1
|
Daley BR, Sealover NE, Finniff BA, Hughes JM, Sheffels E, Gerlach D, Hofmann MH, Kostyrko K, LaMorte JP, Linke AJ, Beckley Z, Frank AM, Lewis RE, Wilkerson MD, Dalgard CL, Kortum RL. SOS1 Inhibition Enhances the Efficacy of KRASG12C Inhibitors and Delays Resistance in Lung Adenocarcinoma. Cancer Res 2025; 85:118-133. [PMID: 39437166 DOI: 10.1158/0008-5472.can-23-3256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 08/28/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024]
Abstract
The clinical effectiveness of KRASG12C inhibitors (G12Ci) is limited both by intrinsic and acquired resistance, necessitating the development of combination approaches. Here, we identified targeting proximal receptor tyrosine kinase signaling using the SOS1 inhibitor (SOS1i) BI-3406 as a strategy to improve responses to G12Ci treatment. SOS1i enhanced the efficacy of G12Ci and limited rebound receptor tyrosine kinase/ERK signaling to overcome intrinsic/adaptive resistance, but this effect was modulated by SOS2 protein levels. G12Ci drug-tolerant persister (DTP) cells showed up to a 3-fold enrichment of tumor-initiating cells (TIC), suggestive of a sanctuary population of G12Ci-resistant cells. SOS1i resensitized DTPs to G12Ci and inhibited G12C-induced TIC enrichment. Co-mutation of the tumor suppressor KEAP1 limited the clinical effectiveness of G12Ci, and KEAP1 and STK11 deletion increased TIC frequency and accelerated the development of acquired resistance to G12Ci, consistent with clinical G12Ci resistance seen with these co-mutations. Treatment with SOS1i both delayed acquired G12Ci resistance and limited the total number of resistant colonies regardless of KEAP1 and STK11 mutational status. Together, these data suggest that targeting SOS1 could be an effective strategy to both enhance G12Ci efficacy and prevent G12Ci resistance regardless of co-mutations. Significance: The SOS1 inhibitor BI-3406 both inhibits intrinsic/adaptive resistance and targets drug tolerant persister cells to limit the development of acquired resistance to clinical KRASG12C inhibitors in lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Brianna R Daley
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- USU Physician-Scientist Training Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Nancy E Sealover
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Bridget A Finniff
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Jacob M Hughes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Erin Sheffels
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | | | - Kaja Kostyrko
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Joseph P LaMorte
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- USU Physician-Scientist Training Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Amanda J Linke
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Zaria Beckley
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Andrew M Frank
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
- Student Bioinformatics Initiative, Center for Military Precision Health, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Robert E Lewis
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Matthew D Wilkerson
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Clifton L Dalgard
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Robert L Kortum
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
2
|
Sealover NE, Hughes JM, Theard PL, Chatterjee D, Linke AJ, Finniff BA, Daley BR, Lewis RE, Kortum RL. Protocol for modeling acquired resistance to targeted therapeutics in adherent and suspension cancer cell lines via in situ resistance assay. STAR Protoc 2024; 5:103361. [PMID: 39369385 PMCID: PMC11491975 DOI: 10.1016/j.xpro.2024.103361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/11/2024] [Accepted: 09/12/2024] [Indexed: 10/08/2024] Open
Abstract
Acquired resistance to oncogene-targeted therapies is the major driver of mortality for patients with cancer. Here, we present a 6-to-16-week assay to model the development of acquired resistance in adherent and suspension cancer cell lines. We describe steps for determining therapeutic dose, assaying acquired resistance, and testing combination therapies. This protocol is a high-throughput, cost-effective, and scalable method to model acquired drug resistance to established and newly developed therapies. For complete details on the use and execution of this protocol, please refer to Sealover et al.1 and Theard et al.2.
Collapse
Affiliation(s)
- Nancy E Sealover
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Jacob M Hughes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Patricia L Theard
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Deepan Chatterjee
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Amanda J Linke
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Bridget A Finniff
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Brianna R Daley
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Robert E Lewis
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Robert L Kortum
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| |
Collapse
|
3
|
Zeng Y, Huang C, Hou Q, Jiang W, Cheng J, Wu X. Design, synthesis, and evaluation of dual son of sevenless 1 (SOS1) and epidermal growth factor receptor (EGFR) inhibitors for the treatment of cancers. Bioorg Chem 2024; 153:107833. [PMID: 39357170 DOI: 10.1016/j.bioorg.2024.107833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
The treatment of KRAS mutant tumors remains challenging and dual-targeted small-molecule drugs are considered to be innovative therapeutic alternatives. Herein, we discovered a series of SOS1 and EGFR dual inhibitors by employing a fused pharmacophore strategy and structural optimization. Notably, compound 4 exhibited potent SOS1 (IC50 = 8.3 nM) and EGFR (IC50 = 14.6 nM) inhibitory activities and markedly inhibited the proliferation of other KRAS-mutant cancer cell lines. Furthermore, Western blot analysis confirmed that compound 4 effectively reduced the level of downstream p-ERK. These results indicated that compound 4 could serve as a potential compound for treating KRAS mutant tumors.
Collapse
Affiliation(s)
- Yi Zeng
- Department of Medicinal Chemistry, School of Pharmacy, and Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Chenyang Huang
- Department of Medicinal Chemistry, School of Pharmacy, and Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Qiangqiang Hou
- Department of Medicinal Chemistry, School of Pharmacy, and Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Wenhua Jiang
- Department of Medicinal Chemistry, School of Pharmacy, and Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Jiaqi Cheng
- Department of Medicinal Chemistry, School of Pharmacy, and Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoxing Wu
- Department of Medicinal Chemistry, School of Pharmacy, and Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
4
|
Sudhakar N, Yan L, Qiryaqos F, Engstrom LD, Laguer J, Calinisan A, Hebbert A, Waters L, Moya K, Bowcut V, Vegar L, Ketcham JM, Ivetac A, Smith CR, Lawson JD, Rahbaek L, Clarine J, Nguyen N, Saechao B, Parker C, Elliott AJ, Vanderpool D, He L, Hover LD, Fernandez-Banet J, Coma S, Pachter JA, Hallin J, Marx MA, Briere DM, Christensen JG, Olson P, Haling J, Khare S. The SOS1 Inhibitor MRTX0902 Blocks KRAS Activation and Demonstrates Antitumor Activity in Cancers Dependent on KRAS Nucleotide Loading. Mol Cancer Ther 2024; 23:1418-1430. [PMID: 38904222 PMCID: PMC11443210 DOI: 10.1158/1535-7163.mct-23-0870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/14/2024] [Accepted: 04/05/2024] [Indexed: 04/21/2024]
Abstract
KRAS is the most frequently mutated oncogene in human cancer and facilitates uncontrolled growth through hyperactivation of the receptor tyrosine kinase (RTK)/mitogen-activated protein kinase (MAPK) pathway. The Son of Sevenless homolog 1 (SOS1) protein functions as a guanine nucleotide exchange factor (GEF) for the RAS subfamily of small GTPases and represents a druggable target in the pathway. Using a structure-based drug discovery approach, MRTX0902 was identified as a selective and potent SOS1 inhibitor that disrupts the KRAS:SOS1 protein-protein interaction to prevent SOS1-mediated nucleotide exchange on KRAS and translates into an anti-proliferative effect in cancer cell lines with genetic alterations of the KRAS-MAPK pathway. MRTX0902 augmented the antitumor activity of the KRAS G12C inhibitor adagrasib when dosed in combination in eight out of 12 KRAS G12C-mutant human non-small cell lung cancer and colorectal cancer xenograft models. Pharmacogenomic profiling in preclinical models identified cell cycle genes and the SOS2 homolog as genetic co-dependencies and implicated tumor suppressor genes (NF1 and PTEN) in resistance following combination treatment. Lastly, combined vertical inhibition of RTK/MAPK pathway signaling by MRTX0902 with inhibitors of EGFR or RAF/MEK led to greater downregulation of pathway signaling and improved antitumor responses in KRAS-MAPK pathway-mutant models. These studies demonstrate the potential clinical application of dual inhibition of SOS1 and KRAS G12C and additional SOS1 combination strategies that will aide in the understanding of SOS1 and RTK/MAPK biology in targeted cancer therapy.
