1
|
Cao G, Yang N, Xiong Y, Shi M, Wang L, Nie F, Huo D, Hou C. Completely Free from PAM Limitations: Asymmetric RPA with CRISPR/Cas12a for Nucleic Acid Assays. ACS Sens 2023; 8:4655-4663. [PMID: 38010352 DOI: 10.1021/acssensors.3c01686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Experimentally, Cas12a can recognize multiple protospacer adjacent motif (PAM) sequences and is not restricted to the "TTTN". However, the application of the CRISPR/Cas12a system is still limited by the PAM for double-stranded DNA (dsDNA). Here, we developed asymmetric RPA (Asy-RPA) to completely break the limitations of PAM. Asy-RPA not only achieved efficient amplification but also converted dsDNA to single-stranded DNA (ssDNA) without complicated steps. The ssDNA products activated the trans-cleavage activity of Cas12a, outputting signals. The application of Asy-RPA completely freed Cas12a from the PAM, which can be more widely used in nucleic acid detection, such as lumpy skin disease virus, with an actual detection limit as low as 1.21 × 101 copies·μL-1. More importantly, Cas12a was intolerant to mutations on ssDNA. This provided technical support for the detection and identification of wild-type Mycobacterium tuberculosis (WT-TB) and rifampin-resistant mutant-type M. tuberculosis (MT-TB). The detection limit was as low as 1 fM for 1% mixed samples. The detection and availability of different treatment options for treatment-resistant and WT-TB were significant for the elimination of TB. In summary, the platform consisting of Asy-RPA and CRISPR/Cas12a was suitable for the detection of various viruses and bacteria and was a boon for the detection of dsDNA without recognizable PAM.
Collapse
Affiliation(s)
- Gaihua Cao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs. Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing 400020, PR China
| | - Nannan Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs. Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing 400020, PR China
| | - Yifan Xiong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs. Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing 400020, PR China
| | - Meimei Shi
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs. Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing 400020, PR China
| | - Lin Wang
- Science and Technology Research Center of China Customs, Beijing 100730, PR China
| | - Fuping Nie
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs. Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing 400020, PR China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
- Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
2
|
Cao G, Qiu Y, Long K, Ma Y, Luo H, Yang M, Hou J, Huo D, Hou C. Rapid and Ultrasensitive Approach for the Simultaneous Detection of Multilocus Mutations to Distinguish Rifampicin-Resistant Mycobacterium tuberculosis. Anal Chem 2022; 94:17653-17661. [PMID: 36473113 DOI: 10.1021/acs.analchem.2c04399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The untested empirical medications exacerbated the development of multidrug-resistant Mycobacterium tuberculosis (MDR-TB). Here, we develop a rapid and specific method based on loop-mediated isothermal amplification and duplex-specific nuclease for distinguishing rifampicin-resistant M. tuberculosis. Three probes were designed for the codons 516, 526, and 531 on the RNA polymerase β-subunit (rpoB) gene. These three sites accounted for more than 90% of the total mutations of the ropB gene in the rifampicin-resistant strain. The approach can perform simultaneous and sensitive detection of three mutant sites with the actual detection limit as 10 aM of DNA and 62.5 cfu·mL-1 of bacteria in 67 min under isothermal conditions. Moreover, the positive mode of the approach for MDR-TB can not only deal with the randomness and diversity of mutations but also provide an easier way for medical staff to read the results. Therefore, it is a particularly valuable method to handle major and urgent MDR-TB diagnostics.
Collapse
Affiliation(s)
- Gaihua Cao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Yue Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Keyi Long
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Yi Ma
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, P. R. China
| | - Huibo Luo
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, P. R. China
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Jingzhou Hou
- Postdoctoral Research Station, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China.,Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, P. R. China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China.,Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, P. R. China
| |
Collapse
|
3
|
Jones RM, Adams KN, Eldesouky HE, Sherman DR. The evolving biology of Mycobacterium tuberculosis drug resistance. Front Cell Infect Microbiol 2022; 12:1027394. [PMID: 36275024 PMCID: PMC9579286 DOI: 10.3389/fcimb.2022.1027394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 01/13/2023] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis (Mtb) is an ancient disease that has remained a leading cause of infectious death. Mtb has evolved drug resistance to every antibiotic regimen ever introduced, greatly complicating treatment, lowering rates of cure and menacing TB control in parts of the world. As technology has advanced, our understanding of antimicrobial resistance has improved, and our models of the phenomenon have evolved. In this review, we focus on recent research progress that supports an updated model for the evolution of drug resistance in Mtb. We highlight the contribution of drug tolerance on the path to resistance, and the influence of heterogeneity on tolerance. Resistance is likely to remain an issue for as long as drugs are needed to treat TB. However, with technology driving new insights and careful management of newly developed resources, antimicrobial resistance need not continue to threaten global progress against TB, as it has done for decades.
