1
|
Car C, Quevarec L, Gilles A, Réale D, Bonzom JM. Evolutionary approach for pollution study: The case of ionizing radiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123692. [PMID: 38462194 DOI: 10.1016/j.envpol.2024.123692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
Estimating the consequences of environmental changes, specifically in a global change context, is essential for conservation issues. In the case of pollutants, the interest in using an evolutionary approach to investigate their consequences has been emphasized since the 2000s, but these studies remain rare compared to the characterization of direct effects on individual features. We focused on the study case of anthropogenic ionizing radiation because, despite its potential strong impact on evolution, the scarcity of evolutionary approaches to study the biological consequences of this stressor is particularly true. In this study, by investigating some particular features of the biological effects of this stressor, and by reviewing existing studies on evolution under ionizing radiation, we suggest that evolutionary approach may help provide an integrative view on the biological consequences of ionizing radiation. We focused on three topics: (i) the mutagenic properties of ionizing radiation and its disruption of evolutionary processes, (ii) exposures at different time scales, leading to an interaction between past and contemporary evolution, and (iii) the special features of contaminated areas called exclusion zones and how evolution could match field and laboratory observed effects. This approach can contribute to answering several key issues in radioecology: to explain species differences in the sensitivity to ionizing radiation, to improve our estimation of the impacts of ionizing radiation on populations, and to help identify the environmental features impacting organisms (e.g., interaction with other pollution, migration of populations, anthropogenic environmental changes). Evolutionary approach would benefit from being integrated to the ecological risk assessment process.
Collapse
Affiliation(s)
- Clément Car
- Laboratoire de Recherche sur Les Effets des Radionucléides sur L'écosystème (LECO), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Saint-Paul Lèz Durance, France
| | - Loïc Quevarec
- Laboratoire de Recherche sur Les Effets des Radionucléides sur L'écosystème (LECO), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Saint-Paul Lèz Durance, France.
| | - André Gilles
- UMR Risques, ECOsystèmes, Vulnérabilité, Environnement, Résilience (RECOVER), Aix-Marseille Université (AMU), Marseille, France
| | - Denis Réale
- Département des Sciences Biologiques, Université Du Québec à Montréal, (UQAM), Montréal, Canada
| | - Jean-Marc Bonzom
- Laboratoire de Recherche sur Les Effets des Radionucléides sur L'écosystème (LECO), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Saint-Paul Lèz Durance, France
| |
Collapse
|
2
|
Burda K, Konczal M. Validation of machine learning approach for direct mutation rate estimation. Mol Ecol Resour 2023; 23:1757-1771. [PMID: 37486035 DOI: 10.1111/1755-0998.13841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023]
Abstract
Mutations are the primary source of all genetic variation. Knowledge about their rates is critical for any evolutionary genetic analyses, but for a long time, that knowledge has remained elusive and indirectly inferred. In recent years, parent-offspring comparisons have yielded the first direct mutation rate estimates. The analyses are, however, challenging due to high rate of false positives and no consensus regarding standardized filtering of candidate de novo mutations. Here, we validate the application of a machine learning approach for such a task and estimate the mutation rate for the guppy (Poecilia reticulata), a model species in eco-evolutionary studies. We sequenced 4 parents and 20 offspring, followed by screening their genomes for de novo mutations. The initial large number of candidate de novo mutations was hard-filtered to remove false-positive results. These results were compared with mutation rate estimated with a supervised machine learning approach. Both approaches were followed by molecular validation of all candidate de novo mutations and yielded similar results. The ML method uniquely identified three mutations, but overall required more hands-on curation and had higher rates of false positives and false negatives. Both methods concordantly showed no difference in mutation rates between families. Estimated here the guppy mutation rate is among the lowest directly estimated mutation rates in vertebrates; however, previous research has also found low estimated rates in other teleost fishes. We discuss potential explanations for such a pattern, as well as future utility and limitations of machine learning approaches.