Collapse
Affiliation(s)
| | - Larry Yan
- Mirati Therapeutics, Inc., San Diego, California
| | | | | | - Jade Laguer
- Mirati Therapeutics, Inc., San Diego, California
| | | | | | - Laura Waters
- Mirati Therapeutics, Inc., San Diego, California
| | - Krystal Moya
- Mirati Therapeutics, Inc., San Diego, California
| | | | - Laura Vegar
- Mirati Therapeutics, Inc., San Diego, California
| | | | | | | | | | - Lisa Rahbaek
- Mirati Therapeutics, Inc., San Diego, California
| | | | | | | | - Cody Parker
- Mirati Therapeutics, Inc., San Diego, California
| | | | | | - Leo He
- Monoceros Biosciences LLC, San Diego, California
| | | | | | | | | | - Jill Hallin
- Mirati Therapeutics, Inc., San Diego, California
| | | | | | | | - Peter Olson
- Mirati Therapeutics, Inc., San Diego, California
| | - Jacob Haling
- Mirati Therapeutics, Inc., San Diego, California
| | - Shilpi Khare
- Mirati Therapeutics, Inc., San Diego, California
| |
Collapse
|
5
|
Zheng L, Zhang Y, Mei S, Xie T, Zou Y, Wang Y, Jing H, Xu S, Dramou P, Xu Z, Li J, Zhou Y, Niu MM. Discovery of a Potent Dual Son of Sevenless 1 (SOS1) and Epidermal Growth Factor Receptor (EGFR) Inhibitor for the Treatment of Prostate Cancer. J Med Chem 2024; 67:7130-7145. [PMID: 38630077 DOI: 10.1021/acs.jmedchem.3c02433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Multitarget medications represent an appealing therapy against the disease with multifactorial abnormalities─cancer. Therefore, simultaneously targeting son of sevenless 1 (SOS1) and epidermal growth factor receptor (EGFR), two aberrantly expressed proteins crucial for the oncogenesis and progression of prostate cancer, may achieve active antitumor effects. Here, we discovered dual SOS1/EGFR-targeting compounds via pharmacophore-based docking screening. The most prominent compound SE-9 exhibited nanomolar inhibition activity against both SOS1 and EGFR and efficiently suppressed the phosphorylation of ERK and AKT in prostate cancer cells PC-3. Cellular assays also revealed that SE-9 displayed strong antiproliferative activities through diverse mechanisms, such as induction of cell apoptosis and G1 phase cell cycle arrest, as well as reduction of angiogenesis and migration. Further in vivo findings showed that SE-9 potently inhibited tumor growth in PC-3 xenografts without obvious toxicity. Overall, SE-9 is a novel dual-targeting SOS1/EGFR inhibitor that represents a promising treatment strategy for prostate cancer.
Collapse
Affiliation(s)
- Lufeng Zheng
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 211198, China
| | - Yuxin Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 211198, China
| | - Shuang Mei
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
| | - Tianyuan Xie
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 211198, China
| | - Yunting Zou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
| | - Yuting Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 211198, China
| | - Han Jing
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 211198, China
| | - Shengtao Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Pierre Dramou
- Department of Analytical Chemistry, School of Sciences, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen Xu
- Department of Pharmacy, Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Jindong Li
- Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Yang Zhou
- Department of Pathology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Miao-Miao Niu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
6
|
Begovich K, Schoolmeesters A, Rajapakse N, Martinez-Terroba E, Kumar M, Shakya A, Lai C, Greene S, Whitefield B, Okano A, Mali V, Huang S, Chourasia AH, Fung L. Cereblon-based Bifunctional Degrader of SOS1, BTX-6654, Targets Multiple KRAS Mutations and Inhibits Tumor Growth. Mol Cancer Ther 2024; 23:407-420. [PMID: 38224565 DOI: 10.1158/1535-7163.mct-23-0513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/12/2023] [Accepted: 01/11/2024] [Indexed: 01/17/2024]
Abstract
Mutations within the oncogene KRAS drive an estimated 25% of all cancers. Only allele-specific KRAS G12C inhibitors are currently available and are associated with the emergence of acquired resistance, partly due to upstream pathway reactivation. Given its upstream role in the activation of KRAS, son of sevenless homolog 1 (SOS1), has emerged as an attractive therapeutic target. Agents that target SOS1 for degradation could represent a potential pan-KRAS modality that may be capable of circumventing certain acquired resistance mechanisms. Here, we report the development of two SOS1 cereblon-based bifunctional degraders, BTX-6654 and BTX-7312, cereblon-based bifunctional SOS1 degraders. Both compounds exhibited potent target-dependent and -specific SOS1 degradation. BTX-6654 and BTX-7312 reduced downstream signaling markers, pERK and pS6, and displayed antiproliferative activity in cells harboring various KRAS mutations. In two KRAS G12C xenograft models, BTX-6654 degraded SOS1 in a dose-dependent manner correlating with tumor growth inhibition, additionally exhibiting synergy with KRAS and MEK inhibitors. Altogether, BTX-6654 provided preclinical proof of concept for single-agent and combination use of bifunctional SOS1 degraders in KRAS-driven cancers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chon Lai
- BioTheryx, Inc., San Diego, California
| | | | | | | | | | | | | | - Leah Fung
- BioTheryx, Inc., San Diego, California
| |
Collapse
|
7
|
Haratake N, Ozawa H, Morimoto Y, Yamashita N, Daimon T, Bhattacharya A, Wang K, Nakashoji A, Isozaki H, Shimokawa M, Kikutake C, Suyama M, Hashinokuchi A, Takada K, Takenaka T, Yoshizumi T, Mitsudomi T, Hata AN, Kufe D. MUC1-C Is a Common Driver of Acquired Osimertinib Resistance in NSCLC. J Thorac Oncol 2024; 19:434-450. [PMID: 37924972 PMCID: PMC10939926 DOI: 10.1016/j.jtho.2023.10.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/02/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
INTRODUCTION Osimertinib is an irreversible EGFR tyrosine kinase inhibitor approved for the first-line treatment of patients with metastatic NSCLC harboring EGFR exon 19 deletions or L858R mutations. Patients treated with osimertinib invariably develop acquired resistance by mechanisms involving additional EGFR mutations, MET amplification, and other pathways. There is no known involvement of the oncogenic MUC1-C protein in acquired osimertinib resistance. METHODS H1975/EGFR (L858R/T790M) and patient-derived NSCLC cells with acquired osimertinib resistance were investigated for MUC1-C dependence in studies of EGFR pathway activation, clonogenicity, and self-renewal capacity. RESULTS We reveal that MUC1-C is up-regulated in H1975 osimertinib drug-tolerant persister cells and is necessary for activation of the EGFR pathway. H1975 cells selected for stable osimertinib resistance (H1975-OR) and MGH700-2D cells isolated from a patient with acquired osimertinib resistance are found to be dependent on MUC1-C for induction of (1) phospho (p)-EGFR, p-ERK, and p-AKT, (2) EMT, and (3) the resistant phenotype. We report that MUC1-C is also required for p-EGFR, p-ERK, and p-AKT activation and self-renewal capacity in acquired osimertinib-resistant (1) MET-amplified MGH170-1D #2 cells and (2) MGH121 Res#2/EGFR (T790M/C797S) cells. Importantly, targeting MUC1-C in these diverse models reverses osimertinib resistance. In support of these results, high MUC1 mRNA and MUC1-C protein expression is associated with a poor prognosis for patients with EGFR-mutant NSCLCs. CONCLUSIONS Our findings reveal that MUC1-C is a common effector of osimertinib resistance and is a potential target for the treatment of osimertinib-resistant NSCLCs.
Collapse
Affiliation(s)
- Naoki Haratake
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Hiroki Ozawa
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Yoshihiro Morimoto
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Nami Yamashita
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Tatsuaki Daimon
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Atrayee Bhattacharya
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Keyi Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Ayako Nakashoji
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Hideko Isozaki
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mototsugu Shimokawa
- Department of Biostatistics, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Chie Kikutake
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Asato Hashinokuchi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Tomoyoshi Takenaka
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuya Mitsudomi
- Department of Surgery, Kindai University Hospital, Osaka-Sayama, Japan
| | - Aaron N Hata
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Donald Kufe
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
8
|
Theard PL, Linke AJ, Sealover NE, Daley BR, Yang J, Cox K, Kortum RL. SOS2 modulates the threshold of EGFR signaling to regulate osimertinib efficacy and resistance in lung adenocarcinoma. Mol Oncol 2024; 18:641-661. [PMID: 38073064 PMCID: PMC10920089 DOI: 10.1002/1878-0261.13564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/23/2023] [Accepted: 12/08/2023] [Indexed: 01/02/2024] Open
Abstract
Son of sevenless 1 and 2 (SOS1 and SOS2) are RAS guanine nucleotide exchange factors (RasGEFs) that mediate physiologic and pathologic receptor tyrosine kinase (RTK)-dependent RAS activation. Here, we show that SOS2 modulates the threshold of epidermal growth factor receptor (EGFR) signaling to regulate the efficacy of and resistance to the EGFR tyrosine kinase inhibitor (EGFR-TKI) osimertinib in lung adenocarcinoma (LUAD). SOS2 deletion (SOS2KO ) sensitized EGFR-mutated cells to perturbations in EGFR signaling caused by reduced serum and/or osimertinib treatment to inhibit phosphatidylinositol 3-kinase (PI3K)/AKT pathway activation, oncogenic transformation, and survival. Bypassing RTK reactivation of PI3K/AKT signaling represents a common resistance mechanism to EGFR-TKIs; SOS2KO reduced PI3K/AKT reactivation to limit osimertinib resistance. In a forced HGF/MET-driven bypass model, SOS2KO inhibited hepatocyte growth factor (HGF)-stimulated PI3K signaling to block HGF-driven osimertinib resistance. Using a long-term in situ resistance assay, most osimertinib-resistant cultures exhibited a hybrid epithelial/mesenchymal phenotype associated with reactivated RTK/AKT signaling. In contrast, RTK/AKT-dependent osimertinib resistance was markedly reduced by SOS2 deletion; the few SOS2KO cultures that became osimertinib resistant primarily underwent non-RTK-dependent epithelial-mesenchymal transition (EMT). Since bypassing RTK reactivation and/or tertiary EGFR mutations represent most osimertinib-resistant cancers, these data suggest that targeting proximal RTK signaling, here exemplified by SOS2 deletion, has the potential to delay the development osimertinib resistance and enhance overall clinical responses for patients with EGFR-mutated LUAD.
