(s)
- Thomas T Joseph
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Weiming Bu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Omid Haji-Ghassemi
- Department of Biochemistry, University of British Columbia, Vancouver, BC, Canada
| | - Yu S Chen
- Department of Biochemistry, University of British Columbia, Vancouver, BC, Canada
| | - Kellie Woll
- Department of Biochemistry, University of British Columbia, Vancouver, BC, Canada
| | - Paul D Allen
- Department of Anesthesiology, University of Tennessee, Knoxville, TN, USA
| | - Grace Brannigan
- Department of Physics and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Filip van Petegem
- Department of Biochemistry, University of British Columbia, Vancouver, BC, Canada
| | - Roderic G Eckenhoff
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Ibarra Moreno CA, Silva HCA, Voermans NC, Jungbluth H, van den Bersselaar LR, Rendu J, Cieniewicz A, Hopkins PM, Riazi S. Myopathic manifestations across the adult lifespan of patients with malignant hyperthermia susceptibility: a narrative review. Br J Anaesth 2024; 133:759-767. [PMID: 39107166 PMCID: PMC11443134 DOI: 10.1016/j.bja.2024.05.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 08/09/2024] Open
Abstract
Malignant hyperthermia susceptibility (MHS) designates individuals at risk of developing a hypermetabolic reaction triggered by halogenated anaesthetics or the depolarising neuromuscular blocking agent suxamethonium. Over the past few decades, beyond the operating theatre, myopathic manifestations impacting daily life are increasingly recognised as a prevalent phenomenon in MHS patients. At the request of the European Malignant Hyperthermia Group, we reviewed the literature and gathered the opinion of experts to define MHS-related myopathy as a distinct phenotype expressed across the adult lifespan of MHS patients unrelated to anaesthetic exposure; this serves to raise awareness about non-anaesthetic manifestations, potential therapies, and management of MHS-related myopathy. We focused on the clinical presentation, biochemical and histopathological findings, and the impact on patient well-being. The spectrum of symptoms of MHS-related myopathy encompasses muscle cramps, stiffness, myalgias, rhabdomyolysis, and weakness, with a wide age range of onset mainly during adulthood. Histopathological analysis can reveal nonspecific abnormalities suggestive of RYR1 involvement, while metabolic profiling reflects altered energy metabolism in MHS muscle. Myopathic manifestations can significantly impact patient quality of life and lead to functional limitations and socio-economic burden. While currently available therapies can provide symptomatic relief, there is a need for further research into targeted treatments addressing the underlying pathophysiology. Counselling early after establishing the MHS diagnosis, followed by multidisciplinary management involving various medical specialties, is crucial to optimise patient care.
Collapse
Affiliation(s)
- Carlos A Ibarra Moreno
- Malignant Hyperthermia Investigation Unit, Department of Anesthesiology and Pain Management, University Health Network, Toronto, ON, Canada
| | - Helga C A Silva
- Malignant Hyperthermia Unit, Department of Anesthesiology, Pain and Intensive Care, Federal University of São Paulo, São Paulo, Brazil
| | - Nicol C Voermans
- Department of Neurology, Radboudumc Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina London Children's Hospital, Guy's and St. Thomas' Hospital NHS Foundation Trust, London, UK; Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, London, UK
| | - Luuk R van den Bersselaar
- Malignant Hyperthermia Investigation Unit, Department of Anesthesiology, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands; Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - John Rendu
- Universite Grenoble Alpes, INSERM, Grenoble Institut Neurosciences, U1216, CHU Grenoble Alpes, Grenoble, France
| | - Agnieszka Cieniewicz
- Department of Anaesthesiology and Intensive Therapy, Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Philip M Hopkins
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK; Department of Anaesthesia, St James's University Hospital, Leeds Teaching Hospitals, NHS Trust, Leeds, UK
| | - Sheila Riazi
- Malignant Hyperthermia Investigation Unit, Department of Anesthesiology and Pain Management, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
3
|
Karuppasamy M, English KG, Henry CA, Manzini MC, Parant JM, Wright MA, Ruparelia AA, Currie PD, Gupta VA, Dowling JJ, Maves L, Alexander MS. Standardization of zebrafish drug testing parameters for muscle diseases. Dis Model Mech 2024; 17:dmm050339. [PMID: 38235578 PMCID: PMC10820820 DOI: 10.1242/dmm.050339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024] Open
Abstract
Skeletal muscular diseases predominantly affect skeletal and cardiac muscle, resulting in muscle weakness, impaired respiratory function and decreased lifespan. These harmful outcomes lead to poor health-related quality of life and carry a high healthcare economic burden. The absence of promising treatments and new therapies for muscular disorders requires new methods for candidate drug identification and advancement in animal models. Consequently, the rapid screening of drug compounds in an animal model that mimics features of human muscle disease is warranted. Zebrafish are a versatile model in preclinical studies that support developmental biology and drug discovery programs for novel chemical entities and repurposing of established drugs. Due to several advantages, there is an increasing number of applications of the zebrafish model for high-throughput drug screening for human disorders and developmental studies. Consequently, standardization of key drug screening parameters, such as animal husbandry protocols, drug compound administration and outcome measures, is paramount for the continued advancement of the model and field. Here, we seek to summarize and explore critical drug treatment and drug screening parameters in the zebrafish-based modeling of human muscle diseases. Through improved standardization and harmonization of drug screening parameters and protocols, we aim to promote more effective drug discovery programs.
