1
|
He B, Helmann JD. Metalation of Extracytoplasmic Proteins and Bacterial Cell Envelope Homeostasis. Annu Rev Microbiol 2024; 78:83-102. [PMID: 38960447 DOI: 10.1146/annurev-micro-041522-091507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Cell physiology requires innumerable metalloenzymes supported by the selective import of metal ions. Within the crowded cytosol, most enzymes acquire their cognate cofactors from a buffered labile pool. Metalation of membrane-bound and secreted exoenzymes is more problematic since metal concentrations are highly variable outside the cell. Here, we focus on metalloenzymes involved in cell envelope homeostasis. Peptidoglycan synthesis often relies on Zn-dependent hydrolases, and metal-dependent β-lactamases play important roles in antibiotic resistance. In gram-positive bacteria, lipoteichoic acid synthesis requires Mn, with TerC family Mn exporters in a supporting role. For some exoenzymes, metalation occurs in the cytosol, and metalated enzymes are exported through the TAT secretion system. For others, metalation is facilitated by metal exporters, metallochaperones, or partner proteins that enhance metal affinity. To help ensure function, some metalloenzymes can function with multiple metals. Thus, cells employ a diversity of strategies to ensure metalation of enzymes functioning outside the cytosol.
Collapse
Affiliation(s)
- Bixi He
- Department of Microbiology, Cornell University, Ithaca, New York, USA;
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
2
|
Roney IJ, Rudner DZ. Bacillus subtilis uses the SigM signaling pathway to prioritize the use of its lipid carrier for cell wall synthesis. PLoS Biol 2024; 22:e3002589. [PMID: 38683856 PMCID: PMC11081497 DOI: 10.1371/journal.pbio.3002589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 05/09/2024] [Accepted: 03/13/2024] [Indexed: 05/02/2024] Open
Abstract
Peptidoglycan (PG) and most surface glycopolymers and their modifications are built in the cytoplasm on the lipid carrier undecaprenyl phosphate (UndP). These lipid-linked precursors are then flipped across the membrane and polymerized or directly transferred to surface polymers, lipids, or proteins. Despite its essential role in envelope biogenesis, UndP is maintained at low levels in the cytoplasmic membrane. The mechanisms by which bacteria distribute this limited resource among competing pathways is currently unknown. Here, we report that the Bacillus subtilis transcription factor SigM and its membrane-anchored anti-sigma factor respond to UndP levels and prioritize its use for the synthesis of the only essential surface polymer, the cell wall. Antibiotics that target virtually every step in PG synthesis activate SigM-directed gene expression, confounding identification of the signal and the logic of this stress-response pathway. Through systematic analyses, we discovered 2 distinct responses to these antibiotics. Drugs that trap UndP, UndP-linked intermediates, or precursors trigger SigM release from the membrane in <2 min, rapidly activating transcription. By contrasts, antibiotics that inhibited cell wall synthesis without directly affecting UndP induce SigM more slowly. We show that activation in the latter case can be explained by the accumulation of UndP-linked wall teichoic acid precursors that cannot be transferred to the PG due to the block in its synthesis. Furthermore, we report that reduction in UndP synthesis rapidly induces SigM, while increasing UndP production can dampen the SigM response. Finally, we show that SigM becomes essential for viability when the availability of UndP is restricted. Altogether, our data support a model in which the SigM pathway functions to homeostatically control UndP usage. When UndP levels are sufficiently high, the anti-sigma factor complex holds SigM inactive. When levels of UndP are reduced, SigM activates genes that increase flux through the PG synthesis pathway, boost UndP recycling, and liberate the lipid carrier from nonessential surface polymer pathways. Analogous homeostatic pathways that prioritize UndP usage are likely to be common in bacteria.
Collapse
Affiliation(s)
- Ian J. Roney
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David Z. Rudner
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
3
|
Guo T, Sperber AM, Krieger IV, Duan Y, Chemelewski VR, Sacchettini JC, Herman JK. Bacillus subtilis YisK possesses oxaloacetate decarboxylase activity and exhibits Mbl-dependent localization. J Bacteriol 2024; 206:e0020223. [PMID: 38047707 PMCID: PMC10810218 DOI: 10.1128/jb.00202-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023] Open
Abstract
YisK is an uncharacterized protein in Bacillus subtilis previously shown to interact genetically with the elongasome protein Mbl. YisK overexpression leads to cell widening and lysis, phenotypes that are dependent on mbl and suppressed by mbl mutations. In the present work, we characterize YisK's localization, structure, and enzymatic activity. We show that YisK localizes as puncta that depend on Mbl. YisK belongs to the fumarylacetoacetate hydrolase (FAH) superfamily, and crystal structures revealed close structural similarity to two oxaloacetate (OAA) decarboxylases: human mitochondrial FAHD1 and Corynebacterium glutamicum Cg1458. We demonstrate that YisK can also catalyze the decarboxylation of OAA (K m = 134 µM, K cat = 31 min-1). A catalytic dead variant (YisK E148A, E150A) retains wild-type localization and still widens cells following overexpression, indicating these activities are not dependent on YisK catalysis. Conversely, a non-localizing variant (YisK E30A) retains wild-type enzymatic activity in vitro but localizes diffusely and no longer widens cells following overexpression. Together, these results suggest that YisK may be subject to spatial regulation that depends on the cell envelope synthesis machinery. IMPORTANCE The elongasome is a multiprotein complex that guides lengthwise growth in some bacteria. We previously showed that, in B. subtilis, overexpression of an uncharacterized putative enzyme (YisK) perturbed function of the actin-like elongasome protein Mbl. Here, we show that YisK exhibits Mbl-dependent localization. Through biochemical and structural characterization, we demonstrate that, like its mitochondrial homolog FAHD1, YisK can catalyze the decarboxylation of the oxaloacetate to pyruvate and CO2. YisK is the first example of an enzyme implicated in central carbon metabolism with subcellular localization that depends on Mbl.