Collapse
Affiliation(s)
- Patricia L. Theard
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Amanda J. Linke
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Nancy E. Sealover
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Brianna R. Daley
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Johnny Yang
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Katherine Cox
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Robert L. Kortum
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| |
Collapse
|
9
|
Belloni A, Pugnaloni A, Rippo MR, Di Valerio S, Giordani C, Procopio AD, Bronte G. The cell line models to study tyrosine kinase inhibitors in non-small cell lung cancer with mutations in the epidermal growth factor receptor: A scoping review. Crit Rev Oncol Hematol 2024; 194:104246. [PMID: 38135018 DOI: 10.1016/j.critrevonc.2023.104246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023] Open
Abstract
Non-Small Cell Lung Cancer (NSCLC) represents ∼85% of all lung cancers and ∼15-20% of them are characterized by mutations affecting the Epidermal Growth Factor Receptor (EGFR). For several years now, a class of tyrosine kinase inhibitors was developed, targeting sensitive mutations affecting the EGFR (EGFR-TKIs). To date, the main burden of the TKIs employment is due to the onset of resistance mutations. This scoping review aims to resume the current situation about the cell line models employed for the in vitro evaluation of resistance mechanisms induced by EGFR-TKIs in oncogene-addicted NSCLC. Adenocarcinoma results the most studied NSCLC histotype with the H1650, H1975, HCC827 and PC9 mutated cell lines, while Gefitinib and Osimertinib the most investigated inhibitors. Overall, data collected frame the current advancement of this topic, showing a plethora of approaches pursued to overcome the TKIs resistance, from RNA-mediated strategies to the innovative combination therapies.
Collapse
Affiliation(s)
- Alessia Belloni
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Armanda Pugnaloni
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Silvia Di Valerio
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Chiara Giordani
- Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (IRCCS INRCA), Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy; Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (IRCCS INRCA), Ancona, Italy
| | - Giuseppe Bronte
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy; Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (IRCCS INRCA), Ancona, Italy.
| |
Collapse
|
10
|
Sealover NE, Theard PT, Hughes JM, Linke AJ, Daley BR, Kortum RL. In situ modeling of acquired resistance to RTK/RAS-pathway-targeted therapies. iScience 2024; 27:108711. [PMID: 38226159 PMCID: PMC10788224 DOI: 10.1016/j.isci.2023.108711] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/31/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024] Open
Abstract
Intrinsic and acquired resistance limit the window of effectiveness for oncogene-targeted cancer therapies. Here, we describe an in situ resistance assay (ISRA) that reliably models acquired resistance to RTK/RAS-pathway-targeted therapies across cell lines. Using osimertinib resistance in EGFR-mutated lung adenocarcinoma (LUAD) as a model system, we show that acquired osimertinib resistance can be significantly delayed by inhibition of proximal RTK signaling using SHP2 inhibitors. Isolated osimertinib-resistant populations required SHP2 inhibition to resensitize cells to osimertinib and reduce MAPK signaling to block the effects of enhanced activation of multiple parallel RTKs. We additionally modeled resistance to targeted therapies including the KRASG12C inhibitors adagrasib and sotorasib, the MEK inhibitor trametinib, and the farnesyl transferase inhibitor tipifarnib. These studies highlight the tractability of in situ resistance assays to model acquired resistance to targeted therapies and provide a framework for assessing the extent to which synergistic drug combinations can target acquired drug resistance.
Collapse
Affiliation(s)
- Nancy E. Sealover
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Patricia T. Theard
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jacob M. Hughes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Amanda J. Linke
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Brianna R. Daley
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Robert L. Kortum
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
11
|
Daley BR, Sealover NE, Sheffels E, Hughes JM, Gerlach D, Hofmann MH, Kostyrko K, Mair B, Linke A, Beckley Z, Frank A, Dalgard C, Kortum RL. SOS1 inhibition enhances the efficacy of and delays resistance to G12C inhibitors in lung adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570642. [PMID: 38106234 PMCID: PMC10723384 DOI: 10.1101/2023.12.07.570642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Clinical effectiveness of KRAS G12C inhibitors (G12Cis) is limited both by intrinsic and acquired resistance, necessitating the development of combination approaches. We found that targeting proximal receptor tyrosine kinase (RTK) signaling using the SOS1 inhibitor (SOS1i) BI-3406 both enhanced the potency of and delayed resistance to G12Ci treatment, but the extent of SOS1i effectiveness was modulated by both SOS2 expression and the specific mutational landscape. SOS1i enhanced the efficacy of G12Ci and limited rebound RTK/ERK signaling to overcome intrinsic/adaptive resistance, but this effect was modulated by SOS2 protein levels. Survival of drug-tolerant persister (DTP) cells within the heterogeneous tumor population and/or acquired mutations that reactivate RTK/RAS signaling can lead to outgrowth of tumor initiating cells (TICs) that drive therapeutic resistance. G12Ci drug tolerant persister cells showed a 2-3-fold enrichment of TICs, suggesting that these could be a sanctuary population of G12Ci resistant cells. SOS1i re-sensitized DTPs to G12Ci and inhibited G12C-induced TIC enrichment. Co-mutation of the tumor suppressor KEAP1 limits the clinical effectiveness of G12Cis, and KEAP1 and STK11 deletion increased TIC frequency and accelerated the development of acquired resistance to G12Ci in situ. SOS1i both delayed acquired G12Ci resistance and limited the total number of resistant colonies regardless of KEAP1 and STK11 mutational status. These data suggest that SOS1i could be an effective strategy to both enhance G12Ci efficacy and prevent G12Ci resistance regardless of co-mutations.
Collapse
Affiliation(s)
- Brianna R Daley
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Nancy E Sealover
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Erin Sheffels
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Jacob M. Hughes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | | | | | - Kaja Kostyrko
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Barbara Mair
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Amanda Linke
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Zaria Beckley
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Andrew Frank
- Henry M. Jackson Foundation for the Advancement of Military Medicine; Bethesda, MD, USA
- Student Bioinformatics Initiative, Center for Military Precision Health, Uniformed Services University of the Health Sciences; Bethesda, MD, USA
| | - Clifton Dalgard
- The American Genome Center, Department of Anatomy, Cell Biology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Robert L Kortum
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| |
Collapse
|
12
|
Chen T, Tang X, Wang Z, Feng F, Xu C, Zhao Q, Wu Y, Sun H, Chen Y. Inhibition of Son of Sevenless Homologue 1 (SOS1): Promising therapeutic treatment for KRAS-mutant cancers. Eur J Med Chem 2023; 261:115828. [PMID: 37778239 DOI: 10.1016/j.ejmech.2023.115828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Kristen rat sarcoma (KRAS) is one of the most common oncogenes in human cancers. As a guanine nucleotide exchange factor, Son of Sevenless Homologue 1 (SOS1) represents a potential therapeutic concept for the treatment of KRAS-mutant cancers because of its activation on KRAS and downstream signaling pathways. In this review, we provide a comprehensive overview of the structure, biological function, and regulation of SOS1. We also focus on the recent advances in SOS1 inhibitors and emphasize their binding modes, structure-activity relationships and pharmacological activities. We hope that this publication can provide a comprehensive compendium on the rational design of SOS1 inhibitors.