Collapse
Affiliation(s)
- Muthukumar Karuppasamy
- Division of Neurology, Department of Pediatrics, University of Alabama at Birmingham and Children's of Alabama, Birmingham, AL 35294, USA
| | - Katherine G. English
- Division of Neurology, Department of Pediatrics, University of Alabama at Birmingham and Children's of Alabama, Birmingham, AL 35294, USA
| | - Clarissa A. Henry
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - M. Chiara Manzini
- Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Rutgers, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - John M. Parant
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
| | - Melissa A. Wright
- Department of Pediatrics, Section of Child Neurology, University of Colorado at Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Avnika A. Ruparelia
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria 3010, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Peter D. Currie
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria 3010, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
- EMBL Australia, Victorian Node, Monash University, Clayton, Victoria 3800, Australia
| | - Vandana A. Gupta
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - James J. Dowling
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario M5G 1X8, Canada
- Program for Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 0A4, Canada
| | - Lisa Maves
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Matthew S. Alexander
- Division of Neurology, Department of Pediatrics, University of Alabama at Birmingham and Children's of Alabama, Birmingham, AL 35294, USA
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- UAB Center for Neurodegeneration and Experimental Therapeutics (CNET), Birmingham, AL 35294, USA
| |
Collapse
|
4
|
Gineste C, Laporte J. Therapeutic approaches in different congenital myopathies. Curr Opin Pharmacol 2023; 68:102328. [PMID: 36512981 DOI: 10.1016/j.coph.2022.102328] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/17/2022] [Accepted: 11/12/2022] [Indexed: 12/14/2022]
Abstract
Congenital myopathies are rare and severe genetic diseases affecting the skeletal muscle function in children and adults. They present a variable spectrum of phenotypes and a genetic heterogeneity. Subgroups are defined according to the clinical and histopathological features and encompass core myopathy, centronuclear myopathy, nemaline myopathy and other rare congenital myopathies. No approved treatment exists to date for any congenital myopathies. To tackle this important unmet need, an increased number of proof-of-concept studies recently assessed the therapeutic potential of various strategies, either pharmacological or genetic-based, aiming at counteracting muscle weakness or/and cure the pathology. Here, we list the implicated genes and cellular pathways, and review the therapeutic approaches preclinically tested and the ongoing/completed clinical trials for the different types of congenital myopathies.
Collapse
Affiliation(s)
- Charlotte Gineste
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, Cnrs UMR7104, Strasbourg University, Illkirch 67404, France
| | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, Cnrs UMR7104, Strasbourg University, Illkirch 67404, France.
| |
Collapse
|
5
|
Johnson CA, Behbehani R, Buss F. Unconventional Myosins from Caenorhabditis elegans as a Probe to Study Human Orthologues. Biomolecules 2022; 12:biom12121889. [PMID: 36551317 PMCID: PMC9775386 DOI: 10.3390/biom12121889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Unconventional myosins are a superfamily of actin-based motor proteins that perform a number of roles in fundamental cellular processes, including (but not limited to) intracellular trafficking, cell motility, endocytosis, exocytosis and cytokinesis. 40 myosins genes have been identified in humans, which belong to different 12 classes based on their domain structure and organisation. These genes are widely expressed in different tissues, and mutations leading to loss of function are associated with a wide variety of pathologies while over-expression often results in cancer. Caenorhabditis elegans (C. elegans) is a small, free-living, non-parasitic nematode. ~38% of the genome of C. elegans has predicted orthologues in the human genome, making it a valuable tool to study the function of human counterparts and human diseases. To date, 8 unconventional myosin genes have been identified in the nematode, from 6 different classes with high homology to human paralogues. The hum-1 and hum-5 (heavy chain of an unconventional myosin) genes encode myosin of class I, hum-2 of class V, hum-3 and hum-8 of class VI, hum-6 of class VII and hum-7 of class IX. The hum-4 gene encodes a high molecular mass myosin (307 kDa) that is one of the most highly divergent myosins and is a member of class XII. Mutations in many of the human orthologues are lethal, indicating their essential properties. However, a functional characterisation for many of these genes in C. elegans has not yet been performed. This article reviews the current knowledge of unconventional myosin genes in C. elegans and explores the potential use of the nematode to study the function and regulation of myosin motors to provide valuable insights into their role in diseases.
Collapse
|
6
|
A Large-Scale High-Throughput Screen for Modulators of SERCA Activity. Biomolecules 2022; 12:biom12121789. [PMID: 36551215 PMCID: PMC9776381 DOI: 10.3390/biom12121789] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
The sarco/endoplasmic reticulum Ca-ATPase (SERCA) is a P-type ion pump that transports Ca2+ from the cytosol into the endoplasmic/sarcoplasmic reticulum (ER/SR) in most mammalian cells. It is critically important in muscle, facilitating relaxation and enabling subsequent contraction. Increasing SERCA expression or specific activity can alleviate muscle dysfunction, most notably in the heart, and we seek to develop small-molecule drug candidates that activate SERCA. Therefore, we adapted an NADH-coupled assay, measuring Ca-dependent ATPase activity of SERCA, to high-throughput screening (HTS) format, and screened a 46,000-compound library of diverse chemical scaffolds. This HTS platform yielded numerous hits that reproducibly alter SERCA Ca-ATPase activity, with few false positives. The top 19 activating hits were further tested for effects on both Ca-ATPase and Ca2+ transport, in both cardiac and skeletal SR. Nearly all hits increased Ca2+ uptake in both cardiac and skeletal SR, with some showing isoform specificity. Furthermore, dual analysis of both activities identified compounds with a range of effects on Ca2+-uptake and ATPase, which fit into distinct classifications. Further study will be needed to identify which classifications are best suited for therapeutic use. These results reinforce the need for robust secondary assays and criteria for selection of lead compounds, before undergoing HTS on a larger scale.