Collapse
Affiliation(s)
- Katarzyna Burda
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Mateusz Konczal
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
3
|
Kolovi S, Fois GR, Lanouar S, Chardon P, Miallier D, Baker LA, Bailly C, Beauger A, Biron DG, David K, Montavon G, Pilleyre T, Schoefs B, Breton V, Maigne L. Assessing radiation dosimetry for microorganisms in naturally radioactive mineral springs using GATE and Geant4-DNA Monte Carlo simulations. PLoS One 2023; 18:e0292608. [PMID: 37824461 PMCID: PMC10569590 DOI: 10.1371/journal.pone.0292608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Mineral springs in Massif Central, France can be characterized by higher levels of natural radioactivity in comparison to the background. The biota in these waters is constantly under radiation exposure mainly from the α-emitters of the natural decay chains, with 226Ra in sediments ranging from 21 Bq/g to 43 Bq/g and 222Rn activity concentrations in water up to 4600 Bq/L. This study couples for the first time micro- and nanodosimetric approaches to radioecology by combining GATE and Geant4-DNA to assess the dose rates and DNA damages to microorganisms living in these naturally radioactive ecosystems. It focuses on unicellular eukaryotic microalgae (diatoms) which display an exceptional abundance of teratological forms in the most radioactive mineral springs in Auvergne. Using spherical geometries for the microorganisms and based on γ-spectrometric analyses, we evaluate the impact of the external exposure to 1000 Bq/L 222Rn dissolved in the water and 30 Bq/g 226Ra in the sediments. Our results show that the external dose rates for diatoms are significant (9.7 μGy/h) and comparable to the threshold (10 μGy/h) for the protection of the ecosystems suggested by the literature. In a first attempt of simulating the radiation induced DNA damage on this species, the rate of DNA Double Strand Breaks per day is estimated to 1.11E-04. Our study confirms the significant mutational pressure from natural radioactivity to which microbial biodiversity has been exposed since Earth origin in hydrothermal springs.
Collapse
Affiliation(s)
- Sofia Kolovi
- Laboratoire de Physique de Clermont (LPC) - UMR6533, CNRS/IN2P3 Université Clermont Auvergne, Aubière, France
- LTSER “Zone Atelier Territoires Uranifères”, Clermont-Ferrand, France
| | - Giovanna-Rosa Fois
- Laboratoire de Physique de Clermont (LPC) - UMR6533, CNRS/IN2P3 Université Clermont Auvergne, Aubière, France
| | - Sarra Lanouar
- Laboratoire de Physique de Clermont (LPC) - UMR6533, CNRS/IN2P3 Université Clermont Auvergne, Aubière, France
| | - Patrick Chardon
- Laboratoire de Physique de Clermont (LPC) - UMR6533, CNRS/IN2P3 Université Clermont Auvergne, Aubière, France
- LTSER “Zone Atelier Territoires Uranifères”, Clermont-Ferrand, France
| | - Didier Miallier
- Laboratoire de Physique de Clermont (LPC) - UMR6533, CNRS/IN2P3 Université Clermont Auvergne, Aubière, France
- LTSER “Zone Atelier Territoires Uranifères”, Clermont-Ferrand, France
| | - Lory-Anne Baker
- LTSER “Zone Atelier Territoires Uranifères”, Clermont-Ferrand, France
- Laboratoire Microorganismes: Génome Environnement (LMGE) - UMR6023, CNRS, Université Clermont Auvergne, Clermont–Ferrand, France
- Laboratoire de Géographie Physique et Environnementale (GEOLAB) - UMR6042, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Céline Bailly
- LTSER “Zone Atelier Territoires Uranifères”, Clermont-Ferrand, France
- Laboratoire de Physique Subatomique et des Technologies Associées (SUBATECH) - UMR6457, CNRS/IN2P3/IMT Atlantique/Université de Nantes, Nantes, France
| | - Aude Beauger
- LTSER “Zone Atelier Territoires Uranifères”, Clermont-Ferrand, France
- Laboratoire Microorganismes: Génome Environnement (LMGE) - UMR6023, CNRS, Université Clermont Auvergne, Clermont–Ferrand, France
| | - David G. Biron
- LTSER “Zone Atelier Territoires Uranifères”, Clermont-Ferrand, France
- Laboratoire Microorganismes: Génome Environnement (LMGE) - UMR6023, CNRS, Université Clermont Auvergne, Clermont–Ferrand, France
| | - Karine David
- LTSER “Zone Atelier Territoires Uranifères”, Clermont-Ferrand, France
- Laboratoire de Physique Subatomique et des Technologies Associées (SUBATECH) - UMR6457, CNRS/IN2P3/IMT Atlantique/Université de Nantes, Nantes, France
| | - Gilles Montavon
- LTSER “Zone Atelier Territoires Uranifères”, Clermont-Ferrand, France
- Laboratoire de Physique Subatomique et des Technologies Associées (SUBATECH) - UMR6457, CNRS/IN2P3/IMT Atlantique/Université de Nantes, Nantes, France
| | - Thierry Pilleyre
- Laboratoire de Physique de Clermont (LPC) - UMR6533, CNRS/IN2P3 Université Clermont Auvergne, Aubière, France