Collapse
Affiliation(s)
- Tingkai Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Xu Tang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Zhenqi Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Feng Feng
- School of Pharmacy, Nanjing Medical University, 211166, Nanjing, People's Republic of China
| | - Chunlei Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Qun Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Yulan Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
13
|
Daley BR, Vieira HM, Rao C, Hughes JM, Beckley ZM, Huisman DH, Chatterjee D, Sealover NE, Cox K, Askew JW, Svoboda RA, Fisher KW, Lewis RE, Kortum RL. SOS1 and KSR1 modulate MEK inhibitor responsiveness to target resistant cell populations based on PI3K and KRAS mutation status. Proc Natl Acad Sci U S A 2023; 120:e2313137120. [PMID: 37972068 PMCID: PMC10666034 DOI: 10.1073/pnas.2313137120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023] Open
Abstract
KRAS is the most commonly mutated oncogene. Targeted therapies have been developed against mediators of key downstream signaling pathways, predominantly components of the RAF/MEK/ERK kinase cascade. Unfortunately, single-agent efficacy of these agents is limited both by intrinsic and acquired resistance. Survival of drug-tolerant persister cells within the heterogeneous tumor population and/or acquired mutations that reactivate receptor tyrosine kinase (RTK)/RAS signaling can lead to outgrowth of tumor-initiating cells (TICs) and drive therapeutic resistance. Here, we show that targeting the key RTK/RAS pathway signaling intermediates SOS1 (Son of Sevenless 1) or KSR1 (Kinase Suppressor of RAS 1) both enhances the efficacy of, and prevents resistance to, the MEK inhibitor trametinib in KRAS-mutated lung (LUAD) and colorectal (COAD) adenocarcinoma cell lines depending on the specific mutational landscape. The SOS1 inhibitor BI-3406 enhanced the efficacy of trametinib and prevented trametinib resistance by targeting spheroid-initiating cells in KRASG12/G13-mutated LUAD and COAD cell lines that lacked PIK3CA comutations. Cell lines with KRASQ61 and/or PIK3CA mutations were insensitive to trametinib and BI-3406 combination therapy. In contrast, deletion of the RAF/MEK/ERK scaffold protein KSR1 prevented drug-induced SIC upregulation and restored trametinib sensitivity across all tested KRAS mutant cell lines in both PIK3CA-mutated and PIK3CA wild-type cancers. Our findings demonstrate that vertical inhibition of RTK/RAS signaling is an effective strategy to prevent therapeutic resistance in KRAS-mutated cancers, but therapeutic efficacy is dependent on both the specific KRAS mutant and underlying comutations. Thus, selection of optimal therapeutic combinations in KRAS-mutated cancers will require a detailed understanding of functional dependencies imposed by allele-specific KRAS mutations.
Collapse
Affiliation(s)
- Brianna R. Daley
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - Heidi M. Vieira
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198
| | - Chaitra Rao
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198
| | - Jacob M. Hughes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - Zaria M. Beckley
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - Dianna H. Huisman
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198
| | - Deepan Chatterjee
- Department of Integrative Physiology and Molecular Medicine, University of Nebraska Medical Center, Omaha, NE68198
| | - Nancy E. Sealover
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - Katherine Cox
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - James W. Askew
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198
| | - Robert A. Svoboda
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE68198
| | - Kurt W. Fisher
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE68198
| | - Robert E. Lewis
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198
| | - Robert L. Kortum
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| |
Collapse
|
14
|
de Jesus VHF, Mathias-Machado MC, de Farias JPF, Aruquipa MPS, Jácome AA, Peixoto RD. Targeting KRAS in Pancreatic Ductal Adenocarcinoma: The Long Road to Cure. Cancers (Basel) 2023; 15:5015. [PMID: 37894382 PMCID: PMC10605759 DOI: 10.3390/cancers15205015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains an important cause of cancer-related mortality, and it is expected to play an even bigger part in cancer burden in the years to come. Despite concerted efforts from scientists and physicians, patients have experienced little improvement in survival over the past decades, possibly because of the non-specific nature of the tested treatment modalities. Recently, the discovery of potentially targetable molecular alterations has paved the way for the personalized treatment of PDAC. Indeed, the central piece in the molecular framework of PDAC is starting to be unveiled. KRAS mutations are seen in 90% of PDACs, and multiple studies have demonstrated their pivotal role in pancreatic carcinogenesis. Recent investigations have shed light on the differences in prognosis as well as therapeutic implications of the different KRAS mutations and disentangled the relationship between KRAS and effectors of downstream and parallel signaling pathways. Additionally, the recognition of other mechanisms involving KRAS-mediated pathogenesis, such as KRAS dosing and allelic imbalance, has contributed to broadening the current knowledge regarding this molecular alteration. Finally, KRAS G12C inhibitors have been recently tested in patients with pancreatic cancer with relative success, and inhibitors of KRAS harboring other mutations are under clinical development. These drugs currently represent a true hope for a meaningful leap forward in this dreadful disease.
Collapse
Affiliation(s)
| | | | | | | | - Alexandre A. Jácome
- Department of Gastrointestinal Medical Oncology, Oncoclínicas, Belo Horizonte 30360-680, Brazil
| | | |
Collapse
|
15
|
Baltanás FC, García-Navas R, Rodríguez-Ramos P, Calzada N, Cuesta C, Borrajo J, Fuentes-Mateos R, Olarte-San Juan A, Vidaña N, Castellano E, Santos E. Critical requirement of SOS1 for tumor development and microenvironment modulation in KRAS G12D-driven lung adenocarcinoma. Nat Commun 2023; 14:5856. [PMID: 37730692 PMCID: PMC10511506 DOI: 10.1038/s41467-023-41583-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
The impact of genetic ablation of SOS1 or SOS2 is evaluated in a murine model of KRASG12D-driven lung adenocarcinoma (LUAD). SOS2 ablation shows some protection during early stages but only SOS1 ablation causes significant, specific long term increase of survival/lifespan of the KRASG12D mice associated to markedly reduced tumor burden and reduced populations of cancer-associated fibroblasts, macrophages and T-lymphocytes in the lung tumor microenvironment (TME). SOS1 ablation also causes specific shrinkage and regression of LUAD tumoral masses and components of the TME in pre-established KRASG12D LUAD tumors. The critical requirement of SOS1 for KRASG12D-driven LUAD is further confirmed by means of intravenous tail injection of KRASG12D tumor cells into SOS1KO/KRASWT mice, or of SOS1-less, KRASG12D tumor cells into wildtype mice. In silico analyses of human lung cancer databases support also the dominant role of SOS1 regarding tumor development and survival in LUAD patients. Our data indicate that SOS1 is critically required for development of KRASG12D-driven LUAD and confirm the validity of this RAS-GEF activator as an actionable therapeutic target in KRAS mutant LUAD.
Collapse
Affiliation(s)
- Fernando C Baltanás
- Lab 1. Cancer Research Center, Institute of Cancer Molecular and Cellular Biology, CSIC-University of Salamanca and CIBERONC, 37007, Salamanca, Spain.
- Institute of Biomedicine of Seville (IBiS)/"Virgen del Rocío" University Hospital/CSIC/University of Seville and Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain.
| | - Rósula García-Navas
- Lab 1. Cancer Research Center, Institute of Cancer Molecular and Cellular Biology, CSIC-University of Salamanca and CIBERONC, 37007, Salamanca, Spain
| | - Pablo Rodríguez-Ramos
- Lab 1. Cancer Research Center, Institute of Cancer Molecular and Cellular Biology, CSIC-University of Salamanca and CIBERONC, 37007, Salamanca, Spain
| | - Nuria Calzada
- Lab 1. Cancer Research Center, Institute of Cancer Molecular and Cellular Biology, CSIC-University of Salamanca and CIBERONC, 37007, Salamanca, Spain
| | - Cristina Cuesta
- Lab 5. Cancer Research Center, Institute of Cancer Molecular and Cellular Biology, CSIC-University of Salamanca, 37007, Salamanca, Spain
| | - Javier Borrajo
- Departament of Biomedical Sciences and Diagnostic, University of Salamanca, 37007, Salamanca, Spain
| | - Rocío Fuentes-Mateos
- Lab 1. Cancer Research Center, Institute of Cancer Molecular and Cellular Biology, CSIC-University of Salamanca and CIBERONC, 37007, Salamanca, Spain
| | - Andrea Olarte-San Juan
- Lab 1. Cancer Research Center, Institute of Cancer Molecular and Cellular Biology, CSIC-University of Salamanca and CIBERONC, 37007, Salamanca, Spain
| | - Nerea Vidaña
- Lab 1. Cancer Research Center, Institute of Cancer Molecular and Cellular Biology, CSIC-University of Salamanca and CIBERONC, 37007, Salamanca, Spain
| | - Esther Castellano
- Lab 5. Cancer Research Center, Institute of Cancer Molecular and Cellular Biology, CSIC-University of Salamanca, 37007, Salamanca, Spain
| | - Eugenio Santos
- Lab 1. Cancer Research Center, Institute of Cancer Molecular and Cellular Biology, CSIC-University of Salamanca and CIBERONC, 37007, Salamanca, Spain.
| |
Collapse
|
16
|
Theard PL, Linke AJ, Sealover NE, Daley BR, Yang J, Cox K, Kortum RL. SOS2 regulates the threshold of mutant EGFR-dependent oncogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524989. [PMID: 37425733 PMCID: PMC10327037 DOI: 10.1101/2023.01.20.524989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Son of Sevenless 1 and 2 (SOS1 and SOS2) are RAS guanine nucleotide exchange factors (RasGEFs) that mediate physiologic and pathologic RTK-dependent RAS activation. Here, we show that SOS2 modulates the threshold of epidermal growth factor receptor (EGFR) signaling to regulate the efficacy of and resistance to the EGFR-TKI osimertinib in lung adenocarcinoma (LUAD). SOS2 deletion sensitized EGFR-mutated cells to perturbations in EGFR signaling caused by reduced serum and/or osimertinib treatment to inhibit PI3K/AKT pathway activation, oncogenic transformation, and survival. Bypass RTK reactivation of PI3K/AKT signaling represents a common resistance mechanism to EGFR-TKIs; SOS2 KO reduced PI3K/AKT reactivation to limit osimertinib resistance. In a forced HGF/MET-driven bypass model, SOS2 KO inhibited HGF-stimulated PI3K signaling to block HGF-driven osimertinib resistance. Using a long term in situ resistance assay, a majority of osimertinib resistant cultures exhibited a hybrid epithelial/mesenchymal phenotype associated with reactivated RTK/AKT signaling. In contrast, RTK/AKT-dependent osimertinib resistance was markedly reduced by SOS2 deletion; the few SOS2 KO cultures that became osimertinib resistant primarily underwent non-RTK dependent EMT. Since bypass RTK reactivation and/or tertiary EGFR mutations represent the majority of osimertinib-resistant cancers, these data suggest that targeting SOS2 has the potential to eliminate the majority of osimertinib resistance.
