1
|
Ho C, Jutras-Dubé L, Zhao ML, Mönke G, Kiss IZ, François P, Aulehla A. Nonreciprocal synchronization in embryonic oscillator ensembles. Proc Natl Acad Sci U S A 2024; 121:e2401604121. [PMID: 39190346 PMCID: PMC11388350 DOI: 10.1073/pnas.2401604121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/10/2024] [Indexed: 08/28/2024] Open
Abstract
Synchronization of coupled oscillators is a universal phenomenon encountered across different scales and contexts, e.g., chemical wave patterns, superconductors, and the unison applause we witness in concert halls. The existence of common underlying coupling rules defines universality classes, revealing a fundamental sameness between seemingly distinct systems. Identifying rules of synchronization in any particular setting is hence of paramount relevance. Here, we address the coupling rules within an embryonic oscillator ensemble linked to vertebrate embryo body axis segmentation. In vertebrates, the periodic segmentation of the body axis involves synchronized signaling oscillations in cells within the presomitic mesoderm (PSM), from which somites, the prevertebrae, form. At the molecular level, it is known that intact Notch-signaling and cell-to-cell contact are required for synchronization between PSM cells. However, an understanding of the coupling rules is still lacking. To identify these, we develop an experimental assay that enables direct quantification of synchronization dynamics within mixtures of oscillating cell ensembles, for which the initial input frequency and phase distribution are known. Our results reveal a "winner-takes-it-all" synchronization outcome, i.e., the emerging collective rhythm matches one of the input rhythms. Using a combination of theory and experimental validation, we develop a coupling model, the "Rectified Kuramoto" (ReKu) model, characterized by a phase-dependent, nonreciprocal interaction in the coupling of oscillatory cells. Such nonreciprocal synchronization rules reveal fundamental similarities between embryonic oscillators and a class of collective behaviors seen in neurons and fireflies, where higher-level computations are performed and linked to nonreciprocal synchronization.
Collapse
Affiliation(s)
- Christine Ho
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | | | - Michael L Zhao
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Gregor Mönke
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - István Z Kiss
- Department of Chemistry, Saint Louis University, St. Louis, MO 63103
| | - Paul François
- Department of Physics, McGill University, Montreal, QC H3A 2T8, Canada
| | - Alexander Aulehla
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| |
Collapse
|
2
|
Koch D, Nandan A, Ramesan G, Koseska A. Biological computations: Limitations of attractor-based formalisms and the need for transients. Biochem Biophys Res Commun 2024; 720:150069. [PMID: 38754165 DOI: 10.1016/j.bbrc.2024.150069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/15/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
Living systems, from single cells to higher vertebrates, receive a continuous stream of non-stationary inputs that they sense, for e.g. via cell surface receptors or sensory organs. By integrating these time-varying, multi-sensory, and often noisy information with memory using complex molecular or neuronal networks, they generate a variety of responses beyond simple stimulus-response association, including avoidance behavior, life-long-learning or social interactions. In a broad sense, these processes can be understood as a type of biological computation. Taking as a basis generic features of biological computations, such as real-time responsiveness or robustness and flexibility of the computation, we highlight the limitations of the current attractor-based framework for understanding computations in biological systems. We argue that frameworks based on transient dynamics away from attractors are better suited for the description of computations performed by neuronal and signaling networks. In particular, we discuss how quasi-stable transient dynamics from ghost states that emerge at criticality have a promising potential for developing an integrated framework of computations, that can help us understand how living system actively process information and learn from their continuously changing environment.
Collapse
Affiliation(s)
- Daniel Koch
- Lise Meitner Group Cellular Computations and Learning, Max Planck Institute for Neurobiology of Behaviour - Caesar, Bonn, Germany
| | - Akhilesh Nandan
- Lise Meitner Group Cellular Computations and Learning, Max Planck Institute for Neurobiology of Behaviour - Caesar, Bonn, Germany
| | - Gayathri Ramesan
- Lise Meitner Group Cellular Computations and Learning, Max Planck Institute for Neurobiology of Behaviour - Caesar, Bonn, Germany
| | - Aneta Koseska
- Lise Meitner Group Cellular Computations and Learning, Max Planck Institute for Neurobiology of Behaviour - Caesar, Bonn, Germany.