Collapse
Affiliation(s)
- Tingfeng Guo
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Anthony M. Sperber
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Inna V. Krieger
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Yi Duan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Veronica R. Chemelewski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - James C. Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Jennifer K. Herman
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
4
|
Brogan AP, Habib C, Hobbs SJ, Kranzusch PJ, Rudner DZ. Bacterial SEAL domains undergo autoproteolysis and function in regulated intramembrane proteolysis. Proc Natl Acad Sci U S A 2023; 120:e2310862120. [PMID: 37756332 PMCID: PMC10556640 DOI: 10.1073/pnas.2310862120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Gram-positive bacteria use SigI/RsgI-family sigma factor/anti-sigma factor pairs to sense and respond to cell wall defects and plant polysaccharides. In Bacillus subtilis, this signal transduction pathway involves regulated intramembrane proteolysis (RIP) of the membrane-anchored anti-sigma factor RsgI. However, unlike most RIP signaling pathways, site-1 cleavage of RsgI on the extracytoplasmic side of the membrane is constitutive and the cleavage products remain stably associated, preventing intramembrane proteolysis. The regulated step in this pathway is their dissociation, which is hypothesized to involve mechanical force. Release of the ectodomain enables intramembrane cleavage by the RasP site-2 protease and activation of SigI. The constitutive site-1 protease has not been identified for any RsgI homolog. Here, we report that RsgI's extracytoplasmic domain has structural and functional similarities to eukaryotic SEA domains that undergo autoproteolysis and have been implicated in mechanotransduction. We show that site-1 proteolysis in B. subtilis and Clostridial RsgI family members is mediated by enzyme-independent autoproteolysis of these SEA-like domains. Importantly, the site of proteolysis enables retention of the ectodomain through an undisrupted β-sheet that spans the two cleavage products. Autoproteolysis can be abrogated by relief of conformational strain in the scissile loop, in a mechanism analogous to eukaryotic SEA domains. Collectively, our data support the model that RsgI-SigI signaling is mediated by mechanotransduction in a manner that has striking parallels with eukaryotic mechanotransducive signaling pathways.
Collapse
Affiliation(s)
- Anna P. Brogan
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| | - Cameron Habib
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| | - Samuel J. Hobbs
- Department of Microbiology, Harvard Medical School, Boston, MA02115
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA02115
| | - Philip J. Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA02115
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA02115
| | - David Z. Rudner
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
5
|
Bramkamp M, Scheffers DJ. Bacterial membrane dynamics: Compartmentalization and repair. Mol Microbiol 2023; 120:490-501. [PMID: 37243899 DOI: 10.1111/mmi.15077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/29/2023]
Abstract
In every bacterial cell, the plasma membrane plays a key role in viability as it forms a selective barrier between the inside of the cell and its environment. This barrier function depends on the physical state of the lipid bilayer and the proteins embedded or associated with the bilayer. Over the past decade or so, it has become apparent that many membrane-organizing proteins and principles, which were described in eukaryote systems, are ubiquitous and play important roles in bacterial cells. In this minireview, we focus on the enigmatic roles of bacterial flotillins in membrane compartmentalization and bacterial dynamins and ESCRT-like systems in membrane repair and remodeling.
Collapse
Affiliation(s)
- Marc Bramkamp
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Dirk-Jan Scheffers
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
6
|
Brogan AP, Habib C, Hobbs SJ, Kranzusch PJ, Rudner DZ. Bacterial SEAL domains undergo autoproteolysis and function in regulated intramembrane proteolysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546760. [PMID: 37425962 PMCID: PMC10327162 DOI: 10.1101/2023.06.27.546760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Gram-positive bacteria use SigI/RsgI-family sigma factor/anti-sigma factor pairs to sense and respond to cell wall defects and plant polysaccharides. In Bacillus subtilis this signal transduction pathway involves regulated intramembrane proteolysis (RIP) of the membrane-anchored anti-sigma factor RsgI. However, unlike most RIP signaling pathways, site-1 cleavage of RsgI on the extracytoplasmic side of the membrane is constitutive and the cleavage products remain stably associated, preventing intramembrane proteolysis. The regulated step in this pathway is their dissociation, which is hypothesized to involve mechanical force. Release of the ectodomain enables intramembrane cleavage by the RasP site-2 protease and activation of SigI. The constitutive site-1 protease has not been identified for any RsgI homolog. Here, we report that RsgI's extracytoplasmic domain has structural and functional similarities to eukaryotic SEA domains that undergo autoproteolysis and have been implicated in mechanotransduction. We show that site-1 proteolysis in B. subtilis and Clostridial RsgI family members is mediated by enzyme-independent autoproteolysis of these SEA-like (SEAL) domains. Importantly, the site of proteolysis enables retention of the ectodomain through an undisrupted ß-sheet that spans the two cleavage products. Autoproteolysis can be abrogated by relief of conformational strain in the scissile loop, in a mechanism analogous to eukaryotic SEA domains. Collectively, our data support the model that RsgI-SigI signaling is mediated by mechanotransduction in a manner that has striking parallels with eukaryotic mechanotransducive signaling pathways. SIGNIFICANCE SEA domains are broadly conserved among eukaryotes but absent in bacteria. They are present on diverse membrane-anchored proteins some of which have been implicated in mechanotransducive signaling pathways. Many of these domains have been found to undergo autoproteolysis and remain noncovalently associated following cleavage. Their dissociation requires mechanical force. Here, we identify a family of bacterial SEA-like (SEAL) domains that arose independently from their eukaryotic counterparts but have structural and functional similarities. We show these SEAL domains autocleave and the cleavage products remain stably associated. Importantly, these domains are present on membrane-anchored anti-sigma factors that have been implicated in mechanotransduction pathways analogous to those in eukaryotes. Our findings suggest that bacterial and eukaryotic signaling systems have evolved a similar mechanism to transduce mechanical stimuli across the lipid bilayer.