Collapse
Affiliation(s)
- Patricia L. Theard
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA 20814
| | - Amanda J. Linke
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA 20814
| | - Nancy E. Sealover
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA 20814
| | - Brianna R. Daley
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA 20814
| | - Johnny Yang
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA 20814
| | - Katherine Cox
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA 20814
| | - Robert L Kortum
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA 20814
| |
Collapse
|
17
|
Sealover NE, Theard PL, Hughes JM, Linke AJ, Daley BR, Kortum RL. In situ modeling of acquired resistance to RTK/RAS pathway targeted therapies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525958. [PMID: 36747633 PMCID: PMC9901014 DOI: 10.1101/2023.01.27.525958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Intrinsic and acquired resistance limit the window of effectiveness for oncogene-targeted cancer therapies. Preclinical studies that identify synergistic combinations enhance therapeutic efficacy to target intrinsic resistance, however, methods to study acquired resistance in cell culture are lacking. Here, we describe a novel in situ resistance assay (ISRA), performed in a 96-well culture format, that models acquired resistance to RTK/RAS pathway targeted therapies. Using osimertinib resistance in EGFR-mutated lung adenocarcinoma (LUAD) as a model system, we show acquired resistance can be reliably modeled across cell lines using objectively defined osimertinib doses. Similar to patient populations, isolated osimertinib-resistant populations showed resistance via enhanced activation of multiple parallel RTKs so that individual RTK inhibitors did not re-sensitize cells to osimertinib. In contrast, inhibition of proximal RTK signaling using the SHP2 inhibitor RMC-4550 both re-sensitized resistant populations to osimertinib and prevented the development of osimertinib resistance as a primary therapy. Similar, objectively defined drug doses were used to model resistance to additional RTK/RAS pathway targeted therapies including the KRASG12C inhibitors adagrasib and sotorasib, the MEK inhibitor trametinib, and the farnesyl transferase inhibitor tipifarnib. These studies highlight the tractability of in situ resistance assays to model acquired resistance to targeted therapies and provide a framework for assessing the extent to which synergistic drug combinations can target acquired drug resistance.
Collapse
|
18
|
Luo G, Wang B, Hou Q, Wu X. Development of Son of Sevenless Homologue 1 (SOS1) Modulators To Treat Cancers by Regulating RAS Signaling. J Med Chem 2023; 66:4324-4341. [PMID: 36987571 DOI: 10.1021/acs.jmedchem.2c01729] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Son of sevenless homologue 1 (SOS1) protein is universally expressed in cells and plays an important role in the RAS signaling pathway. Specifically, this protein interacts with RAS in response to upstream stimuli to promote guanine nucleotide exchange in RAS and activates the downstream signaling pathways. Thus, targeting SOS1 is a new approach for treating RAS-driven cancers. In this Perspective, we briefly summarize the structural and functional aspects of SOS1 and focus on recent advances in the discovery of activators, inhibitors, and PROTACs that target SOS1. This review aims to provide a timely and updated overview on the strategies for targeting SOS1 in cancer therapy.
Collapse
Affiliation(s)
- Guangmei Luo
- Department of Medicinal Chemistry, School of Pharmacy and Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Bingrui Wang
- Department of Medicinal Chemistry, School of Pharmacy and Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Qiangqiang Hou
- Department of Medicinal Chemistry, School of Pharmacy and Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoxing Wu
- Department of Medicinal Chemistry, School of Pharmacy and Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
19
|
Pearson RA, Wicha SG, Okour M. Drug Combination Modeling: Methods and Applications in Drug Development. J Clin Pharmacol 2023; 63:151-165. [PMID: 36088583 DOI: 10.1002/jcph.2128] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/22/2022] [Indexed: 01/18/2023]
Abstract
Combination therapies have become increasingly researched and used in the treatment and management of complex diseases due to their ability to increase the chances for better efficacy and decreased toxicity. To evaluate drug combinations in drug development, pharmacokinetic and pharmacodynamic interactions between drugs in combination can be quantified using mathematical models; however, it can be difficult to deduce which models to use and how to use them to aid in clinical trial simulations to simulate the effect of a drug combination. This review paper aims to provide an overview of the various methods used to evaluate combination drug interaction for use in clinical trial development and a practical guideline on how combination modeling can be used in the settings of clinical trials.
Collapse
Affiliation(s)
- Rachael A Pearson
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sebastian G Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany
| | - Malek Okour
- Clinical Pharmacology Modeling and Simulation (CPMS), GlaxoSmithKline, Upper Providence, Pennsylvania, USA
| |
Collapse
|
20
|
Zhang Z, Wu L, Li J, Chen J, Yu Q, Yao H, Xu Y, Liu L. Identification of ZBTB9 as a potential therapeutic target against dysregulation of tumor cells proliferation and a novel biomarker in Liver Hepatocellular Carcinoma. J Transl Med 2022; 20:602. [PMID: 36522647 PMCID: PMC9756481 DOI: 10.1186/s12967-022-03790-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Zinc finger and bric-a-brac/tramtrack/broad (ZBTB) domain-containing proteins have been reported to be associated with many tumors' development. However, in tumor initiation and progression, the role of ZBTB9, one of the protein family, and its prognostic value were yet to be elucidated in Liver Hepatocellular Carcinoma (LIHC). METHODS We used R software and online bioinformatics analysis tools such as GEPIA2, cBioPortal, TIMER2, Metascape, UALCAN, STRING, TISIDB, and COSMIC to investigate ZBTB9's characteristics and function in LIHC, including abnormal expression, carcinogenic role, related signaling pathways and prognostic value. Furthermore, cell experiments (such as formation, wound healing, and transwell assays) and analyses based on clinical samples (such as immunohistochemistry (IHC) and promoter methylation analysis) were conducted to verify pivotal conclusions. RESULTS ZBTB9 was overexpressed in LIHC samples compared to adjacent normal tissues. Through the analysis of genomic alteration and promoter hypomethylation, the clinical value and etiology of abnormal expression of ZBTB9 were preliminarily exlpored. Subsequent evidence showed that it could result in tumor progression and poor prognosis via activating cell cycle, DNA repair, MYC, and KRAS-associated signaling pathways as well as rendering immune dysregulation. After the knockdown of ZBTB9, evidently inhibited capacities of tumor cells proliferation and migration were observed. These results together indicated that ZBTB9 could be a promising prognostic biomarker and had the potential value to offer novel therapeutic targets for LIHC treatment. CONCLUSIONS ZBTB9 was identified as a novel biomarker to predict the prognosis and tumor progression in LIHC, and a promising therapeutic target to invert tumor development.
Collapse
Affiliation(s)
- Zhenshan Zhang
- grid.412532.3Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China ,grid.452404.30000 0004 1808 0942Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 People’s Republic of China ,grid.452404.30000 0004 1808 0942Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Leilei Wu
- grid.412532.3Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Juan Li
- grid.452404.30000 0004 1808 0942Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 People’s Republic of China
| | - Jiayan Chen
- grid.452404.30000 0004 1808 0942Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 People’s Republic of China
| | - Qi Yu
- grid.412532.3Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China ,Shanghai Concord Cancer Center, Shanghai, 200240 China
| | - Hui Yao
- grid.490481.0Department of Radiation Oncology, Shanghai International Medical Center, Shanghai, China
| | - Yaping Xu
- grid.412532.3Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liang Liu
- grid.412532.3Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China ,grid.452404.30000 0004 1808 0942Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 People’s Republic of China ,grid.490481.0Department of Radiation Oncology, Shanghai International Medical Center, Shanghai, China
| |
Collapse
|
21
|
RasGRP1 promotes the acute inflammatory response and restricts inflammation-associated cancer cell growth. Nat Commun 2022; 13:7001. [PMID: 36385095 PMCID: PMC9669001 DOI: 10.1038/s41467-022-34659-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 11/02/2022] [Indexed: 11/17/2022] Open
Abstract
An acute inflammatory response needs to be properly regulated to promote the elimination of pathogens and prevent the risk of tumorigenesis, but the relevant regulatory mechanism has not been fully elucidated. Here, we report that Ras guanine nucleotide-releasing protein 1 (RasGRP1) is a bifunctional regulator that promotes acute inflammation and inhibits inflammation-associated cancer. At the mRNA level, Rasgrp1 activates the inflammatory response by functioning as a competing endogenous RNA to specifically promote IL-6 expression by sponging let-7a. In vivo overexpression of the Rasgrp1 3' untranslated region enhances lipopolysaccharide-induced systemic inflammation and dextran sulphate sodium-induced colitis in Il6+/+ mice but not in Il6-/- mice. At the protein level, RasGRP1 overexpression significantly inhibits the tumour-promoting effect of IL-6 in hepatocellular carcinoma progenitor cell-like spheroids. Examination of the EGFR signalling pathway shows that RasGRP1 inhibits inflammation-associated cancer cell growth by disrupting the EGFR-SOS1-Ras-AKT signalling pathway. Tumour patients with high RasGRP1 expression have better clinical outcomes than those with low RasGRP1 expression. Considering that acute inflammation rarely leads to tumorigenesis, this study suggests that RasGRP1 may be an important bifunctional regulator of the acute inflammatory response and tumour growth.