| |
Collapse
|
3
|
Klepstad J, Marcon L. The Clock and Wavefront Self-Organizing model recreates the dynamics of mouse somitogenesis in vivo and in vitro. Development 2024; 151:dev202606. [PMID: 38742434 PMCID: PMC11165719 DOI: 10.1242/dev.202606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
During mouse development, presomitic mesoderm cells synchronize Wnt and Notch oscillations, creating sequential phase waves that pattern somites. Traditional somitogenesis models attribute phase waves to a global modulation of the oscillation frequency. However, increasing evidence suggests that they could arise in a self-organizing manner. Here, we introduce the Sevilletor, a novel reaction-diffusion system that serves as a framework to compare different somitogenesis patterning hypotheses. Using this framework, we propose the Clock and Wavefront Self-Organizing model that considers an excitable self-organizing region where phase waves form independent of global frequency gradients. The model recapitulates the change in relative phase of Wnt and Notch observed during mouse somitogenesis and provides a theoretical basis for understanding the excitability of mouse presomitic mesoderm cells in vitro.
Collapse
Affiliation(s)
- Julie Klepstad
- Andalusian Center for Developmental Biology (CABD) CSIC-UPO-JA, Carretera de Utrera km 1, 41013 Seville, Spain
| | - Luciano Marcon
- Andalusian Center for Developmental Biology (CABD) CSIC-UPO-JA, Carretera de Utrera km 1, 41013 Seville, Spain
| |
Collapse
|
4
|
Glimm T, Kaźmierczak B, Newman SA, Bhat R. A two-galectin network establishes mesenchymal condensation phenotype in limb development. Math Biosci 2023; 365:109054. [PMID: 37544500 DOI: 10.1016/j.mbs.2023.109054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/09/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023]
Abstract
Previous work showed that Gal-1A and Gal-8, two proteins belonging to the galactoside-binding galectin family, are the earliest determinants of the patterning of the skeletal elements of embryonic chicken limbs, and further, that their experimentally determined interactions in the embryonic limb bud can be interpreted via a reaction-diffusion-adhesion (2GL: two galectin plus ligands) model. Here, we use an ordinary differential equation-based approach to analyze the intrinsic switching modality of the 2GL network and characterize the network behavior independent of the diffusive and adhesive arms of the patterning mechanism. We identify two states: where the concentrations of both the galectins are respectively, negligible, and very high. This bistable switch-like system arises via a saddle-node bifurcation from a monostable state. For the case of mass-action production terms, we provide an explicit Lyapunov function for the system, which shows that it has no periodic solutions. Our model therefore predicts that the galectin network may exist in low expression and high expression states separated in space or time, without any intermediate states. We test these predictions in experiments performed with high density cultures of chick limb mesenchymal cells and observe that cells inside precartilage protocondensations express Gal-1A at a much higher rate than those outside, for which it was negligible. The Gal-1A and -8-based patterning network is therefore sufficient to partition the mesenchymal cell population into two discrete cell states with different developmental (chondrogenic vs. non-chondrogenic) fates. When incorporated into an adhesion and diffusion-enabled framework this system can generate a spatially patterned limb skeleton.
Collapse
Affiliation(s)
- T Glimm
- Department of Mathematics, Western Washington University, Bellingham, WA, 98229, USA
| | - B Kaźmierczak
- Institute of Fundamental Technological Research Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - S A Newman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, NY, 10595, USA
| | - R Bhat
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India; Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
5
|
Yabe T, Uriu K, Takada S. Ripply suppresses Tbx6 to induce dynamic-to-static conversion in somite segmentation. Nat Commun 2023; 14:2115. [PMID: 37055428 PMCID: PMC10102234 DOI: 10.1038/s41467-023-37745-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/29/2023] [Indexed: 04/15/2023] Open
Abstract
The metameric pattern of somites is created based on oscillatory expression of clock genes in presomitic mesoderm. However, the mechanism for converting the dynamic oscillation to a static pattern of somites is still unclear. Here, we provide evidence that Ripply/Tbx6 machinery is a key regulator of this conversion. Ripply1/Ripply2-mediated removal of Tbx6 protein defines somite boundary and also leads to cessation of clock gene expression in zebrafish embryos. On the other hand, activation of ripply1/ripply2 mRNA and protein expression is periodically regulated by clock oscillation in conjunction with an Erk signaling gradient. Whereas Ripply protein decreases rapidly in embryos, Ripply-triggered Tbx6 suppression persists long enough to complete somite boundary formation. Mathematical modeling shows that a molecular network based on results of this study can reproduce dynamic-to-static conversion in somitogenesis. Furthermore, simulations with this model suggest that sustained suppression of Tbx6 caused by Ripply is crucial in this conversion.