Collapse
Affiliation(s)
- Anna P. Brogan
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
| | - Cameron Habib
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
| | - Samuel J. Hobbs
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Philip J. Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - David Z. Rudner
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
7
|
Kawai Y, Errington J. Dissecting the roles of peptidoglycan synthetic and autolytic activities in the walled to L-form bacterial transition. Front Microbiol 2023; 14:1204979. [PMID: 37333659 PMCID: PMC10272550 DOI: 10.3389/fmicb.2023.1204979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023] Open
Abstract
Bacterial cells are surrounded by a peptidoglycan (PG) wall, which is a crucial target for antibiotics. It is well known that treatment with cell wall-active antibiotics occasionally converts bacteria to a non-walled "L-form" state that requires the loss of cell wall integrity. L-forms may have an important role in antibiotic resistance and recurrent infection. Recent work has revealed that inhibition of de novo PG precursor synthesis efficiently induces the L-form conversion in a wide range of bacteria, but the molecular mechanisms remain poorly understood. Growth of walled bacteria requires the orderly expansion of the PG layer, which involves the concerted action not just of synthases but also degradative enzymes called autolysins. Most rod-shaped bacteria have two complementary systems for PG insertion, the Rod and aPBP systems. Bacillus subtilis has two major autolysins, called LytE and CwlO, which are thought to have partially redundant functions. We have dissected the functions of autolysins, relative to the Rod and aPBP systems, during the switch to L-form state. Our results suggest that when de novo PG precursor synthesis is inhibited, residual PG synthesis occurs specifically via the aPBP pathway, and that this is required for continued autolytic activity by LytE/CwlO, resulting in cell bulging and efficient L-form emergence. The failure of L-form generation in cells lacking aPBPs was rescued by enhancing the Rod system and in this case, emergence specifically required LytE but was not associated with cell bulging. Our results suggest that two distinct pathways of L-form emergence exist depending on whether PG synthesis is being supported by the aPBP or RodA PG synthases. This work provides new insights into mechanisms of L-form generation, and specialisation in the roles of essential autolysins in relation to the recently recognised dual PG synthetic systems of bacteria.
Collapse
|
8
|
Griffin ME, Klupt S, Espinosa J, Hang HC. Peptidoglycan NlpC/P60 peptidases in bacterial physiology and host interactions. Cell Chem Biol 2023; 30:436-456. [PMID: 36417916 PMCID: PMC10192474 DOI: 10.1016/j.chembiol.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022]
Abstract
The bacterial cell wall is composed of a highly crosslinked matrix of glycopeptide polymers known as peptidoglycan that dictates bacterial cell morphology and protects against environmental stresses. Regulation of peptidoglycan turnover is therefore crucial for bacterial survival and growth and is mediated by key protein complexes and enzyme families. Here, we review the prevalence, structure, and activity of NlpC/P60 peptidases, a family of peptidoglycan hydrolases that are crucial for cell wall turnover and division as well as interactions with antibiotics and different hosts. Understanding the molecular functions of NlpC/P60 peptidases should provide important insight into bacterial physiology, their interactions with different kingdoms of life, and the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Matthew E Griffin
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Steven Klupt
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Juliel Espinosa
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA
| | - Howard C Hang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA; Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
9
|
Kristensen SS, Diep DB, Kjos M, Mathiesen G. The role of site-2-proteases in bacteria: a review on physiology, virulence, and therapeutic potential. MICROLIFE 2023; 4:uqad025. [PMID: 37223736 PMCID: PMC10202637 DOI: 10.1093/femsml/uqad025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/25/2023]
Abstract
Site-2-proteases are a class of intramembrane proteases involved in regulated intramembrane proteolysis. Regulated intramembrane proteolysis is a highly conserved signaling mechanism that commonly involves sequential digestion of an anti-sigma factor by a site-1- and site-2-protease in response to external stimuli, resulting in an adaptive transcriptional response. Variation of this signaling cascade continues to emerge as the role of site-2-proteases in bacteria continues to be explored. Site-2-proteases are highly conserved among bacteria and play a key role in multiple processes, including iron uptake, stress response, and pheromone production. Additionally, an increasing number of site-2-proteases have been found to play a pivotal role in the virulence properties of multiple human pathogens, such as alginate production in Pseudomonas aeruginosa, toxin production in Vibrio cholerae, resistance to lysozyme in enterococci and antimicrobials in several Bacillus spp, and cell-envelope lipid composition in Mycobacterium tuberculosis. The prominent role of site-2-proteases in bacterial pathogenicity highlights the potential of site-2-proteases as novel targets for therapeutic intervention. In this review, we summarize the role of site-2-proteases in bacterial physiology and virulence, as well as evaluate the therapeutic potential of site-2-proteases.