Collapse
|
22
|
Targeting KRAS in Pancreatic Cancer. J Pers Med 2022; 12:jpm12111870. [PMID: 36579598 PMCID: PMC9692903 DOI: 10.3390/jpm12111870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Pancreatic cancer is mainly driven by mutations in the KRAS oncogene. While this cancer has shown remarkable therapy resistance, new approaches to inhibit mutated KRAS, KRAS activators and effectors show promise in breaking this therapeutic deadlock. Here, we review these innovations in therapies that target RAS signaling in pancreatic cancer from a clinical point of view. A number of promising approaches are currently in clinical trials or in clinical development. We focus on small-molecule drugs but also discuss immunotherapies and tumor vaccines.
Collapse
|
23
|
Schueler J, Borenstein J, Buti L, Dong M, Masmoudi F, Hribar K, Anderson E, Sommergruber W. How to build a tumor: An industry perspective. Drug Discov Today 2022; 27:103329. [PMID: 35908685 PMCID: PMC9585375 DOI: 10.1016/j.drudis.2022.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/23/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
Abstract
During the past 15 years, a plethora of innovative 3D in vitro systems has been developed. They offer the possibility of identifying crucial cellular and molecular contributors to the disease by permitting manipulation of each in isolation. However, improvements are needed particularly with respect to the predictivity and validity of those models. The major challenge now is to identify which assay and readout combination(s) best suits the current scientific question(s). A deep understanding of the different platforms along with their pros and cons is a prerequisite to make this decision. This review aims to give an overview of the most prominent systems with a focus on applications, translational relevance and adoption drivers from an industry perspective.
Collapse
Affiliation(s)
- Julia Schueler
- Charles River Discovery Research Services Germany GmbH, Freiburg, Germany,Corresponding author.
| | | | | | - Meng Dong
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, Stuttgart, Germany
| | | | | | | | | |
Collapse
|
24
|
Wang CX, Wang TT, Zhang KD, Li MY, Shen QC, Lu SY, Zhang J. Pan-KRAS inhibitors suppress proliferation through feedback regulation in pancreatic ductal adenocarcinoma. Acta Pharmacol Sin 2022; 43:2696-2708. [PMID: 35352018 PMCID: PMC9525295 DOI: 10.1038/s41401-022-00897-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/06/2022] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is currently one of the most lethal cancers worldwide. Several basic studies have confirmed that Kirsten rat sarcoma virus (KRAS) is a key driver gene for the occurrence of PDAC, and KRAS mutations have also been found in most patients in clinical studies. In this study, two pan-KRAS inhibitors, BI-2852 and BAY-293, were chosen as chemical probes to investigate their antitumor potency in PDAC. Their inhibitory effects on KRAS activation were validated in vitro and their antiproliferative potency in PDAC cell lines were profiled, with half-maximal inhibitory concentration (IC50) values of approximately 1 μM, demonstrating the therapeutic potential of pan-KRAS inhibitors in the treatment of PDAC. However, feedback regulation in the KRAS pathway weakened inhibitor activity, which was observed by a 50 times difference in BAY-293 from in vitro activity. Furthermore, pan-KRAS inhibitors effectively inhibited cell proliferation in 3D organoids cultured from PDAC patient samples; however, there were some variations between individuals. These results provide a sufficient theoretical foundation for KRAS as a clinical therapeutic target and for the application of pan-KRAS inhibitors in the treatment of PDAC, with important scientific significance in translational medicine.
Collapse
Affiliation(s)
- Cheng-Xiang Wang
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - Ting-Ting Wang
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - Kun-Dong Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Ming-Yu Li
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - Qian-Cheng Shen
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - Shao-Yong Lu
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China.
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China.
| | - Jian Zhang
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China.
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China.
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
25
|
Rittase WB, Slaven JE, Suzuki YJ, Muir JM, Lee SH, Rusnak M, Brehm GV, Bradfield DT, Symes AJ, Day RM. Iron Deposition and Ferroptosis in the Spleen in a Murine Model of Acute Radiation Syndrome. Int J Mol Sci 2022; 23:ijms231911029. [PMID: 36232330 PMCID: PMC9570444 DOI: 10.3390/ijms231911029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Total body irradiation (TBI) can result in death associated with hematopoietic insufficiency. Although radiation causes apoptosis of white blood cells, red blood cells (RBC) undergo hemolysis due to hemoglobin denaturation. RBC lysis post-irradiation results in the release of iron into the plasma, producing a secondary toxic event. We investigated radiation-induced iron in the spleens of mice following TBI and the effects of the radiation mitigator captopril. RBC and hematocrit were reduced ~7 days (nadir ~14 days) post-TBI. Prussian blue staining revealed increased splenic Fe3+ and altered expression of iron binding and transport proteins, determined by qPCR, western blotting, and immunohistochemistry. Captopril did not affect iron deposition in the spleen or modulate iron-binding proteins. Caspase-3 was activated after ~7–14 days, indicating apoptosis had occurred. We also identified markers of iron-dependent apoptosis known as ferroptosis. The p21/Waf1 accelerated senescence marker was not upregulated. Macrophage inflammation is an effect of TBI. We investigated the effects of radiation and Fe3+ on the J774A.1 murine macrophage cell line. Radiation induced p21/Waf1 and ferritin, but not caspase-3, after ~24 h. Radiation ± iron upregulated several markers of pro-inflammatory M1 polarization; radiation with iron also upregulated a marker of anti-inflammatory M2 polarization. Our data indicate that following TBI, iron accumulates in the spleen where it regulates iron-binding proteins and triggers apoptosis and possible ferroptosis.
Collapse
Affiliation(s)
- W. Bradley Rittase
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - John E. Slaven
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Yuichiro J. Suzuki
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Jeannie M. Muir
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Sang-Ho Lee
- Department of Laboratory Animal Research, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Milan Rusnak
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Grace V. Brehm
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Dmitry T. Bradfield
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Aviva J. Symes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Regina M. Day
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Correspondence: ; Tel.: +1-301-295-3236; Fax: +1-301-295-3220
| |
Collapse
|
26
|
Plangger A, Rath B, Stickler S, Hochmair M, Lang C, Weigl L, Funovics M, Hamilton G. Cytotoxicity of combinations of the pan-KRAS SOS1 inhibitor BAY-293 against pancreatic cancer cell lines. Discov Oncol 2022; 13:84. [PMID: 36048281 PMCID: PMC9437170 DOI: 10.1007/s12672-022-00550-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/26/2022] [Indexed: 11/27/2022] Open
Abstract
KRAS is mutated in approximately 25% of cancer patients and first KRAS G12C-specific inhibitors showed promising responses. Pancreatic cancer has the highest frequency of KRAS mutations but the prevailing KRAS G12D mutation is difficult to target. Inhibition of the GTP exchange factor (GEF) SOS1-KRAS interaction impairs oncogenic signaling independently of the specific KRAS mutations. In general, cell lines exhibiting KRAS mutations show specific alterations in respect to glucose utilization, signal transduction and stress survival. The aim of this investigation was to check the putative synergy of the SOS1 inhibitor BAY-293 with modulators targeting specific vulnerabilities of KRAS-mutated cell lines in vitro. The cytotoxicity of BAY-293 combinations was tested against MIA PaCa-2 (G12C), AsPC1 (G12D) and BxPC3 (KRAS wildtype) cell lines using MTT tests and calculation of the combination indices (CI) according to the Chou-Talalay method. The results show that BAY-293 synergizes with modulators of glucose utilization, inhibitors of the downstream MAPK pathway and several chemotherapeutics in dependence of the specific KRAS status of the cell lines. In particular, divergent responses for BAY-293 combinations between pancreatic and NSCLC cell lines were observed for linsitinib, superior inhibitory effects of trametinib and PD98059 in NSCLC, and lack of activity with doxorubicin in case of the pancreatic cell lines. Phosphoproteome analysis revealed inhibition of distinct signaling pathways by BAY-293 for MIA PaCa-2 on the one hand and for Aspc1 and BH1362 on the other hand. In conclusion, BAY-293 exhibits synergy with drugs in dependence of the tumor type and specific KRAS mutation.