Collapse
|
7
|
Rossi D, Catallo MR, Pierantozzi E, Sorrentino V. Mutations in proteins involved in E-C coupling and SOCE and congenital myopathies. J Gen Physiol 2022; 154:e202213115. [PMID: 35980353 PMCID: PMC9391951 DOI: 10.1085/jgp.202213115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
In skeletal muscle, Ca2+ necessary for muscle contraction is stored and released from the sarcoplasmic reticulum (SR), a specialized form of endoplasmic reticulum through the mechanism known as excitation-contraction (E-C) coupling. Following activation of skeletal muscle contraction by the E-C coupling mechanism, replenishment of intracellular stores requires reuptake of cytosolic Ca2+ into the SR by the activity of SR Ca2+-ATPases, but also Ca2+ entry from the extracellular space, through a mechanism called store-operated calcium entry (SOCE). The fine orchestration of these processes requires several proteins, including Ca2+ channels, Ca2+ sensors, and Ca2+ buffers, as well as the active involvement of mitochondria. Mutations in genes coding for proteins participating in E-C coupling and SOCE are causative of several myopathies characterized by a wide spectrum of clinical phenotypes, a variety of histological features, and alterations in intracellular Ca2+ balance. This review summarizes current knowledge on these myopathies and discusses available knowledge on the pathogenic mechanisms of disease.
Collapse
Affiliation(s)
- Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| | - Maria Rosaria Catallo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| |
Collapse
|
8
|
Volpatti JR, Ghahramani-Seno MM, Mansat M, Sabha N, Sarikaya E, Goodman SJ, Chater-Diehl E, Celik A, Pannia E, Froment C, Combes-Soia L, Maani N, Yuki KE, Chicanne G, Uusküla-Reimand L, Monis S, Alvi SA, Genetti CA, Payrastre B, Beggs AH, Bonnemann CG, Muntoni F, Wilson MD, Weksberg R, Viaud J, Dowling JJ. X-linked myotubular myopathy is associated with epigenetic alterations and is ameliorated by HDAC inhibition. Acta Neuropathol 2022; 144:537-563. [PMID: 35844027 PMCID: PMC9381459 DOI: 10.1007/s00401-022-02468-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 12/29/2022]
Abstract
X-linked myotubular myopathy (XLMTM) is a fatal neuromuscular disorder caused by loss of function mutations in MTM1. At present, there are no directed therapies for XLMTM, and incomplete understanding of disease pathomechanisms. To address these knowledge gaps, we performed a drug screen in mtm1 mutant zebrafish and identified four positive hits, including valproic acid, which functions as a potent suppressor of the mtm1 zebrafish phenotype via HDAC inhibition. We translated these findings to a mouse XLMTM model, and showed that valproic acid ameliorates the murine phenotype. These observations led us to interrogate the epigenome in Mtm1 knockout mice; we found increased DNA methylation, which is normalized with valproic acid, and likely mediated through aberrant 1-carbon metabolism. Finally, we made the unexpected observation that XLMTM patients share a distinct DNA methylation signature, suggesting that epigenetic alteration is a conserved disease feature amenable to therapeutic intervention.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Epigenesis, Genetic
- Mice
- Muscle, Skeletal/metabolism
- Myopathies, Structural, Congenital/drug therapy
- Myopathies, Structural, Congenital/genetics
- Myopathies, Structural, Congenital/metabolism
- Protein Tyrosine Phosphatases, Non-Receptor/genetics
- Protein Tyrosine Phosphatases, Non-Receptor/metabolism
- Valproic Acid/metabolism
- Valproic Acid/pharmacology
- Zebrafish/metabolism
Collapse
Affiliation(s)
- Jonathan R Volpatti
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Mehdi M Ghahramani-Seno
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Mélanie Mansat
- Institute of Cardiovascular and Metabolic Diseases (I2MC), INSERM, UMR-S U1297 and University of Toulouse III, CHU-Rangueil, Toulouse, France
| | - Nesrin Sabha
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Ege Sarikaya
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Sarah J Goodman
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Eric Chater-Diehl
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Alper Celik
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Emanuela Pannia
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Carine Froment
- Institut de Pharmacologie Et Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lucie Combes-Soia
- Institut de Pharmacologie Et Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Nika Maani
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Kyoko E Yuki
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Gaëtan Chicanne
- Institute of Cardiovascular and Metabolic Diseases (I2MC), INSERM, UMR-S U1297 and University of Toulouse III, CHU-Rangueil, Toulouse, France
| | - Liis Uusküla-Reimand
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Simon Monis
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Sana Akhtar Alvi
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Casie A Genetti
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bernard Payrastre
- Institute of Cardiovascular and Metabolic Diseases (I2MC), INSERM, UMR-S U1297 and University of Toulouse III, CHU-Rangueil, Toulouse, France
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire (CHU) de Toulouse, Toulouse Cedex, France
| | - Alan H Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carsten G Bonnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, NIH, Bethesda, MD, USA
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Michael D Wilson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
- Program for Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Rosanna Weksberg
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Julien Viaud
- Institute of Cardiovascular and Metabolic Diseases (I2MC), INSERM, UMR-S U1297 and University of Toulouse III, CHU-Rangueil, Toulouse, France
| | - James J Dowling
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada.
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada.
- Department of Paediatrics, University of Toronto, Toronto, ON, M5S 1A1, Canada.