Collapse
Affiliation(s)
- Sofie S Kristensen
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), 1433 Ås, Norway
| | | | - Morten Kjos
- Corresponding author. NMBU, P.O. Box 5003, 1433 Ås, Norway. E-mail:
| | | |
Collapse
|
10
|
Patel Y, Soni V, Rhee KY, Helmann JD. Mutations in rpoB That Confer Rifampicin Resistance Can Alter Levels of Peptidoglycan Precursors and Affect β-Lactam Susceptibility. mBio 2023; 14:e0316822. [PMID: 36779708 PMCID: PMC10128067 DOI: 10.1128/mbio.03168-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/23/2023] [Indexed: 02/14/2023] Open
Abstract
Bacteria can adapt to stressful conditions through mutations affecting the RNA polymerase core subunits that lead to beneficial changes in transcription. In response to selection with rifampicin (RIF), mutations arise in the RIF resistance-determining region (RRDR) of rpoB that reduce antibiotic binding. These changes can also alter transcription and thereby have pleiotropic effects on bacterial fitness. Here, we studied the evolution of resistance in Bacillus subtilis to the synergistic combination of RIF and the β-lactam cefuroxime (CEF). Two independent evolution experiments led to the recovery of a single rpoB allele (S487L) that was able to confer resistance to RIF and CEF through a single mutation. Two other common RRDR mutations made the cells 32 times more sensitive to CEF (H482Y) or led to only modest CEF resistance (Q469R). The diverse effects of these three mutations on CEF resistance are correlated with differences in the expression of peptidoglycan (PG) synthesis genes and in the levels of two metabolites crucial in regulating PG synthesis, glucosamine-6-phosphate (GlcN-6-P) and UDP-N-acetylglucosamine (UDP-GlcNAc). We conclude that RRDR mutations can have widely varying effects on pathways important for cell wall biosynthesis, and this may restrict the spectrum of mutations that arise during combination therapy. IMPORTANCE Rifampicin (RIF) is one of the most valued drugs in the treatment of tuberculosis. TB treatment relies on a combination therapy and for multidrug-resistant strains may include β-lactams. Mutations in rpoB present a common route for emergence of resistance to RIF. In this study, using B. subtilis as a model, we evaluate the emergence of resistance for the synergistic combination of RIF and the β-lactam cefuroxime (CEF). One clinically relevant rpoB mutation conferred resistance to both RIF and CEF, whereas one other increased CEF sensitivity. We were able to link these CEF sensitivity phenotypes to accumulation of UDP-N-acetylglucosamine (UDP-GlcNAc), which feedback regulates GlmS activity and thereby peptidoglycan synthesis. Further, we found that higher CEF concentrations precluded the emergence of high RIF resistance. Collectively, these results suggest that multidrug treatment regimens may limit the available pathways for the evolution of antibiotic resistance.
Collapse
Affiliation(s)
- Yesha Patel
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Vijay Soni
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, USA
| | - Kyu Y. Rhee
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, USA
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
11
|
Willdigg JR, Patel Y, Helmann JD. A Decrease in Fatty Acid Synthesis Rescues Cells with Limited Peptidoglycan Synthesis Capacity. mBio 2023; 14:e0047523. [PMID: 37017514 PMCID: PMC10128001 DOI: 10.1128/mbio.00475-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/13/2023] [Indexed: 04/06/2023] Open
Abstract
Proper synthesis and maintenance of a multilayered cell envelope are critical for bacterial fitness. However, whether mechanisms exist to coordinate synthesis of the membrane and peptidoglycan layers is unclear. In Bacillus subtilis, synthesis of peptidoglycan (PG) during cell elongation is mediated by an elongasome complex acting in concert with class A penicillin-binding proteins (aPBPs). We previously described mutant strains limited in their capacity for PG synthesis due to a loss of aPBPs and an inability to compensate by upregulation of elongasome function. Growth of these PG-limited cells can be restored by suppressor mutations predicted to decrease membrane synthesis. One suppressor mutation leads to an altered function repressor, FapR*, that functions as a super-repressor and leads to decreased transcription of fatty acid synthesis (FAS) genes. Consistent with fatty acid limitation mitigating cell wall synthesis defects, inhibition of FAS by cerulenin also restored growth of PG-limited cells. Moreover, cerulenin can counteract the inhibitory effect of β-lactams in some strains. These results imply that limiting PG synthesis results in impaired growth, in part, due to an imbalance of PG and cell membrane synthesis and that B. subtilis lacks a robust physiological mechanism to reduce membrane synthesis when PG synthesis is impaired. IMPORTANCE Understanding how a bacterium coordinates cell envelope synthesis is essential to fully appreciate how bacteria grow, divide, and resist cell envelope stresses, such as β-lactam antibiotics. Balanced synthesis of the peptidoglycan cell wall and the cell membrane is critical for cells to maintain shape and turgor pressure and to resist external cell envelope threats. Using Bacillus subtilis, we show that cells deficient in peptidoglycan synthesis can be rescued by compensatory mutations that decrease the synthesis of fatty acids. Further, we show that inhibiting fatty acid synthesis with cerulenin is sufficient to restore growth of cells deficient in peptidoglycan synthesis. Understanding the coordination of cell wall and membrane synthesis may provide insights relevant to antimicrobial treatment.
Collapse
Affiliation(s)
| | - Yesha Patel
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
12
|
Galinier A, Delan-Forino C, Foulquier E, Lakhal H, Pompeo F. Recent Advances in Peptidoglycan Synthesis and Regulation in Bacteria. Biomolecules 2023; 13:biom13050720. [PMID: 37238589 DOI: 10.3390/biom13050720] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Bacteria must synthesize their cell wall and membrane during their cell cycle, with peptidoglycan being the primary component of the cell wall in most bacteria. Peptidoglycan is a three-dimensional polymer that enables bacteria to resist cytoplasmic osmotic pressure, maintain their cell shape and protect themselves from environmental threats. Numerous antibiotics that are currently used target enzymes involved in the synthesis of the cell wall, particularly peptidoglycan synthases. In this review, we highlight recent progress in our understanding of peptidoglycan synthesis, remodeling, repair, and regulation in two model bacteria: the Gram-negative Escherichia coli and the Gram-positive Bacillus subtilis. By summarizing the latest findings in this field, we hope to provide a comprehensive overview of peptidoglycan biology, which is critical for our understanding of bacterial adaptation and antibiotic resistance.