- LTSER “Zone Atelier Territoires Uranifères”, Clermont-Ferrand, France
| | - Benoît Schoefs
- LTSER “Zone Atelier Territoires Uranifères”, Clermont-Ferrand, France
- Metabolism, Molecular Engineering of Microalgae and Applications, Laboratoire de Biologie des Organismes, Stress, Santé Environnement, IUML FR3473, CNRS, Le Mans University, Le Mans, France
| | - Vincent Breton
- Laboratoire de Physique de Clermont (LPC) - UMR6533, CNRS/IN2P3 Université Clermont Auvergne, Aubière, France
- LTSER “Zone Atelier Territoires Uranifères”, Clermont-Ferrand, France
| | - Lydia Maigne
- Laboratoire de Physique de Clermont (LPC) - UMR6533, CNRS/IN2P3 Université Clermont Auvergne, Aubière, France
- LTSER “Zone Atelier Territoires Uranifères”, Clermont-Ferrand, France
| | | |
Collapse
|
4
|
Kolovi S, Fois GR, Lanouar S, Chardon P, Miallier D, Rivrais G, Allain E, Baker LA, Bailly C, Beauger A, Biron DG, He Y, Holub G, Le Jeune AH, Mallet C, Michel H, Montavon G, Schoefs B, Sergeant C, Maigne L, Breton V. Radiation exposure of microorganisms living in radioactive mineral springs. EPJ WEB OF CONFERENCES 2022. [DOI: 10.1051/epjconf/202226104001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The TIRAMISU collaboration gathers expertise from biologists, physicists, radiochemists and geologists within the Zone-Atelier Territoires Uranifères (ZATU) in France to analyze the radiation exposure of microorganisms living in naturally radioactive mineral springs. These springs are small waterbodies that are extremely stable over geological time scales and display different physicochemical and radiological parameters compared to their surroundings. Water and sediment samples collected in 27 mineral springs of the volcanic Auvergne region (Massif Central, France) have been studied for their microbial biodiversity and their radionuclide content. Among the microorganisms present, microalgae (diatoms), widely used as environmental indicators of water quality, have shown to display an exceptional abundance of teratogenic forms in the most radioactive springs studied (radon activity up to 3700 Bq/L). The current work presents a first assessment of the dose received by the diatoms inhabiting these ecosystems. According to ERICA tool, microorganisms living in most of the sampled mineral springs were exposed to dose rates above 10 μGy/h due to the large concentration of radium in the sediments (up to 50 Bq/g). Radiological analyses of water and sediments were used as inputs to Monte Carlo simulations at micro-(GATE) and nano- (Geant4-DNA) scale in order to assess the direct and indirect damages on the diatom DNA.
Collapse
|
5
|
Car C, Gilles A, Armant O, Burraco P, Beaugelin‐Seiller K, Gashchak S, Camilleri V, Cavalié I, Laloi P, Adam‐Guillermin C, Orizaola G, Bonzom J. Unusual evolution of tree frog populations in the Chernobyl exclusion zone. Evol Appl 2022; 15:203-219. [PMID: 35233243 PMCID: PMC8867709 DOI: 10.1111/eva.13282] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/03/2022] Open
Abstract
Despite the ubiquity of pollutants in the environment, their long-term ecological consequences are not always clear and still poorly studied. This is the case concerning the radioactive contamination of the environment following the major nuclear accident at the Chernobyl nuclear power plant. Notwithstanding the implications of evolutionary processes on the population status, few studies concern the evolution of organisms chronically exposed to ionizing radiation in the Chernobyl exclusion zone. Here, we examined genetic markers for 19 populations of Eastern tree frog (Hyla orientalis) sampled in the Chernobyl region about thirty years after the nuclear power plant accident to investigate microevolutionary processes ongoing in local populations. Genetic diversity estimated from nuclear and mitochondrial markers showed an absence of genetic erosion and higher mitochondrial diversity in tree frogs from the Chernobyl exclusion zone compared to other European populations. Moreover, the study of haplotype network permitted us to decipher the presence of an independent recent evolutionary history of Chernobyl exclusion zone's Eastern tree frogs caused by an elevated mutation rate compared to other European populations. By fitting to our data a model of haplotype network evolution, we suspected that Eastern tree frog populations in the Chernobyl exclusion zone have a high mitochondrial mutation rate and small effective population sizes. These data suggest that Eastern tree frog populations might offset the impact of deleterious mutations because of their large clutch size, but also question the long-term impact of ionizing radiation on the status of other species living in the Chernobyl exclusion zone.