- Division of Neurology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
| |
Collapse
|
9
|
Harrington S, Knox JJ, Burns AR, Choo KL, Au A, Kitner M, Haeberli C, Pyche J, D'Amata C, Kim YH, Volpatti JR, Guiliani M, Snider J, Wong V, Palmeira BM, Redman EM, Vaidya AS, Gilleard JS, Stagljar I, Cutler SR, Kulke D, Dowling JJ, Yip CM, Keiser J, Zasada I, Lautens M, Roy PJ. Egg-laying and locomotory screens with C. elegans yield a nematode-selective small molecule stimulator of neurotransmitter release. Commun Biol 2022; 5:865. [PMID: 36002479 PMCID: PMC9402605 DOI: 10.1038/s42003-022-03819-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/08/2022] [Indexed: 12/05/2022] Open
Abstract
Nematode parasites of humans, livestock and crops dramatically impact human health and welfare. Alarmingly, parasitic nematodes of animals have rapidly evolved resistance to anthelmintic drugs, and traditional nematicides that protect crops are facing increasing restrictions because of poor phylogenetic selectivity. Here, we exploit multiple motor outputs of the model nematode C. elegans towards nematicide discovery. This work yielded multiple compounds that selectively kill and/or immobilize diverse nematode parasites. We focus on one compound that induces violent convulsions and paralysis that we call nementin. We find that nementin stimulates neuronal dense core vesicle release, which in turn enhances cholinergic signaling. Consequently, nementin synergistically enhances the potency of widely-used non-selective acetylcholinesterase (AChE) inhibitors, but in a nematode-selective manner. Nementin therefore has the potential to reduce the environmental impact of toxic AChE inhibitors that are used to control nematode infections and infestations. A C. elegans-based screening approach identifies nementin as a nematode-selective nematicide that can be used synergistically with acetylcholinesterase inhibitors
Collapse
Affiliation(s)
- Sean Harrington
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada.,The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Jessica J Knox
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Andrew R Burns
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Ken-Loon Choo
- The Department of Chemistry, University of Toronto, Toronto, Canada
| | - Aaron Au
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Megan Kitner
- USDA-ARS Horticultural Crops Research Laboratory, Corvallis, OR, USA
| | - Cecile Haeberli
- Department of Medical Parasitology and Infection Biology, Swiss-Tropical and Public Health Institute, (Swiss TPH), Basel, Switzerland.,Faculty of Science, University of Basel, Basel, Switzerland
| | - Jacob Pyche
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada.,The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Cassandra D'Amata
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Yong-Hyun Kim
- The Department of Chemistry, University of Toronto, Toronto, Canada
| | - Jonathan R Volpatti
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Maximillano Guiliani
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Jamie Snider
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Victoria Wong
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Bruna M Palmeira
- Department of Comparative Biology and Experimental Medicine, Host-Parasite Interactions (HPI) Program, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Elizabeth M Redman
- Department of Comparative Biology and Experimental Medicine, Host-Parasite Interactions (HPI) Program, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Aditya S Vaidya
- Institute for Integrative Genome Biology, University of California, Riverside, CA, USA.,Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - John S Gilleard
- Department of Comparative Biology and Experimental Medicine, Host-Parasite Interactions (HPI) Program, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Igor Stagljar
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada.,Mediterranean Institute for Life Sciences, Split, Croatia.,School of Medicine, University of Split, Split, Croatia
| | - Sean R Cutler
- Institute for Integrative Genome Biology, University of California, Riverside, CA, USA.,Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Daniel Kulke
- Research Parasiticides, Bayer Animal Health GmbH, Monheim, Germany.,Department of Biomedical Sciences, Iowa State University, Ames, IA, USA.,Global Innovation, Boehringer Ingelheim Vetmedica GmbH, Ingelheim am Rhein, Germany
| | - James J Dowling
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Christopher M Yip
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss-Tropical and Public Health Institute, (Swiss TPH), Basel, Switzerland.,Faculty of Science, University of Basel, Basel, Switzerland
| | - Inga Zasada
- USDA-ARS Horticultural Crops Research Laboratory, Corvallis, OR, USA
| | - Mark Lautens
- The Department of Chemistry, University of Toronto, Toronto, Canada
| | - Peter J Roy
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada. .,The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, Canada.
| |
Collapse
|
10
|
Endo Y, Groom L, Celik A, Kraeva N, Lee CS, Jung SY, Gardner L, Shaw MA, Hamilton SL, Hopkins PM, Dirksen RT, Riazi S, Dowling JJ. Variants in ASPH cause exertional heat illness and are associated with malignant hyperthermia susceptibility. Nat Commun 2022; 13:3403. [PMID: 35697689 PMCID: PMC9192596 DOI: 10.1038/s41467-022-31088-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/31/2022] [Indexed: 01/24/2023] Open
Abstract
Exertional heat illness (EHI) and malignant hyperthermia (MH) are life threatening conditions associated with muscle breakdown in the setting of triggering factors including volatile anesthetics, exercise, and high environmental temperature. To identify new genetic variants that predispose to EHI and/or MH, we performed genomic sequencing on a cohort with EHI/MH and/or abnormal caffeine-halothane contracture test. In five individuals, we identified rare, pathogenic heterozygous variants in ASPH, a gene encoding junctin, a regulator of excitation-contraction coupling. We validated the pathogenicity of these variants using orthogonal pre-clinical models, CRISPR-edited C2C12 myotubes and transgenic zebrafish. In total, we demonstrate that ASPH variants represent a new cause of EHI and MH susceptibility.