Collapse
Affiliation(s)
- Anne Galinier
- Laboratoire de Chimie Bactérienne, UMR 7283, Institut de Microbiologie de la Méditerranée, CNRS/Aix-Marseille Univ, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Clémentine Delan-Forino
- Laboratoire de Chimie Bactérienne, UMR 7283, Institut de Microbiologie de la Méditerranée, CNRS/Aix-Marseille Univ, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Elodie Foulquier
- Laboratoire de Chimie Bactérienne, UMR 7283, Institut de Microbiologie de la Méditerranée, CNRS/Aix-Marseille Univ, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Hakima Lakhal
- Laboratoire de Chimie Bactérienne, UMR 7283, Institut de Microbiologie de la Méditerranée, CNRS/Aix-Marseille Univ, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Frédérique Pompeo
- Laboratoire de Chimie Bactérienne, UMR 7283, Institut de Microbiologie de la Méditerranée, CNRS/Aix-Marseille Univ, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| |
Collapse
|
13
|
Guyet A, Alofi A, Daniel RA. Insights into the Roles of Lipoteichoic Acids and MprF in Bacillus subtilis. mBio 2023; 14:e0266722. [PMID: 36744964 PMCID: PMC9973362 DOI: 10.1128/mbio.02667-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/03/2023] [Indexed: 02/07/2023] Open
Abstract
Gram-positive bacterial cells are protected from the environment by a cell envelope that is comprised of a thick layer of peptidoglycan that maintains cell shape and teichoic acid polymers whose biological function remains unclear. In Bacillus subtilis, the loss of all class A penicillin-binding proteins (aPBPs), which function in peptidoglycan synthesis, is conditionally lethal. Here, we show that this lethality is associated with an alteration of lipoteichoic acids (LTAs) and the accumulation of the major autolysin LytE in the cell wall. Our analysis provides further evidence that the length and abundance of LTAs act to regulate the cellular level and activity of autolytic enzymes, specifically LytE. Importantly, we identify a novel function for the aminoacyl-phosphatidylglycerol synthase MprF in the modulation of LTA biosynthesis in both B. subtilis and Staphylococcus aureus. This finding has implications for our understanding of antimicrobial resistance (particularly to daptomycin) in clinically relevant bacteria and the involvement of MprF in the virulence of pathogens such as methicillin-resistant S. aureus (MRSA). IMPORTANCE In Gram-positive bacteria such as Bacillus subtilis and Staphylococcus aureus, the cell envelope is a structure that protects the cells from the environment but is also dynamic in that it must be modified in a controlled way to allow cell growth. In this study, we show that lipoteichoic acids (LTAs), which are anionic polymers attached to the membrane, have a direct role in modulating the cellular abundance of cell wall-degrading enzymes. We also find that the apparent length of the LTA is modulated by the activity of the enzyme MprF, previously implicated in modifications of the cell membrane leading to resistance to antimicrobial peptides. These findings are important contributions to our understanding of how bacteria balance cell wall synthesis and degradation to permit controlled growth and division. These results also have implications for the interpretation of antibiotic resistance, particularly for the clinical treatment of MRSA infections.
Collapse
Affiliation(s)
- Aurélie Guyet
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Amirah Alofi
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Richard A. Daniel
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
14
|
Brunet YR, Habib C, Brogan AP, Artzi L, Rudner DZ. Intrinsically disordered protein regions are required for cell wall homeostasis in Bacillus subtilis. Genes Dev 2022; 36:970-984. [PMID: 36265902 PMCID: PMC9732909 DOI: 10.1101/gad.349895.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/03/2022] [Indexed: 01/07/2023]
Abstract
Intrinsically disordered protein regions (IDRs) have been implicated in diverse nuclear and cytoplasmic functions in eukaryotes, but their roles in bacteria are less clear. Here, we report that extracytoplasmic IDRs in Bacillus subtilis are required for cell wall homeostasis. The B. subtilis σI transcription factor is activated in response to envelope stress through regulated intramembrane proteolysis (RIP) of its membrane-anchored anti-σ factor, RsgI. Unlike canonical RIP pathways, we show that ectodomain (site-1) cleavage of RsgI is constitutive, but the two cleavage products remain stably associated, preventing intramembrane (site-2) proteolysis. The regulated step in this pathway is their dissociation, which is triggered by impaired cell wall synthesis and requires RsgI's extracytoplasmic IDR. Intriguingly, the major peptidoglycan polymerase PBP1 also contains an extracytoplasmic IDR, and we show that this region is important for its function. Disparate IDRs can replace the native IDRs on both RsgI and PBP1, arguing that these unstructured regions function similarly. Our data support a model in which the RsgI-σI signaling system and PBP1 represent complementary pathways to repair gaps in the PG meshwork. The IDR on RsgI senses these gaps and activates σI, while the IDR on PBP1 directs the synthase to these sites to fortify them.
Collapse
Affiliation(s)
- Yannick R. Brunet
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Cameron Habib
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Anna P. Brogan
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Lior Artzi
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - David Z. Rudner
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
15
|
Kitahara Y, Oldewurtel ER, Wilson S, Sun Y, Altabe S, de Mendoza D, Garner EC, van Teeffelen S. The role of cell-envelope synthesis for envelope growth and cytoplasmic density in Bacillus subtilis. PNAS NEXUS 2022; 1:pgac134. [PMID: 36082236 PMCID: PMC9437589 DOI: 10.1093/pnasnexus/pgac134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/21/2022] [Indexed: 01/29/2023]
Abstract
All cells must increase their volumes in response to biomass growth to maintain intracellular mass density within physiologically permissive bounds. Here, we investigate the regulation of volume growth in the Gram-positive bacterium Bacillus subtilis. To increase volume, bacteria enzymatically expand their cell envelopes and insert new envelope material. First, we demonstrate that cell-volume growth is determined indirectly, by expanding their envelopes in proportion to mass growth, similarly to the Gram-negative Escherichia coli, despite their fundamentally different envelope structures. Next, we studied, which pathways might be responsible for robust surface-to-mass coupling: We found that both peptidoglycan synthesis and membrane synthesis are required for proper surface-to-mass coupling. However, surprisingly, neither pathway is solely rate-limiting, contrary to wide-spread belief, since envelope growth continues at a reduced rate upon complete inhibition of either process. To arrest cell-envelope growth completely, the simultaneous inhibition of both envelope-synthesis processes is required. Thus, we suggest that multiple envelope-synthesis pathways collectively confer an important aspect of volume regulation, the coordination between surface growth, and biomass growth.