Collapse
Affiliation(s)
- Adelina Plangger
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Barbara Rath
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sandra Stickler
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Maximilian Hochmair
- Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna, Austria
| | - Clemens Lang
- Department of Trauma Surgery, Sozialmedizinisches Zentrum Ost, Donauspital, Vienna, Austria
| | - Lukas Weigl
- Division of Special Anesthesia and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Martin Funovics
- Department of Cardiovascular and Interventional Radiology, Medical University of Vienna, Vienna, Austria
| | - Gerhard Hamilton
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
27
|
Hofmann MH, Gerlach D, Misale S, Petronczki M, Kraut N. Expanding the Reach of Precision Oncology by Drugging All KRAS Mutants. Cancer Discov 2022; 12:924-937. [PMID: 35046095 PMCID: PMC9394389 DOI: 10.1158/2159-8290.cd-21-1331] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022]
Abstract
KRAS is the most frequently mutated oncogene, harboring mutations in approximately one in seven cancers. Allele-specific KRASG12C inhibitors are currently changing the treatment paradigm for patients with KRASG12C-mutated non-small cell lung cancer and colorectal cancer. The success of addressing a previously elusive KRAS allele has fueled drug discovery efforts for all KRAS mutants. Pan-KRAS drugs have the potential to address broad patient populations, including KRASG12D-, KRASG12V-, KRASG13D-, KRASG12R-, and KRASG12A-mutant or KRAS wild-type-amplified cancers, as well as cancers with acquired resistance to KRASG12C inhibitors. Here, we review actively pursued allele-specific and pan-KRAS inhibition strategies and their potential utility. SIGNIFICANCE Mutant-selective KRASG12C inhibitors target a fraction (approximately 13.6%) of all KRAS-driven cancers. A broad arsenal of KRAS drugs is needed to comprehensively conquer KRAS-driven cancers. Conceptually, we foresee two future classes of KRAS medicines: mutant-selective KRAS drugs targeting individual variant alleles and pan-KRAS therapeutics targeting a broad range of KRAS alterations.
Collapse
Affiliation(s)
- Marco H. Hofmann
- Discovery Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Daniel Gerlach
- Discovery Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Sandra Misale
- Molecular Pharmacology Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Mark Petronczki
- Discovery Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Norbert Kraut
- Discovery Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| |
Collapse
|
28
|
Abstract
RAS proteins play major roles in many human cancers, but programs to develop direct RAS inhibitors so far have only been successful for the oncogenic KRAS mutant G12C. As an alternative approach, inhibitors for the RAS guanine nucleotide exchange factor SOS1 have been investigated by several academic groups and companies, and major progress has been achieved in recent years in the optimization of small molecule activators and inhibitors of SOS1. Here, we review the discovery and development of small molecule modulators of SOS1 and their molecular binding modes and modes of action. As targeting the RAS pathway is expected to result in the development of resistance mechanisms, SOS1 inhibitors will most likely be best applied in vertical combination approaches where two nodes of the RAS signaling pathway are hit simultaneously. We summarize the current understanding of which combination partners may be most beneficial for patients with RAS driven tumors.
Collapse
Affiliation(s)
| | - Benjamin Bader
- Screening, Lead Discovery, Nuvisan ICB GmbH, Berlin, Germany
| |
Collapse
|
29
|
Liu C, Zheng Z, Li W, Tang D, Zhao L, He Y, Li H. Inhibition of KDM5A attenuates cisplatin-induced hearing loss via regulation of the MAPK/AKT pathway. Cell Mol Life Sci 2022; 79:596. [PMID: 36396833 PMCID: PMC9672031 DOI: 10.1007/s00018-022-04565-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/19/2022]
Abstract
The study aimed to investigate the potential role of lysine-specific demethylase 5A (KDM5A) in cisplatin-induced ototoxicity. The effect of the KDM5A inhibitor CPI-455 was assessed by apoptosis assay, immunofluorescence, flow cytometry, seahorse respirometry assay, and auditory brainstem response test. RNA sequencing, qRT-PCR, and CUT&Tag assays were used to explore the mechanism underlying CPI-455-induced protection. Our results demonstrated that the expression of KDM5A was increased in cisplatin-injured cochlear hair cells compared with controls. CPI-455 treatment markedly declined KDM5A and elevated H3K4 trimethylation levels in cisplatin-injured cochlear hair cells. Moreover, CPI-455 effectively prevented the death of hair cells and spiral ganglion neurons and increased the number of ribbon synapses in a cisplatin-induced ototoxicity mouse model both in vitro and in vivo. In HEI-OC1 cells, KDM5A knockdown reduced reactive oxygen species accumulation and improved mitochondrial membrane potential and oxidative phosphorylation under cisplatin-induced stress. Mechanistically, through transcriptomics and epigenomics analyses, a set of apoptosis-related genes, including Sos1, Sos2, and Map3k3, were regulated by CPI-455. Altogether, our findings indicate that inhibition of KDM5A may represent an effective epigenetic therapeutic target for preventing cisplatin-induced hearing loss.
Collapse
Affiliation(s)
- Chang Liu
- Department of ENT Institute and Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 83 Fenyang Road, Shanghai, 200031 China ,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031 People’s Republic of China
| | - Zhiwei Zheng
- Department of ENT Institute and Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 83 Fenyang Road, Shanghai, 200031 China ,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031 People’s Republic of China
| | - Wen Li
- Department of ENT Institute and Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 83 Fenyang Road, Shanghai, 200031 China ,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031 People’s Republic of China
| | - Dongmei Tang
- Department of ENT Institute and Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 83 Fenyang Road, Shanghai, 200031 China ,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031 People’s Republic of China
| | - Liping Zhao
- Department of ENT Institute and Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 83 Fenyang Road, Shanghai, 200031 China ,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031 People’s Republic of China
| | - Yingzi He
- Department of ENT Institute and Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 83 Fenyang Road, Shanghai, 200031 China ,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031 People’s Republic of China
| | - Huawei Li
- Department of ENT Institute and Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 83 Fenyang Road, Shanghai, 200031 China ,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031 People’s Republic of China ,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 People’s Republic of China ,The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032 People’s Republic of China
| |
Collapse
|
30
|
Rozenberg JM, Filkov GI, Trofimenko AV, Karpulevich EA, Parshin VD, Royuk VV, Sekacheva MI, Durymanov MO. Biomedical Applications of Non-Small Cell Lung Cancer Spheroids. Front Oncol 2021; 11:791069. [PMID: 34950592 PMCID: PMC8688758 DOI: 10.3389/fonc.2021.791069] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/15/2021] [Indexed: 01/08/2023] Open
Abstract
Lung malignancies accounted for 11% of cancers worldwide in 2020 and remained the leading cause of cancer deaths. About 80% of lung cancers belong to non-small cell lung cancer (NSCLC), which is characterized by extremely high clonal and morphological heterogeneity of tumors and development of multidrug resistance. The improvement of current therapeutic strategies includes several directions. First, increasing knowledge in cancer biology results in better understanding of the mechanisms underlying malignant transformation, alterations in signal transduction, and crosstalk between cancer cells and the tumor microenvironment, including immune cells. In turn, it leads to the discovery of important molecular targets in cancer development, which might be affected pharmaceutically. The second direction focuses on the screening of novel drug candidates, synthetic or from natural sources. Finally, "personalization" of a therapeutic strategy enables maximal damage to the tumor of a patient. The personalization of treatment can be based on the drug screening performed using patient-derived tumor xenografts or in vitro patient-derived cell models. 3D multicellular cancer spheroids, generated from cancer cell lines or tumor-isolated cells, seem to be a helpful tool for the improvement of current NSCLC therapies. Spheroids are used as a tumor-mimicking in vitro model for screening of novel drugs, analysis of intercellular interactions, and oncogenic cell signaling. Moreover, several studies with tumor-derived spheroids suggest this model for the choice of "personalized" therapy. Here we aim to give an overview of the different applications of NSCLC spheroids and discuss the potential contribution of the spheroid model to the development of anticancer strategies.