Collapse
Affiliation(s)
- Yukari Endo
- grid.42327.300000 0004 0473 9646Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario Canada
| | - Linda Groom
- grid.16416.340000 0004 1936 9174Department of Physiology, University of Rochester, Rochester, NY USA
| | - Alper Celik
- grid.42327.300000 0004 0473 9646Centre for Computation Medicine, Hospital for Sick Children, Toronto, Ontario Canada
| | - Natalia Kraeva
- grid.417184.f0000 0001 0661 1177Malignant Hyperthermia Unit, Department of Anesthesia, Toronto General Hospital, Toronto, Ontario Canada
| | - Chang Seok Lee
- grid.39382.330000 0001 2160 926XDepartment of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX USA
| | - Sung Yun Jung
- grid.39382.330000 0001 2160 926XDepartment of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX USA
| | - Lois Gardner
- grid.9909.90000 0004 1936 8403Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, UK
| | - Marie-Anne Shaw
- grid.9909.90000 0004 1936 8403Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, UK
| | - Susan L. Hamilton
- grid.39382.330000 0001 2160 926XDepartment of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX USA
| | - Philip M. Hopkins
- grid.9909.90000 0004 1936 8403Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, UK ,grid.443984.60000 0000 8813 7132Malignant Hyperthermia Unit, St. James’s University Hospital, Leeds, UK
| | - Robert T. Dirksen
- grid.16416.340000 0004 1936 9174Department of Physiology, University of Rochester, Rochester, NY USA
| | - Sheila Riazi
- grid.417184.f0000 0001 0661 1177Malignant Hyperthermia Unit, Department of Anesthesia, Toronto General Hospital, Toronto, Ontario Canada
| | - James J. Dowling
- grid.42327.300000 0004 0473 9646Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario Canada ,grid.42327.300000 0004 0473 9646Division of Neurology, Hospital for Sick Children, Toronto, Ontario Canada ,grid.17063.330000 0001 2157 2938Department of Paediatrics, University of Toronto, Toronto, Ontario Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada
| |
Collapse
|
11
|
Smith SJ, Fabian L, Sheikh A, Noche R, Cui X, Moore SA, Dowling JJ. Lysosomes and the pathogenesis of merosin-deficient congenital muscular dystrophy. Hum Mol Genet 2022; 31:733-747. [PMID: 34568901 PMCID: PMC9989739 DOI: 10.1093/hmg/ddab278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/01/2021] [Accepted: 09/14/2021] [Indexed: 11/14/2022] Open
Abstract
Congenital muscular dystrophy type 1A (MDC1A), the most common congenital muscular dystrophy in Western countries, is caused by recessive mutations in LAMA2, the gene encoding laminin alpha 2. Currently, no cure or disease modifying therapy has been successfully developed for MDC1A. Examination of patient muscle biopsies revealed altered distribution of lysosomes. We hypothesized that this redistribution was a novel and potentially druggable aspect of disease pathogenesis. We explored this hypothesis using candyfloss (caf), a zebrafish model of MDC1A. We found that lysosome distribution in caf zebrafish was also abnormal. This altered localization was significantly associated with fiber detachment and could be prevented by blocking myofiber detachment. Overexpression of transcription factor EB, a transcription factor that promotes lysosomal biogenesis, led to increased lysosome content and decreased fiber detachment. We conclude that genetic manipulation of the lysosomal compartment is able to alter the caf zebrafish disease process, suggesting that lysosome function may be a target for disease modification.
Collapse
Affiliation(s)
- Sarah J Smith
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.,Program for Genetics & Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Family Medicine, University of Calgary, Calgary T2R 0X7, Alberta
| | - Lacramioara Fabian
- Program for Genetics & Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Adeel Sheikh
- Program for Genetics & Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Ramil Noche
- Program for Genetics & Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Zebrafish Genetics and Disease Models Core Facility, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xiucheng Cui
- Zebrafish Genetics and Disease Models Core Facility, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Steven A Moore
- Department of Pathology, University of Iowa Medical Center, Iowa City, IA, USA
| | - James J Dowling
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.,Program for Genetics & Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Division of Neurology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.,Department of Paediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
12
|
Identification of a dihydropyridine scaffold that blocks ryanodine receptors. iScience 2022; 25:103706. [PMID: 35059610 PMCID: PMC8760560 DOI: 10.1016/j.isci.2021.103706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/16/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022] Open
Abstract
Ryanodine receptors (RyRs) are large, intracellular ion channels that control Ca2+ release from the sarco/endoplasmic reticulum. Dysregulation of RyRs in skeletal muscle, heart, and brain has been implicated in various muscle pathologies, arrhythmia, heart failure, and Alzheimer's disease. Therefore, there is considerable interest in therapeutically targeting RyRs to normalize Ca2+ homeostasis in scenarios involving RyR dysfunction. Here, a simple invertebrate screening platform was used to discover new chemotypes targeting RyRs. The approach measured Ca2+ signals evoked by cyclic adenosine 5′-diphosphate ribose, a second messenger that sensitizes RyRs. From a 1,534-compound screen, FLI-06 (currently described as a Notch “inhibitor”) was identified as a potent blocker of RyR activity. Two closely related tyrosine kinase inhibitors that stimulate and inhibit Ca2+ release through RyRs were also resolved. Therefore, this simple screen yielded RyR scaffolds tractable for development and revealed an unexpected linkage between RyRs and trafficking events in the early secretory pathway. FLI-06 inhibits transport in the secretory pathway via an unknown mechanism An invertebrate screening platform revealed FLI-06 blocks intracellular Ca2+ release FLI-06 acts as a potent, cell-permeable ryanodine receptor (RyR) blocker The para-substituted dihydropyridine chemotype is a new scaffold for RyR modulation
Collapse
|
13
|
Gómez-Oca R, Cowling BS, Laporte J. Common Pathogenic Mechanisms in Centronuclear and Myotubular Myopathies and Latest Treatment Advances. Int J Mol Sci 2021; 22:11377. [PMID: 34768808 PMCID: PMC8583656 DOI: 10.3390/ijms222111377] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 10/18/2021] [Indexed: 01/18/2023] Open
Abstract
Centronuclear myopathies (CNM) are rare congenital disorders characterized by muscle weakness and structural defects including fiber hypotrophy and organelle mispositioning. The main CNM forms are caused by mutations in: the MTM1 gene encoding the phosphoinositide phosphatase myotubularin (myotubular myopathy), the DNM2 gene encoding the mechanoenzyme dynamin 2, the BIN1 gene encoding the membrane curvature sensing amphiphysin 2, and the RYR1 gene encoding the skeletal muscle calcium release channel/ryanodine receptor. MTM1, BIN1, and DNM2 proteins are involved in membrane remodeling and trafficking, while RyR1 directly regulates excitation-contraction coupling (ECC). Several CNM animal models have been generated or identified, which confirm shared pathological anomalies in T-tubule remodeling, ECC, organelle mispositioning, protein homeostasis, neuromuscular junction, and muscle regeneration. Dynamin 2 plays a crucial role in CNM physiopathology and has been validated as a common therapeutic target for three CNM forms. Indeed, the promising results in preclinical models set up the basis for ongoing clinical trials. Another two clinical trials to treat myotubular myopathy by MTM1 gene therapy or tamoxifen repurposing are also ongoing. Here, we review the contribution of the different CNM models to understanding physiopathology and therapy development with a focus on the commonly dysregulated pathways and current therapeutic targets.