Collapse
Affiliation(s)
- Yuki Kitahara
- Département de Microbiologie, Infectiologie, et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada,Université de Paris, Paris, France,Microbial Morphogenesis and Growth Lab, Institut Pasteur, Paris, France
| | - Enno R Oldewurtel
- Microbial Morphogenesis and Growth Lab, Institut Pasteur, Paris, France
| | - Sean Wilson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, USA,Center for Systems Biology, Harvard University, Cambridge, MA, USA
| | - Yingjie Sun
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, USA,Center for Systems Biology, Harvard University, Cambridge, MA, USA
| | - Silvia Altabe
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Conicet- and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Diego de Mendoza
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Conicet- and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Ethan C Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, USA,Center for Systems Biology, Harvard University, Cambridge, MA, USA
| | | |
Collapse
|
16
|
A High-Content Microscopy Screening Identifies New Genes Involved in Cell Width Control in Bacillus subtilis. mSystems 2021; 6:e0101721. [PMID: 34846166 PMCID: PMC8631317 DOI: 10.1128/msystems.01017-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
How cells control their shape and size is a fundamental question of biology. In most bacteria, cell shape is imposed by the peptidoglycan (PG) polymeric meshwork that surrounds the cell. Thus, bacterial cell morphogenesis results from the coordinated action of the proteins assembling and degrading the PG shell. Remarkably, during steady-state growth, most bacteria maintain a defined shape along generations, suggesting that error-proof mechanisms tightly control the process. In the rod-shaped model for the Gram-positive bacterium Bacillus subtilis, the average cell length varies as a function of the growth rate, but the cell diameter remains constant throughout the cell cycle and across growth conditions. Here, in an attempt to shed light on the cellular circuits controlling bacterial cell width, we developed a screen to identify genetic determinants of cell width in B. subtilis. Using high-content screening (HCS) fluorescence microscopy and semiautomated measurement of single-cell dimensions, we screened a library of ∼4,000 single knockout mutants. We identified 13 mutations significantly altering cell diameter, in genes that belong to several functional groups. In particular, our results indicate that metabolism plays a major role in cell width control in B. subtilis. IMPORTANCE Bacterial shape is primarily dictated by the external cell wall, a vital structure that, as such, is the target of countless antibiotics. Our understanding of how bacteria synthesize and maintain this structure is therefore a cardinal question for both basic and applied research. Bacteria usually multiply from generation to generation while maintaining their progenies with rigorously identical shapes. This implies that the bacterial cells constantly monitor and maintain a set of parameters to ensure this perpetuation. Here, our study uses a large-scale microscopy approach to identify at the whole-genome level, in a model bacterium, the genes involved in the control of one of the most tightly controlled cellular parameters, the cell width.
Collapse
|
17
|
Sachla AJ, Alfonso AJ, Helmann JD. A Simplified Method for CRISPR-Cas9 Engineering of Bacillus subtilis. Microbiol Spectr 2021; 9:e0075421. [PMID: 34523974 PMCID: PMC8557940 DOI: 10.1128/spectrum.00754-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/16/2021] [Indexed: 11/20/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system from Streptococcus pyogenes has been widely deployed as a tool for bacterial strain construction. Conventional CRISPR-Cas9 editing strategies require design and molecular cloning of an appropriate guide RNA (gRNA) to target genome cleavage and a repair template for introduction of the desired site-specific genome modification. Here, we present a streamlined method that leverages the existing collection of nearly 4,000 Bacillus subtilis strains (the BKE collection) with individual genes replaced by an integrated erythromycin (erm) resistance cassette. A single plasmid (pAJS23) with a gRNA targeted to erm allows cleavage of the genome at any nonessential gene and at sites nearby to many essential genes. This plasmid can be engineered to include a repair template, or the repair template can be cotransformed with the plasmid as either a PCR product or genomic DNA. We demonstrate the utility of this system for generating gene replacements, site-specific mutations, modification of intergenic regions, and introduction of gene-reporter fusions. In sum, this strategy bypasses the need for gRNA design and allows the facile transfer of mutations and genetic constructions with no requirement for intermediate cloning steps. IMPORTANCE Bacillus subtilis is a well-characterized Gram-positive model organism and a popular platform for biotechnology. Although many different CRISPR-based genome editing strategies have been developed for B. subtilis, they generally involve the design and cloning of a specific guide RNA (gRNA) and repair template for each application. By targeting the erm resistance cassette with an anti-erm gRNA, genome editing can be directed to any of nearly 4,000 gene disruptants within the existing BKE collection of strains. Repair templates can be engineered as PCR products, or specific alleles and constructions can be transformed as chromosomal DNA, thereby bypassing the need for plasmid construction. The described method is rapid and facilitates a wide range of genome manipulations.