Collapse
Affiliation(s)
- Taijiro Yabe
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- The Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
| | - Koichiro Uriu
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| | - Shinji Takada
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- The Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
6
|
Dalwadi MP, Pearce P. Universal dynamics of biological pattern formation in spatio-temporal morphogen variations. Proc Math Phys Eng Sci 2023. [DOI: 10.1098/rspa.2022.0829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
In biological systems, chemical signals termed morphogens self-organize into patterns that are vital for many physiological processes. As observed by Turing in 1952, these patterns are in a state of continual development, and are usually transitioning from one pattern into another. How do cells robustly decode these spatio-temporal patterns into signals in the presence of confounding effects caused by unpredictable or heterogeneous environments? Here, we answer this question by developing a general theory of pattern formation in spatio-temporal variations of ‘pre-pattern’ morphogens, which determine gene-regulatory network parameters. Through mathematical analysis, we identify universal dynamical regimes that apply to wide classes of biological systems. We apply our theory to two paradigmatic pattern-forming systems, and predict that they are robust with respect to non-physiological morphogen variations. More broadly, our theoretical framework provides a general approach to classify the emergent dynamics of pattern-forming systems based on how the bifurcations in their governing equations are traversed.
Collapse
|
7
|
Sanchez PGL, Mochulska V, Mauffette Denis C, Mönke G, Tomita T, Tsuchida-Straeten N, Petersen Y, Sonnen K, François P, Aulehla A. Arnold tongue entrainment reveals dynamical principles of the embryonic segmentation clock. eLife 2022; 11:79575. [PMID: 36223168 PMCID: PMC9560162 DOI: 10.7554/elife.79575] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Living systems exhibit an unmatched complexity, due to countless, entangled interactions across scales. Here, we aim to understand a complex system, that is, segmentation timing in mouse embryos, without a reference to these detailed interactions. To this end, we develop a coarse-grained approach, in which theory guides the experimental identification of the segmentation clock entrainment responses. We demonstrate period- and phase-locking of the segmentation clock across a wide range of entrainment parameters, including higher-order coupling. These quantifications allow to derive the phase response curve (PRC) and Arnold tongues of the segmentation clock, revealing its essential dynamical properties. Our results indicate that the somite segmentation clock has characteristics reminiscent of a highly non-linear oscillator close to an infinite period bifurcation and suggests the presence of long-term feedbacks. Combined, this coarse-grained theoretical-experimental approach reveals how we can derive simple, essential features of a highly complex dynamical system, providing precise experimental control over the pace and rhythm of the somite segmentation clock.
Collapse
Affiliation(s)
| | | | | | - Gregor Mönke
- European Molecular Biology Laboratory (EMBL), Developmental Biology Unit
| | - Takehito Tomita
- European Molecular Biology Laboratory (EMBL), Developmental Biology Unit
| | | | - Yvonne Petersen
- European Molecular Biology Laboratory (EMBL), Transgenic Service
| | - Katharina Sonnen
- European Molecular Biology Laboratory (EMBL), Developmental Biology Unit
| | | | - Alexander Aulehla
- European Molecular Biology Laboratory (EMBL), Developmental Biology Unit
| |
Collapse
|
8
|
Latent space of a small genetic network: Geometry of dynamics and information. Proc Natl Acad Sci U S A 2022; 119:e2113651119. [PMID: 35737842 PMCID: PMC9245618 DOI: 10.1073/pnas.2113651119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The high-dimensional character of most biological systems presents genuine challenges for modeling and prediction. Here we propose a neural network-based approach for dimensionality reduction and analysis of biological gene expression data, using, as a case study, a well-known genetic network in the early Drosophila embryo, the gap gene patterning system. We build an autoencoder compressing the dynamics of spatial gap gene expression into a two-dimensional (2D) latent map. The resulting 2D dynamics suggests an almost linear model, with a small bare set of essential interactions. Maternally defined spatial modes control gap genes positioning, without the classically assumed intricate set of repressive gap gene interactions. This, surprisingly, predicts minimal changes of neighboring gap domains when knocking out gap genes, consistent with previous observations. Latent space geometries in maternal mutants are also consistent with the existence of such spatial modes. Finally, we show how positional information is well defined and interpretable as a polar angle in latent space. Our work illustrates how optimization of small neural networks on medium-sized biological datasets is sufficiently informative to capture essential underlying mechanisms of network function.