Collapse
Affiliation(s)
- Raquel Gómez-Oca
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France;
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67400 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67400 Illkirch, France
- Strasbourg University, 67081 Strasbourg, France
- Dynacure, 67400 Illkirch, France;
| | | | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France;
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67400 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67400 Illkirch, France
- Strasbourg University, 67081 Strasbourg, France
| |
Collapse
|
14
|
Beaufils M, Travard L, Rendu J, Marty I. Therapies for RYR1-Related Myopathies: Where We Stand and the Perspectives. Curr Pharm Des 2021; 28:15-25. [PMID: 34514983 DOI: 10.2174/1389201022666210910102516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/13/2021] [Indexed: 11/22/2022]
Abstract
RyR1-related myopathies are a family of genetic neuromuscular diseases due to mutations in the RYR1 gene. No treatment exists for any of these myopathies today, which could change in the coming years with the growing number of studies dedicated to the pre-clinical assessment of various approaches, from pharmacological to gene therapy strategies, using the numerous models developed up to now. In addition, the first clinical trials for these rare diseases have just been completed or are being launched. We review the most recent results obtained for the treatment of RyR1-related myopathies, and, in view of the progress in therapeutic development for other myopathies, we discuss the possible future therapeutic perspectives for RyR1-related myopathies.
Collapse
Affiliation(s)
- Mathilde Beaufils
- University Grenoble Alpes, INSERM, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble. France
| | - Lauriane Travard
- University Grenoble Alpes, INSERM, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble. France
| | - John Rendu
- University Grenoble Alpes, INSERM, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble. France
| | - Isabelle Marty
- University Grenoble Alpes, INSERM, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble. France
| |
Collapse
|
15
|
Fardghassemi Y, Maios C, Parker JA. Small Molecule Rescue of ATXN3 Toxicity in C. elegans via TFEB/HLH-30. Neurotherapeutics 2021; 18:1151-1165. [PMID: 33782863 PMCID: PMC8423969 DOI: 10.1007/s13311-020-00993-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is a polyglutamine expansion disease arising from a trinucleotide CAG repeat expansion in exon 10 of the gene ATXN3. There are no effective pharmacological treatments for MJD, thus the identification of new pathogenic mechanisms, and the development of novel therapeutics is urgently needed. In this study, we performed a comprehensive, blind drug screen of 3942 compounds (many FDA approved) and identified small molecules that rescued the motor-deficient phenotype in transgenic ATXN3 Caenorhabditis elegans strain. Out of this screen, five lead compounds restoring motility, protecting against neurodegeneration, and increasing the lifespan in ATXN3-CAG89 mutant worms were identified. These compounds were alfacalcidol, chenodiol, cyclophosphamide, fenbufen, and sulfaphenazole. We then investigated how these molecules might exert their neuroprotective properties. We found that three of these compounds, chenodiol, fenbufen, and sulfaphenazole, act as modulators for TFEB/HLH-30, a key transcriptional regulator of the autophagy process, and require this gene for their neuroprotective activities. These genetic-chemical approaches, using genetic C. elegans models for MJD and the screening, are promising tools to understand the mechanisms and pathways causing neurodegeneration, leading to MJD. Positively acting compounds may be promising candidates for investigation in mammalian models of MJD and preclinical applications in the treatment of this disease.