Collapse
Affiliation(s)
- Clément Car
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN)PSE‐ENV/SRTE/LECOCadaracheFrance
| | - André Gilles
- UMR RECOVERINRAEAix‐Marseille Université, Centre Saint‐CharlesMarseilleFrance
| | - Olivier Armant
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN)PSE‐ENV/SRTE/LECOCadaracheFrance
| | - Pablo Burraco
- Animal EcologyDepartment of Ecology and GeneticsEvolutionary Biology CentreUppsala UniversityUppsalaSweden
- Institute of Biodiversity, Animal Health and Comparative MedicineCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | | | - Sergey Gashchak
- Chornobyl Center for Nuclear SafetyRadioactive Waste and RadioecologySlavutychUkraine
| | - Virginie Camilleri
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN)PSE‐ENV/SRTE/LECOCadaracheFrance
| | - Isabelle Cavalié
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN)PSE‐ENV/SRTE/LECOCadaracheFrance
| | - Patrick Laloi
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN)PSE‐ENV/SRTE/LECOCadaracheFrance
| | | | - Germán Orizaola
- IMIB‐Biodiversity Research Institute (Univ. Oviedo‐CSIC‐Princip. Asturias)Universidad de OviedoMieres‐AsturiasSpain
- Department Biology Organisms and SystemsZoology UnitUniversity of OviedoOviedo‐AsturiasSpain
| | - Jean‐Marc Bonzom
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN)PSE‐ENV/SRTE/LECOCadaracheFrance
| |
Collapse
|
6
|
Saclier N, Chardon P, Malard F, Konecny-Dupré L, Eme D, Bellec A, Breton V, Duret L, Lefebure T, Douady CJ. Bedrock radioactivity influences the rate and spectrum of mutation. eLife 2020; 9:56830. [PMID: 33252037 PMCID: PMC7723406 DOI: 10.7554/elife.56830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022] Open
Abstract
All organisms on Earth are exposed to low doses of natural radioactivity but some habitats are more radioactive than others. Yet, documenting the influence of natural radioactivity on the evolution of biodiversity is challenging. Here, we addressed whether organisms living in naturally more radioactive habitats accumulate more mutations across generations using 14 species of waterlice living in subterranean habitats with contrasted levels of radioactivity. We found that the mitochondrial and nuclear mutation rates across a waterlouse species’ genome increased on average by 60% and 30%, respectively, when radioactivity increased by a factor of three. We also found a positive correlation between the level of radioactivity and the probability of G to T (and complementary C to A) mutations, a hallmark of oxidative stress. We conclude that even low doses of natural bedrock radioactivity influence the mutation rate possibly through the accumulation of oxidative damage, in particular in the mitochondrial genome.
Collapse
Affiliation(s)
- Nathanaëlle Saclier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5023, ENTPE, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne, France
| | - Patrick Chardon
- LPC, Université Clermont Auvergne, CNRS/IN2P3 UMR6533, Clermont-Ferrand, France
| | - Florian Malard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5023, ENTPE, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne, France
| | - Lara Konecny-Dupré
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5023, ENTPE, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne, France
| | - David Eme
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5023, ENTPE, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne, France
| | - Arnaud Bellec
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5023, ENTPE, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne, France.,Univ Lyon, Université Jean Moulin Lyon 3, CNRS UMR 5600 Environnement Ville Société, Lyon, France
| | - Vincent Breton
- LPC, Université Clermont Auvergne, CNRS/IN2P3 UMR6533, Clermont-Ferrand, France
| | - Laurent Duret
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| | - Tristan Lefebure
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5023, ENTPE, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne, France
| | - Christophe J Douady
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5023, ENTPE, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|