Collapse
|
9
|
Abstract
Embryonic development hinges on effective coordination of molecular events across space and time. Waves have recently emerged as constituting an ubiquitous mechanism that ensures rapid spreading of regulatory signals across embryos, as well as reliable control of their patterning, namely, for the emergence of body plan structures. In this article, we review a selection of recent quantitative work on signaling waves and present an overview of the theory of waves. Our aim is to provide a succinct yet comprehensive guiding reference for the theoretical frameworks by which signaling waves can arise in embryos. We start, then, from reaction-diffusion systems, both static and time dependent; move to excitable dynamics; and conclude with systems of coupled oscillators. We link these theoretical models to molecular mechanisms recently elucidated for the control of mitotic waves in early embryos, patterning of the vertebrate body axis, micropattern cultures, and bone regeneration. Our goal is to inspire experimental work that will advance theory in development and connect its predictions to quantitative biological observations.
Collapse
Affiliation(s)
- Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Massimo Vergassola
- Laboratoire de physique de l'École Normale Supérieure, CNRS, PSL Research University, Sorbonne Université, Paris, France;
- Department of Physics, University of California, San Diego, California, USA
| |
Collapse
|
10
|
Nordick B, Yu PY, Liao G, Hong T. Nonmodular oscillator and switch based on RNA decay drive regeneration of multimodal gene expression. Nucleic Acids Res 2022; 50:3693-3708. [PMID: 35380686 PMCID: PMC9023291 DOI: 10.1093/nar/gkac217] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/13/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022] Open
Abstract
Periodic gene expression dynamics are key to cell and organism physiology. Studies of oscillatory expression have focused on networks with intuitive regulatory negative feedback loops, leaving unknown whether other common biochemical reactions can produce oscillations. Oscillation and noise have been proposed to support mammalian progenitor cells’ capacity to restore heterogenous, multimodal expression from extreme subpopulations, but underlying networks and specific roles of noise remained elusive. We use mass-action-based models to show that regulated RNA degradation involving as few as two RNA species—applicable to nearly half of human protein-coding genes—can generate sustained oscillations without explicit feedback. Diverging oscillation periods synergize with noise to robustly restore cell populations’ bimodal expression on timescales of days. The global bifurcation organizing this divergence relies on an oscillator and bistable switch which cannot be decomposed into two structural modules. Our work reveals surprisingly rich dynamics of post-transcriptional reactions and a potentially widespread mechanism underlying development, tissue regeneration, and cancer cell heterogeneity.
Collapse
Affiliation(s)
- Benjamin Nordick
- School of Genome Science and Technology, The University of Tennessee, Knoxville, Tennessee 37916, USA
| | - Polly Y Yu
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Guangyuan Liao
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37916, USA
| | - Tian Hong
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37916, USA.,National Institute for Mathematical and Biological Synthesis, Knoxville, Tennessee 37916, USA
| |
Collapse
|
11
|
Farjami S, Camargo Sosa K, Dawes JHP, Kelsh RN, Rocco A. Novel generic models for differentiating stem cells reveal oscillatory mechanisms. J R Soc Interface 2021; 18:20210442. [PMID: 34610261 PMCID: PMC8492175 DOI: 10.1098/rsif.2021.0442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/09/2021] [Indexed: 12/03/2022] Open
Abstract
Understanding cell fate selection remains a central challenge in developmental biology. We present a class of simple yet biologically motivated mathematical models for cell differentiation that generically generate oscillations and hence suggest alternatives to the standard framework based on Waddington's epigenetic landscape. The models allow us to suggest two generic dynamical scenarios that describe the differentiation process. In the first scenario, gradual variation of a single control parameter is responsible for both entering and exiting the oscillatory regime. In the second scenario, two control parameters vary: one responsible for entering, and the other for exiting the oscillatory regime. We analyse the standard repressilator and four variants of it and show the dynamical behaviours associated with each scenario. We present a thorough analysis of the associated bifurcations and argue that gene regulatory networks with these repressilator-like characteristics are promising candidates to describe cell fate selection through an oscillatory process.