Collapse
Affiliation(s)
| | | | | | - David R. Sherman
- Department of Microbiology, University of Washington, Seattle, WA, United States
| |
Collapse
|
4
|
Herricks T, Donczew M, Sherman DR, Aitchison JD. ODELAM: Rapid Sequence-independent Detection of Drug Resistance in Mycobacterium tuberculosis Isolates. Bio Protoc 2021; 11:e4027. [PMID: 34150934 DOI: 10.21769/bioprotoc.4027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/23/2021] [Accepted: 03/31/2021] [Indexed: 11/02/2022] Open
Abstract
Antimicrobial-resistant Mycobacterium tuberculosis (Mtb) causes over 200,000 deaths globally each year. Current assays of antimicrobial resistance require knowledge of the mutations that confer drug resistance or long periods of culture time to test growth under drug pressure. We present ODELAM (One-cell Doubling Evaluation of Living Arrays of Mycobacterium), a time-lapse microscopy-based method that observes individual cells growing into microcolonies. This protocol describes sample and media preparation and contains instructions for assembling the ODELAM sample chamber. The ODELAM sample chamber is designed to provide a controlled environment to safely observe the growth of Mtb by time-lapse microscopy on an inverted wide-field microscope. A brief description of the ODELAM software is also provided here. ODELAM tracks up to 1500 colony forming units per region of interest and can observe up to 96 regions for up to seven days in a single experiment. This technique allows the quantification of population heterogeneity. ODELAM enables rapid quantitative measurements of growth kinetics in as few as 30 h under a wide variety of environmental conditions. Graphic abstract: Schematic representation of the ODELAM platform.
Collapse
Affiliation(s)
- Thurston Herricks
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, USA
| | | | - David R Sherman
- Department of Microbiology, University of Washington, Seattle, USA
| | - John D Aitchison
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, USA.,Department of Pediatrics, University of Washington, Seattle, USA
| |
Collapse
|
5
|
Abstract
Nucleotide metabolism plays a central role in bacterial physiology, producing the nucleic acids necessary for DNA replication and RNA transcription. Recent studies demonstrate that nucleotide metabolism also proactively contributes to antibiotic-induced lethality in bacterial pathogens and that disruptions to nucleotide metabolism contributes to antibiotic treatment failure in the clinic. As antimicrobial resistance continues to grow unchecked, new approaches are needed to study the molecular mechanisms responsible for antibiotic efficacy. Here we review emerging technologies poised to transform understanding into why antibiotics may fail in the clinic. We discuss how these technologies led to the discovery that nucleotide metabolism regulates antibiotic drug responses and why these are relevant to human infections. We highlight opportunities for how studies into nucleotide metabolism may enhance understanding of antibiotic failure mechanisms.
Collapse
Affiliation(s)
- Allison J Lopatkin
- Department of Biology, Barnard College, New York, NY, United States.,Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, United States.,Data Science Institute, Columbia University, New York, NY, United States
| | - Jason H Yang
- Ruy V. Lourenço Center for Emerging and Re-emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ, United States.,Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
6
|
Dissecting the Structural Dynamics of the Nuclear Pore Complex. Mol Cell 2020; 81:153-165.e7. [PMID: 33333016 DOI: 10.1016/j.molcel.2020.11.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 10/02/2020] [Accepted: 11/18/2020] [Indexed: 01/03/2023]
Abstract
Cellular processes are largely carried out by macromolecular assemblies, most of which are dynamic, having components that are in constant flux. One such assembly is the nuclear pore complex (NPC), an ∼50 MDa assembly comprised of ∼30 different proteins called Nups that mediates selective macromolecular transport between the nucleus and cytoplasm. We developed a proteomics method to provide a comprehensive picture of the yeast NPC component dynamics. We discovered that, although all Nups display uniformly slow turnover, their exchange rates vary considerably. Surprisingly, this exchange rate was relatively unrelated to each Nup's position, accessibility, or role in transport but correlated with its structural role; scaffold-forming Nups exchange slowly, whereas flexible connector Nups threading throughout the NPC architecture exchange more rapidly. Targeted perturbations in the NPC structure revealed a dynamic resilience to damage. Our approach opens a new window into macromolecular assembly dynamics.