Collapse
Affiliation(s)
- Yasmin Fardghassemi
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9 Canada
- Department of Biochemistry, University of Montreal, Montreal, Quebec H3T 1J4 Canada
| | - Claudia Maios
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9 Canada
- Department of Neuroscience, University of Montreal, Montreal, Quebec H3T 1J4 Canada
| | - J. Alex Parker
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9 Canada
- Department of Biochemistry, University of Montreal, Montreal, Quebec H3T 1J4 Canada
- Department of Neuroscience, University of Montreal, Montreal, Quebec H3T 1J4 Canada
| |
Collapse
|
16
|
Lawal TA, Todd JJ, Witherspoon JW, Bönnemann CG, Dowling JJ, Hamilton SL, Meilleur KG, Dirksen RT. Ryanodine receptor 1-related disorders: an historical perspective and proposal for a unified nomenclature. Skelet Muscle 2020; 10:32. [PMID: 33190635 PMCID: PMC7667763 DOI: 10.1186/s13395-020-00243-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
The RYR1 gene, which encodes the sarcoplasmic reticulum calcium release channel or type 1 ryanodine receptor (RyR1) of skeletal muscle, was sequenced in 1988 and RYR1 variations that impair calcium homeostasis and increase susceptibility to malignant hyperthermia were first identified in 1991. Since then, RYR1-related myopathies (RYR1-RM) have been described as rare, histopathologically and clinically heterogeneous, and slowly progressive neuromuscular disorders. RYR1 variants can lead to dysfunctional RyR1-mediated calcium release, malignant hyperthermia susceptibility, elevated oxidative stress, deleterious post-translational modifications, and decreased RyR1 expression. RYR1-RM-affected individuals can present with delayed motor milestones, contractures, scoliosis, ophthalmoplegia, and respiratory insufficiency. Historically, RYR1-RM-affected individuals were diagnosed based on morphologic features observed in muscle biopsies including central cores, cores and rods, central nuclei, fiber type disproportion, and multi-minicores. However, these histopathologic features are not always specific to RYR1-RM and often change over time. As additional phenotypes were associated with RYR1 variations (including King-Denborough syndrome, exercise-induced rhabdomyolysis, lethal multiple pterygium syndrome, adult-onset distal myopathy, atypical periodic paralysis with or without myalgia, mild calf-predominant myopathy, and dusty core disease) the overlap among diagnostic categories is ever increasing. With the continuing emergence of new clinical subtypes along the RYR1 disease spectrum and reports of adult-onset phenotypes, nuanced nomenclatures have been reported (RYR1- [related, related congenital, congenital] myopathies). In this narrative review, we provide historical highlights of RYR1 research, accounts of the main diagnostic disease subtypes and propose RYR1-related disorders (RYR1-RD) as a unified nomenclature to describe this complex and evolving disease spectrum.
Collapse
Affiliation(s)
- Tokunbor A Lawal
- Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA.
| | - Joshua J Todd
- Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Jessica W Witherspoon
- Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Carsten G Bönnemann
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - James J Dowling
- Departments of Paediatrics and Molecular Genetics, Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Susan L Hamilton
- Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Katherine G Meilleur
- Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
17
|
Hughes GL, Lones MA, Bedder M, Currie PD, Smith SL, Pownall ME. Machine learning discriminates a movement disorder in a zebrafish model of Parkinson's disease. Dis Model Mech 2020; 13:dmm045815. [PMID: 32859696 PMCID: PMC7578351 DOI: 10.1242/dmm.045815] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
Animal models of human disease provide an in vivo system that can reveal molecular mechanisms by which mutations cause pathology, and, moreover, have the potential to provide a valuable tool for drug development. Here, we have developed a zebrafish model of Parkinson's disease (PD) together with a novel method to screen for movement disorders in adult fish, pioneering a more efficient drug-testing route. Mutation of the PARK7 gene (which encodes DJ-1) is known to cause monogenic autosomal recessive PD in humans, and, using CRISPR/Cas9 gene editing, we generated a Dj-1 loss-of-function zebrafish with molecular hallmarks of PD. To establish whether there is a human-relevant parkinsonian phenotype in our model, we adapted proven tools used to diagnose PD in clinics and developed a novel and unbiased computational method to classify movement disorders in adult zebrafish. Using high-resolution video capture and machine learning, we extracted novel features of movement from continuous data streams and used an evolutionary algorithm to classify parkinsonian fish. This method will be widely applicable for assessing zebrafish models of human motor diseases and provide a valuable asset for the therapeutics pipeline. In addition, interrogation of RNA-seq data indicate metabolic reprogramming of brains in the absence of Dj-1, adding to growing evidence that disruption of bioenergetics is a key feature of neurodegeneration.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Gideon L Hughes
- Department of Biology, University of York, York YO10 5DD, UK
| | - Michael A Lones
- School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Matthew Bedder
- Department of Biology, University of York, York YO10 5DD, UK
- Department of Electronic Engineering, University of York, York YO10 5DD, UK
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Victoria 3800, Australia
| | - Stephen L Smith
- York Biomedical Research Institute, University of York, York YO10 5DD, UK
- Department of Electronic Engineering, University of York, York YO10 5DD, UK
| | - Mary Elizabeth Pownall
- Department of Biology, University of York, York YO10 5DD, UK
- York Biomedical Research Institute, University of York, York YO10 5DD, UK
| |
Collapse
|
18
|
Christian CJ, Benian GM. Animal models of sarcopenia. Aging Cell 2020; 19:e13223. [PMID: 32857472 PMCID: PMC7576270 DOI: 10.1111/acel.13223] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Sarcopenia is the age-related decline in muscle mass and function without any underlying disease. The exact molecular mechanisms responsible for this pathology remain unknown. The use of model organisms, such as mice, rats, flies, and worms, has advanced the field of sarcopenia research by identifying therapeutic strategies and genetic mutations that result in improved muscle mass and function of elderly animals. This review discusses molecular and therapeutic discoveries made using these model organisms and how these animals can be further utilized to better understand sarcopenia pathogenesis. In rodents, flies, and worms, dietary restriction improves muscle performance in old animals. In rodents and worms, exercise and a number of naturally occurring compounds alleviate sarcopenia. Reduction in the insulin/IGF1 receptor pathway, well known to promote longevity, improves sarcopenia in worms and flies. Mitochondrial dysfunction may contribute to the pathogenesis of sarcopenia: In rodents, there is age-dependent reduction in mitochondrial mass and a change in morphology; in nematodes, there is age-dependent fragmentation of mitochondria that precedes sarcomeric disorganization. In Drosophila and rats, components of the 26S proteasome are elevated in aged muscle. An advantage of the worm and fly models is that these organisms lack muscle stem cells, and thus processes that promote the maintenance of already assembled muscle, can be identified without the confounding influence of muscle regeneration. Zebrafish are an up and coming model of sarcopenia for future consideration. A better understanding of the molecular changes behind sarcopenia will help researchers develop better therapies to improve the muscle health of elderly individuals.