Collapse
Affiliation(s)
- Ankita J. Sachla
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | | | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
18
|
Baseri N, Najar-Peerayeh S, Bakhshi B. Investigating the effect of an identified mutation within a critical site of PAS domain of WalK protein in a vancomycin-intermediate resistant Staphylococcus aureus by computational approaches. BMC Microbiol 2021; 21:240. [PMID: 34474665 PMCID: PMC8414773 DOI: 10.1186/s12866-021-02298-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/23/2021] [Indexed: 11/15/2022] Open
Abstract
Background Vancomycin-intermediate resistant Staphylococcus aureus (VISA) is becoming a common cause of nosocomial infections worldwide. VISA isolates are developed by unclear molecular mechanisms via mutations in several genes, including walKR. Although studies have verified some of these mutations, there are a few studies that pay attention to the importance of molecular modelling of mutations. Method For genomic and transcriptomic comparisons in a laboratory-derived VISA strain and its parental strain, Sanger sequencing and reverse transcriptase quantitative PCR (RT-qPCR) methods were used, respectively. After structural protein mapping of the detected mutation, mutation effects were analyzed using molecular computational approaches and crystal structures of related proteins. Results A mutation WalK-H364R was occurred in a functional zinc ion coordinating residue within the PAS domain in the VISA strain. WalK-H364R was predicted to destabilize protein and decrease WalK interactions with proteins and nucleic acids. The RT-qPCR method showed downregulation of walKR, WalKR-regulated autolysins, and agr locus. Conclusion Overall, WalK-H364R mutation within a critical metal-coordinating site was presumably related to the VISA development. We assume that the WalK-H364R mutation resulted in deleterious effects on protein, which was verified by walKR gene expression changes.. Therefore, molecular modelling provides detailed insight into the molecular mechanism of VISA development, in particular, where allelic replacement experiments are not readily available. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02298-9.
Collapse
Affiliation(s)
- Neda Baseri
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shahin Najar-Peerayeh
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
19
|
Abstract
Most bacteria are surrounded by a peptidoglycan cell wall that defines their shape and protects them from osmotic lysis. The expansion and division of this structure therefore plays an integral role in bacterial growth and division. Additionally, the biogenesis of the peptidoglycan layer is the target of many of our most effective antibiotics. Thus, a better understanding of how the cell wall is built will enable the development of new therapies to combat the rise of drug-resistant bacterial infections. This review covers recent advances in defining the mechanisms involved in assembling the peptidoglycan layer with an emphasis on discoveries related to the function and regulation of the cell elongation and division machineries in the model organisms Escherichia coli and Bacillus subtilis. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Patricia D A Rohs
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA; .,Current affiliation: Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Thomas G Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA; .,Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
20
|
Dörr T. Understanding tolerance to cell wall-active antibiotics. Ann N Y Acad Sci 2021; 1496:35-58. [PMID: 33274447 PMCID: PMC8359209 DOI: 10.1111/nyas.14541] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022]
Abstract
Antibiotic tolerance-the ability of bacteria to survive for an extended time in the presence of bactericidal antibiotics-is an understudied contributor to antibiotic treatment failure. Herein, I review the manifestations, mechanisms, and clinical relevance of tolerance to cell wall-active (CWA) antibiotics, one of the most important groups of antibiotics at the forefront of clinical use. I discuss definitions of tolerance and assays for tolerance detection, comprehensively discuss the mechanism of action of β-lactams and other CWA antibiotics, and then provide an overview of how cells mitigate the potentially lethal effects of CWA antibiotic-induced cell damage to become tolerant. Lastly, I discuss evidence for a role of CWA antibiotic tolerance in clinical antibiotic treatment failure.
Collapse
Affiliation(s)
- Tobias Dörr
- Weill Institute for Cell and Molecular Biology, Department of Microbiology, and Cornell Institute of Host–Pathogen Interactions and DiseaseCornell UniversityIthacaNew York
| |
Collapse
|
21
|
Galinier A, Foulquier E, Pompeo F. Metabolic Control of Cell Elongation and Cell Division in Bacillus subtilis. Front Microbiol 2021; 12:697930. [PMID: 34248920 PMCID: PMC8270655 DOI: 10.3389/fmicb.2021.697930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/31/2021] [Indexed: 11/18/2022] Open
Abstract
To survive and adapt to changing nutritional conditions, bacteria must rapidly modulate cell cycle processes, such as doubling time or cell size. Recent data have revealed that cellular metabolism is a central regulator of bacterial cell cycle. Indeed, proteins that can sense precursors or metabolites or enzymes, in addition to their enzymatic activities involved in metabolism, were shown to directly control cell cycle processes in response to changes in nutrient levels. Here we focus on cell elongation and cell division in the Gram-positive rod-shaped bacterium Bacillus subtilis and we report evidences linking these two cellular processes to environmental nutritional availability and thus metabolic cellular status.
Collapse
Affiliation(s)
- Anne Galinier
- Laboratoire de Chimie Bactérienne, UMR 7283, CNRS/Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Elodie Foulquier
- Laboratoire de Chimie Bactérienne, UMR 7283, CNRS/Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Frédérique Pompeo
- Laboratoire de Chimie Bactérienne, UMR 7283, CNRS/Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, Marseille, France
| |
Collapse
|
22
|
Pazos M, Vollmer W. Regulation and function of class A Penicillin-binding proteins. Curr Opin Microbiol 2021; 60:80-87. [PMID: 33611146 DOI: 10.1016/j.mib.2021.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/09/2021] [Accepted: 01/22/2021] [Indexed: 01/14/2023]
Abstract
Most bacteria surround their cell membrane with a peptidoglycan sacculus that counteracts the turgor and maintains the shape of the cell. Class A PBPs are bi-functional glycosyltransferase-transpeptidases that polymerize glycan chains and cross-link peptides. They have a major contribution to the total peptidoglycan synthesized during cell growth and cell division. In recent years it became apparent that class A PBPs participate in multiple protein? protein interactions and that some of these regulate their activities. In this opinion article, we review and discuss the role of class A PBPs in peptidoglycan growth and repair. We hypothesize that class A PBP function is essential in walled bacteria unless they have (a) SEDS protein(s) capable of replacing their function.