Collapse
|
7
|
Nanoluciferase Reporter Mycobacteriophage for Sensitive and Rapid Detection of Mycobacterium tuberculosis Drug Susceptibility. J Bacteriol 2020; 202:JB.00411-20. [PMID: 32900827 PMCID: PMC7585058 DOI: 10.1128/jb.00411-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/01/2020] [Indexed: 01/02/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis disease, remains a public health crisis on a global scale, and development of new interventions and identification of drug resistance are pillars in the World Health Organization End TB Strategy. Leveraging the tractability of the TM4 mycobacteriophage and the sensitivity of the nanoluciferase reporter enzyme, the present work describes an evolution of phage-mediated detection and drug susceptibility testing of M. tuberculosis, adding a valuable tool in drug discovery and basic biology research. With additional validation, this system may play a role as a quantitative phenotypic reference method and complement to genotypic methods for diagnosis and antibiotic susceptibility testing. Phenotypic testing for drug susceptibility of Mycobacterium tuberculosis is critical to basic research and managing the evolving problem of antimicrobial resistance in tuberculosis management, but it remains a specialized technique to which access is severely limited. Here, we report on the development and validation of an improved phage-mediated detection system for M. tuberculosis. We incorporated a nanoluciferase (Nluc) reporter gene cassette into the TM4 mycobacteriophage genome to create phage TM4-nluc. We assessed the performance of this reporter phage in the context of cellular limit of detection and drug susceptibility testing using multiple biosafety level 2 drug-sensitive and -resistant auxotrophs as well as virulent M. tuberculosis strains. For both limit of detection and drug susceptibility testing, we developed a standardized method consisting of a 96-hour cell preculture followed by a 72-hour experimental window for M. tuberculosis detection with or without antibiotic exposure. The cellular limit of detection of M. tuberculosis in a 96-well plate batch culture was ≤102 CFU. Consistent with other phenotypic methods for drug susceptibility testing, we found TM4-nluc to be compatible with antibiotics representing multiple classes and mechanisms of action, including inhibition of core central dogma functions, cell wall homeostasis, metabolic inhibitors, compounds currently in clinical trials (SQ109 and Q203), and susceptibility testing for bedaquiline, pretomanid, and linezolid (components of the BPaL regimen for the treatment of multi- and extensively drug-resistant tuberculosis). Using the same method, we accurately identified rifampin-resistant and multidrug-resistant M. tuberculosis strains. IMPORTANCEMycobacterium tuberculosis, the causative agent of tuberculosis disease, remains a public health crisis on a global scale, and development of new interventions and identification of drug resistance are pillars in the World Health Organization End TB Strategy. Leveraging the tractability of the TM4 mycobacteriophage and the sensitivity of the nanoluciferase reporter enzyme, the present work describes an evolution of phage-mediated detection and drug susceptibility testing of M. tuberculosis, adding a valuable tool in drug discovery and basic biology research. With additional validation, this system may play a role as a quantitative phenotypic reference method and complement to genotypic methods for diagnosis and antibiotic susceptibility testing.
Collapse
|
8
|
Herricks T, Donczew M, Mast FD, Rustad T, Morrison R, Sterling TR, Sherman DR, Aitchison JD. ODELAM, rapid sequence-independent detection of drug resistance in isolates of Mycobacterium tuberculosis. eLife 2020; 9:56613. [PMID: 32401195 PMCID: PMC7263823 DOI: 10.7554/elife.56613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/12/2020] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial-resistant Mycobacterium tuberculosis (Mtb) causes over 200,000 deaths each year. Current assays of antimicrobial resistance need knowledge of mutations that confer drug resistance, or long periods of culture time to test growth under drug pressure. We present ODELAM (One-cell Doubling Evaluation of Living Arrays of Mycobacterium), a time-lapse microscopy-based method that observes individual cells growing into microcolonies. ODELAM enables rapid quantitative measures of growth kinetics in as little as 30 hrs under a wide variety of environmental conditions. We demonstrate ODELAM’s utility by identifying ofloxacin resistance in cultured clinical isolates of Mtb and benchmark its performance with standard minimum inhibitory concentration (MIC) assays. ODELAM identified ofloxacin heteroresistance and the presence of drug resistant colony forming units (CFUs) at 1 per 1000 CFUs in as little as 48 hrs. ODELAM is a powerful new tool that can rapidly evaluate Mtb drug resistance in a laboratory setting.
Collapse
Affiliation(s)
- Thurston Herricks
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, United States
| | - Magdalena Donczew
- Department of Microbiology, University of Washington, Seattle, United States
| | - Fred D Mast
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, United States
| | - Tige Rustad
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, United States
| | - Robert Morrison
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, United States
| | - Timothy R Sterling
- Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, United States
| | - David R Sherman
- Department of Microbiology, University of Washington, Seattle, United States
| | - John D Aitchison
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, United States.,Department of Pediatrics, University of Washington, Seattle, United States
| |
Collapse
|