Collapse
Affiliation(s)
| | - Guy M. Benian
- Department of Pathology Emory University Atlanta Georgia USA
| |
Collapse
|
19
|
Fabian L, Dowling JJ. Zebrafish Models of LAMA2-Related Congenital Muscular Dystrophy (MDC1A). Front Mol Neurosci 2020; 13:122. [PMID: 32742259 PMCID: PMC7364686 DOI: 10.3389/fnmol.2020.00122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/11/2020] [Indexed: 01/28/2023] Open
Abstract
LAMA2-related congenital muscular dystrophy (CMD; LAMA2-MD), also referred to as merosin deficient CMD (MDC1A), is a severe neonatal onset muscle disease caused by recessive mutations in the LAMA2 gene. LAMA2 encodes laminin α2, a subunit of the extracellular matrix (ECM) oligomer laminin 211. There are currently no treatments for MDC1A, and there is an incomplete understanding of disease pathogenesis. Zebrafish, due to their high degree of genetic conservation with humans, large clutch sizes, rapid development, and optical clarity, have emerged as an excellent model system for studying rare Mendelian diseases. They are particularly suitable as a model for muscular dystrophy because they contain at least one orthologue to all major human MD genes, have muscle that is similar to human muscle in structure and function, and manifest obvious and easily measured MD related phenotypes. In this review article, we present the existing zebrafish models of MDC1A, and discuss their contribution to the understanding of MDC1A pathomechanisms and therapy development.
Collapse
Affiliation(s)
- Lacramioara Fabian
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - James J Dowling
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada.,Division of Neurology, Hospital for Sick Children, Toronto, ON, Canada.,Departments of Pediatrics and Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
20
|
Lawal TA, Wires ES, Terry NL, Dowling JJ, Todd JJ. Preclinical model systems of ryanodine receptor 1-related myopathies and malignant hyperthermia: a comprehensive scoping review of works published 1990-2019. Orphanet J Rare Dis 2020; 15:113. [PMID: 32381029 PMCID: PMC7204063 DOI: 10.1186/s13023-020-01384-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pathogenic variations in the gene encoding the skeletal muscle ryanodine receptor (RyR1) are associated with malignant hyperthermia (MH) susceptibility, a life-threatening hypermetabolic condition and RYR1-related myopathies (RYR1-RM), a spectrum of rare neuromuscular disorders. In RYR1-RM, intracellular calcium dysregulation, post-translational modifications, and decreased protein expression lead to a heterogenous clinical presentation including proximal muscle weakness, contractures, scoliosis, respiratory insufficiency, and ophthalmoplegia. Preclinical model systems of RYR1-RM and MH have been developed to better understand underlying pathomechanisms and test potential therapeutics. METHODS We conducted a comprehensive scoping review of scientific literature pertaining to RYR1-RM and MH preclinical model systems in accordance with the PRISMA Scoping Reviews Checklist and the framework proposed by Arksey and O'Malley. Two major electronic databases (PubMed and EMBASE) were searched without language restriction for articles and abstracts published between January 1, 1990 and July 3, 2019. RESULTS Our search yielded 5049 publications from which 262 were included in this review. A majority of variants tested in RYR1 preclinical models were localized to established MH/central core disease (MH/CCD) hot spots. A total of 250 unique RYR1 variations were reported in human/rodent/porcine models with 95% being missense substitutions. The most frequently reported RYR1 variant was R614C/R615C (human/porcine total n = 39), followed by Y523S/Y524S (rabbit/mouse total n = 30), I4898T/I4897T/I4895T (human/rabbit/mouse total n = 20), and R163C/R165C (human/mouse total n = 18). The dyspedic mouse was utilized by 47% of publications in the rodent category and its RyR1-null (1B5) myotubes were transfected in 23% of publications in the cellular model category. In studies of transfected HEK-293 cells, 57% of RYR1 variations affected the RyR1 channel and activation core domain. A total of 15 RYR1 mutant mouse strains were identified of which ten were heterozygous, three were compound heterozygous, and a further two were knockout. Porcine, avian, zebrafish, C. elegans, canine, equine, and drosophila model systems were also reported. CONCLUSIONS Over the past 30 years, there were 262 publications on MH and RYR1-RM preclinical model systems featuring more than 200 unique RYR1 variations tested in a broad range of species. Findings from these studies have set the foundation for therapeutic development for MH and RYR1-RM.
Collapse
Affiliation(s)
- Tokunbor A Lawal
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Emily S Wires
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Nancy L Terry
- National Institutes of Health Library, National Institutes of Health, Bethesda, MD, USA
| | - James J Dowling
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Joshua J Todd
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
21
|
Abstract
An multi-species approach can be used to identify small molecules with properties that might prove useful for the treatment of some neuromuscular diseases.
Collapse
Affiliation(s)
- Guy M Benian
- Department of Pathology, Emory University, Atlanta, United States.,Department of Cell Biology, Emory University, Atlanta, United States
| | - Hyojung J Choo
- Department of Cell Biology, Emory University, Atlanta, United States
| |
Collapse
|