Collapse
Affiliation(s)
- Manuel Pazos
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, NE2 4AX, Newcastle upon Tyne, United Kingdom
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, NE2 4AX, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
23
|
Garde S, Chodisetti PK, Reddy M. Peptidoglycan: Structure, Synthesis, and Regulation. EcoSal Plus 2021; 9:eESP-0010-2020. [PMID: 33470191 PMCID: PMC11168573 DOI: 10.1128/ecosalplus.esp-0010-2020] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Indexed: 02/06/2023]
Abstract
Peptidoglycan is a defining feature of the bacterial cell wall. Initially identified as a target of the revolutionary beta-lactam antibiotics, peptidoglycan has become a subject of much interest for its biology, its potential for the discovery of novel antibiotic targets, and its role in infection. Peptidoglycan is a large polymer that forms a mesh-like scaffold around the bacterial cytoplasmic membrane. Peptidoglycan synthesis is vital at several stages of the bacterial cell cycle: for expansion of the scaffold during cell elongation and for formation of a septum during cell division. It is a complex multifactorial process that includes formation of monomeric precursors in the cytoplasm, their transport to the periplasm, and polymerization to form a functional peptidoglycan sacculus. These processes require spatio-temporal regulation for successful assembly of a robust sacculus to protect the cell from turgor and determine cell shape. A century of research has uncovered the fundamentals of peptidoglycan biology, and recent studies employing advanced technologies have shed new light on the molecular interactions that govern peptidoglycan synthesis. Here, we describe the peptidoglycan structure, synthesis, and regulation in rod-shaped bacteria, particularly Escherichia coli, with a few examples from Salmonella and other diverse organisms. We focus on the pathway of peptidoglycan sacculus elongation, with special emphasis on discoveries of the past decade that have shaped our understanding of peptidoglycan biology.
Collapse
Affiliation(s)
- Shambhavi Garde
- These authors contributed equally
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India 500007
| | - Pavan Kumar Chodisetti
- These authors contributed equally
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India 500007
| | - Manjula Reddy
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India 500007
| |
Collapse
|
24
|
Yamada H, Chikamatsu K, Aono A, Murata K, Miyazaki N, Kayama Y, Bhatt A, Fujiwara N, Maeda S, Mitarai S. Fundamental Cell Morphologies Examined With Cryo-TEM of the Species in the Novel Five Genera Robustly Correlate With New Classification in Family Mycobacteriaceae. Front Microbiol 2020; 11:562395. [PMID: 33304323 PMCID: PMC7701246 DOI: 10.3389/fmicb.2020.562395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/12/2020] [Indexed: 11/25/2022] Open
Abstract
A recent study proposed the novel classification of the family Mycobacteriaceae based on the genome analysis of core proteins in 150 Mycobacterium species. The results from these analyses supported the existence of five distinct monophyletic groups within the genus Mycobacterium. That is, Mycobacterium has been divided into two novel genera for rapid grower Mycobacteroides and Mycolicibacterium, and into three genera for slow grower Mycolicibacter, Mycolicibacillus, and an emended genus Mycobacterium, which include all the major human pathogens. Here, cryo-TEM examinations of 1,816 cells of 31 species (34 strains) belonging to the five novel genera were performed. The fundamental morphological properties of every single cell, such as cell diameter, cell length, cell perimeter, cell circularity, and aspect ratio were measured and compared between these genera. In 50 comparisons on the five parameters between any two genera, only five comparisons showed “non-significant” differences. That is, there are non-significant differences between slow grower genus Mycolicibacillus and genus Mycobacterium in average cell diameter (p = 0.15), between rapid grower genus Mycobacteroides and slow grower genus Mycobacterium in average cell length (p > 0.24), between genus Mycobacteroides and genus Mycobacterium (p > 0.68) and between genus Mycolicibacter and genus Mycolicibacillus (p > 0.11) in average cell perimeter, and between genus Mycolicibacterium and genus Mycobacterium in circularity (p > 0.73). The other 45 comparisons showed significant differences between the genera. Genus Mycobacteroides showed the longest average cell diameter, whereas the genus Mycolicibacter showed the shortest average diameter. Genus Mycolicibacterium showed the most extended average cell length, perimeter, and aspect ratio, whereas the genus Mycolicibacillus showed the shortest average cell length, perimeter, and aspect ratio. Genus Mycolicibacillus showed the highest average cell circularity, whereas genus Mycobacterium showed the lowest average cell circularity. These fundamental morphological data strongly support the new classification in the family Mycobacteriaceae, and this classification is rational and effective in the study of the members of the family Mycobacteriaceae. Because both the genus Mycolicibacterium and the genus Mycobacterium contain many species and showed larger significant standard deviations in every parameter, these genera may be divided into novel genera which show common genotype and phenotypes in morphology and pathogenicity.
Collapse
Affiliation(s)
- Hiroyuki Yamada
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Kinuyo Chikamatsu
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Akio Aono
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Kazuyoshi Murata
- Supportive Center for Brain Research, National Institute for Physiological Science, Okazaki, Japan
| | - Naoyuki Miyazaki
- Supportive Center for Brain Research, National Institute for Physiological Science, Okazaki, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | | | - Apoorva Bhatt
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Nagatoshi Fujiwara
- Department of Food and Nutrition, Faculty of Contemporary Human Life Science, Tezukayama University, Nara, Japan
| | - Shinji Maeda
- Department of Pharmacy, Faculty of Pharmaceutical Science, Hokkaido University of Science, Sapporo, Japan
| | - Satoshi Mitarai
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan.,Department of Basic Mycobacteriology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|