Collapse
Affiliation(s)
- Saeed Farjami
- Department of Microbial Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Karen Camargo Sosa
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | | | - Robert N. Kelsh
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Andrea Rocco
- Department of Microbial Sciences, University of Surrey, Guildford GU2 7XH, UK
- Department of Physics, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
12
|
Diaz-Cuadros M, Pourquié O, El-Sherif E. Patterning with clocks and genetic cascades: Segmentation and regionalization of vertebrate versus insect body plans. PLoS Genet 2021; 17:e1009812. [PMID: 34648490 PMCID: PMC8516289 DOI: 10.1371/journal.pgen.1009812] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Oscillatory and sequential processes have been implicated in the spatial patterning of many embryonic tissues. For example, molecular clocks delimit segmental boundaries in vertebrates and insects and mediate lateral root formation in plants, whereas sequential gene activities are involved in the specification of regional identities of insect neuroblasts, vertebrate neural tube, vertebrate limb, and insect and vertebrate body axes. These processes take place in various tissues and organisms, and, hence, raise the question of what common themes and strategies they share. In this article, we review 2 processes that rely on the spatial regulation of periodic and sequential gene activities: segmentation and regionalization of the anterior-posterior (AP) axis of animal body plans. We study these processes in species that belong to 2 different phyla: vertebrates and insects. By contrasting 2 different processes (segmentation and regionalization) in species that belong to 2 distantly related phyla (arthropods and vertebrates), we elucidate the deep logic of patterning by oscillatory and sequential gene activities. Furthermore, in some of these organisms (e.g., the fruit fly Drosophila), a mode of AP patterning has evolved that seems not to overtly rely on oscillations or sequential gene activities, providing an opportunity to study the evolution of pattern formation mechanisms.
Collapse
Affiliation(s)
- Margarete Diaz-Cuadros
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
| | - Ezzat El-Sherif
- Division of Developmental Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
13
|
Pantoja-Hernández J, Breña-Medina VF, Santillán M. Hybrid reaction-diffusion and clock-and-wavefront model for the arrest of oscillations in the somitogenesis segmentation clock. CHAOS (WOODBURY, N.Y.) 2021; 31:063107. [PMID: 34241318 DOI: 10.1063/5.0045460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
The clock and wavefront paradigm is arguably the most widely accepted model for explaining the embryonic process of somitogenesis. According to this model, somitogenesis is based upon the interaction between a genetic oscillator, known as segmentation clock, and a differentiation wavefront, which provides the positional information indicating where each pair of somites is formed. Shortly after the clock and wavefront paradigm was introduced, Meinhardt presented a conceptually different mathematical model for morphogenesis in general, and somitogenesis in particular. Recently, Cotterell et al. [A local, self-organizing reaction-diffusion model can explain somite patterning in embryos, Cell Syst. 1, 257-269 (2015)] rediscovered an equivalent model by systematically enumerating and studying small networks performing segmentation. Cotterell et al. called it a progressive oscillatory reaction-diffusion (PORD) model. In the Meinhardt-PORD model, somitogenesis is driven by short-range interactions and the posterior movement of the front is a local, emergent phenomenon, which is not controlled by global positional information. With this model, it is possible to explain some experimental observations that are incompatible with the clock and wavefront model. However, the Meinhardt-PORD model has some important disadvantages of its own. Namely, it is quite sensitive to fluctuations and depends on very specific initial conditions (which are not biologically realistic). In this work, we propose an equivalent Meinhardt-PORD model and then amend it to couple it with a wavefront consisting of a receding morphogen gradient. By doing so, we get a hybrid model between the Meinhardt-PORD and the clock-and-wavefront ones, which overcomes most of the deficiencies of the two originating models.
Collapse
Affiliation(s)
- Jesús Pantoja-Hernández
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Monterrey, Vía del Conocimiento 201, Parque PIIT, 66628 Apodaca, NL, Mexico
| | | | - Moisés Santillán
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Monterrey, Vía del Conocimiento 201, Parque PIIT, 66628 Apodaca, NL, Mexico
| |
Collapse
|
14
|
Jutras-Dubé L, El-Sherif E, François P. Geometric models for robust encoding of dynamical information into embryonic patterns. eLife 2020; 9:55778. [PMID: 32773041 PMCID: PMC7470844 DOI: 10.7554/elife.55778] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 08/07/2020] [Indexed: 12/30/2022] Open
Abstract
During development, cells gradually assume specialized fates via changes of transcriptional dynamics, sometimes even within the same developmental stage. For anterior-posterior (AP) patterning in metazoans, it has been suggested that the gradual transition from a dynamic genetic regime to a static one is encoded by different transcriptional modules. In that case, the static regime has an essential role in pattern formation in addition to its maintenance function. In this work, we introduce a geometric approach to study such transition. We exhibit two types of genetic regime transitions arising through local or global bifurcations, respectively. We find that the global bifurcation type is more generic, more robust, and better preserves dynamical information. This could parsimoniously explain common features of metazoan segmentation, such as changes of periods leading to waves of gene expressions, ‘speed/frequency-gradient’ dynamics, and changes of wave patterns. Geometric approaches appear as possible alternatives to gene regulatory networks to understand development.
Collapse
Affiliation(s)
| | - Ezzat El-Sherif
- Division of Developmental Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Paul François
- Department of Physics, McGill University, Montreal, Canada
| |
Collapse
|