Collapse
Affiliation(s)
- Julian M Rozenberg
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia.,Laboratory of Medical Informatics, Yaroslav-the-Wise Novgorod State University, Veliky Novgorod, Russia
| | - Gleb I Filkov
- Laboratory of Medical Informatics, Yaroslav-the-Wise Novgorod State University, Veliky Novgorod, Russia.,Special Cell Technology Laboratory, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Alexander V Trofimenko
- Special Cell Technology Laboratory, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Evgeny A Karpulevich
- Department of Information Systems, Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia
| | - Vladimir D Parshin
- Clinical Center, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Valery V Royuk
- Clinical Center, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Marina I Sekacheva
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mikhail O Durymanov
- Laboratory of Medical Informatics, Yaroslav-the-Wise Novgorod State University, Veliky Novgorod, Russia.,Special Cell Technology Laboratory, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| |
Collapse
|
31
|
Liu Y, Li C, Su R, Yin Z, Huang G, Yang J, Li Z, Zhang K, Fei J. Targeting SOS1 overcomes imatinib resistance with BCR-ABL independence through uptake transporter SLC22A4 in CML. Mol Ther Oncolytics 2021; 23:560-570. [PMID: 34938856 PMCID: PMC8654699 DOI: 10.1016/j.omto.2021.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 11/16/2021] [Indexed: 12/28/2022] Open
Abstract
Resistance to the BCR-ABL inhibitor imatinib mesylate poses a major problem for the treatment of chronic myeloid leukemia. Imatinib resistance often results from a secondary mutation in BCR-ABL that interferes with drug binding. However, sometimes there is no mutation in BCR-ABL, and the basis of such BCR-ABL-independent imatinib mesylate resistance remains to be elucidated. SOS1, a guanine nucleotide exchange factor for Ras protein, affects drug sensitivity and resistance to imatinib. The depletion of SOS1 markedly inhibits cell growth either in vitro or in vivo and significantly increases the sensitivity of chronic myeloid leukemia cells to imatinib. Furthermore, LC-MS/MS and RNA-seq assays reveal that SOS1 negatively regulates the expression of SLC22A4, a member of the carnitine/organic cation transporter family, which mediates the active uptake of imatinib into chronic myeloid leukemia cells. HPLC assay confirms that intracellular accumulation of imatinib is accompanied by upregulation of SLC22A4 through SOS1 inhibition in both sensitive and resistant chronic myeloid leukemia cells. BAY-293, an inhibitor of SOS1/Ras, was found to depress proliferation and colony formation in chronic myeloid leukemia cells with resistance and BCR-ABL independence. Altogether these findings indicate that targeting SOS1 inhibition promotes imatinib sensitivity and overcomes resistance with BCR-ABL independence by SLC22A4-mediated uptake transport.
Collapse
Affiliation(s)
- Yanjun Liu
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China.,Engineering Technology Research Center of Guangdong Province for Small Nucleic Acids Drug Development, Guangzhou 510632, China.,Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Chuting Li
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China.,Engineering Technology Research Center of Guangdong Province for Small Nucleic Acids Drug Development, Guangzhou 510632, China.,Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Rui Su
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China.,Engineering Technology Research Center of Guangdong Province for Small Nucleic Acids Drug Development, Guangzhou 510632, China.,Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Zhao Yin
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China.,Engineering Technology Research Center of Guangdong Province for Small Nucleic Acids Drug Development, Guangzhou 510632, China.,Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Guiping Huang
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China.,Engineering Technology Research Center of Guangdong Province for Small Nucleic Acids Drug Development, Guangzhou 510632, China.,Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Juhua Yang
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China.,Engineering Technology Research Center of Guangdong Province for Small Nucleic Acids Drug Development, Guangzhou 510632, China.,Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Zhendong Li
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong, China
| | - Keda Zhang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
| | - Jia Fei
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China.,Engineering Technology Research Center of Guangdong Province for Small Nucleic Acids Drug Development, Guangzhou 510632, China.,Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| |
Collapse
|
32
|
Plangger A, Rath B, Hochmair M, Funovics M, Hamilton G. Cytotoxicity of combinations of the pan-KRAS inhibitor BAY-293 against primary non-small lung cancer cells. Transl Oncol 2021; 14:101230. [PMID: 34598083 PMCID: PMC8488304 DOI: 10.1016/j.tranon.2021.101230] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023] Open
Abstract
KRAS is mutated in approximately 25% of Non-small Cell Lung Cancer (NSCLC) patients and first specific inhibitors showed promising responses that may be improved by concurrent interference with downstream signaling pathways. Cell lines exhibiting KRAS mutations show specific sensitivities to modulators affecting glucose utilization, signal transduction and cell survival. Novel SOS1-directed inhibitors with a broader anticancer coverage such as BAY-293 and BI-3406 inhibit KRAS through the hindrance of SOS1-KRAS interactions. The aim of this study was to check the putative synergy of BAY-293 with modulators having revealed specific vulnerabilities of KRAS-mutated cell lines. The present investigation tested the cytotoxicity of BAY-293 combinations against a series of Osimertinib-resistant primary NSCLC cell lines using MTT tests and calculation of combination indices according to the Chou-Talalay method. The results show that BAY-293 synergizes with modulators of glucose metabolism, inhibitors of cellular proliferation, several chemotherapeutics and a range of diverse modulators, thus corroborating the chemosensitivities of cells expressing mutated KRAS. In conclusion, BAY-293 exerts cytotoxicity with a wide range of drugs against Osimertinib-resistant primary NSCLC cell lines. The administration of pan-KRAS inhibitors alone may be limited in vivo by toxicity to normal tissues but made feasible by its use as part of suitable drug combinations. This study shows that BAY-293 combinations are active against NSCLC cells not further amenable to mutated EGFR-directed targeted therapy and results likewise hold relevance for pancreatic and colon cancer.
Collapse
Affiliation(s)
- Adelina Plangger
- Institute of Pharmacology, Medical University of Vienna, Währinger Straße 13A, Vienna A-1090, Austria
| | - Barbara Rath
- Institute of Pharmacology, Medical University of Vienna, Währinger Straße 13A, Vienna A-1090, Austria
| | - Maximilian Hochmair
- Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Vienna, Austria
| | - Martin Funovics
- Cardiovascular and Interventional Radiology, Department of Bioimaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Gerhard Hamilton
- Institute of Pharmacology, Medical University of Vienna, Währinger Straße 13A, Vienna A-1090, Austria.
| |
Collapse
|
33
|
Browning AP, Sharp JA, Murphy RJ, Gunasingh G, Lawson B, Burrage K, Haass NK, Simpson M. Quantitative analysis of tumour spheroid structure. eLife 2021; 10:e73020. [PMID: 34842141 PMCID: PMC8741212 DOI: 10.7554/elife.73020] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/26/2021] [Indexed: 11/25/2022] Open
Abstract
Tumour spheroids are common in vitro experimental models of avascular tumour growth. Compared with traditional two-dimensional culture, tumour spheroids more closely mimic the avascular tumour microenvironment where spatial differences in nutrient availability strongly influence growth. We show that spheroids initiated using significantly different numbers of cells grow to similar limiting sizes, suggesting that avascular tumours have a limiting structure; in agreement with untested predictions of classical mathematical models of tumour spheroids. We develop a novel mathematical and statistical framework to study the structure of tumour spheroids seeded from cells transduced with fluorescent cell cycle indicators, enabling us to discriminate between arrested and cycling cells and identify an arrested region. Our analysis shows that transient spheroid structure is independent of initial spheroid size, and the limiting structure can be independent of seeding density. Standard experimental protocols compare spheroid size as a function of time; however, our analysis suggests that comparing spheroid structure as a function of overall size produces results that are relatively insensitive to variability in spheroid size. Our experimental observations are made using two melanoma cell lines, but our modelling framework applies across a wide range of spheroid culture conditions and cell lines.
Collapse
Affiliation(s)
- Alexander P Browning
- School of Mathematical Sciences, Queensland University of TechnologyBrisbaneAustralia
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of TechnologyMelbourneAustralia
| | - Jesse A Sharp
- School of Mathematical Sciences, Queensland University of TechnologyBrisbaneAustralia
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of TechnologyMelbourneAustralia
| | - Ryan J Murphy
- School of Mathematical Sciences, Queensland University of TechnologyBrisbaneAustralia
| | - Gency Gunasingh
- The University of Queensland Diamantina Institute, The University of QueenslandBrisbaneAustralia
| | - Brodie Lawson
- School of Mathematical Sciences, Queensland University of TechnologyBrisbaneAustralia
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of TechnologyMelbourneAustralia
| | - Kevin Burrage
- School of Mathematical Sciences, Queensland University of TechnologyBrisbaneAustralia
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of TechnologyMelbourneAustralia
- Department of Computer Science, University of OxfordOxfordUnited Kingdom
| | - Nikolas K Haass
- The University of Queensland Diamantina Institute, The University of QueenslandBrisbaneAustralia
| | - Matthew Simpson
- School of Mathematical Sciences, Queensland University of TechnologyBrisbaneAustralia
| |
Collapse
|
34
|
Datta A, Biswas K, Sommers JA, Thompson H, Awate S, Nicolae CM, Thakar T, Moldovan GL, Shoemaker RH, Sharan SK, Brosh RM. WRN helicase safeguards deprotected replication forks in BRCA2-mutated cancer cells. Nat Commun 2021; 12:6561. [PMID: 34772932 PMCID: PMC8590011 DOI: 10.1038/s41467-021-26811-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 10/20/2021] [Indexed: 11/08/2022] Open
Abstract
The tumor suppressor BRCA2 protects stalled forks from degradation to maintain genome stability. However, the molecular mechanism(s) whereby unprotected forks are stabilized remains to be fully characterized. Here, we demonstrate that WRN helicase ensures efficient restart and limits excessive degradation of stalled forks in BRCA2-deficient cancer cells. In vitro, WRN ATPase/helicase catalyzes fork restoration and curtails MRE11 nuclease activity on regressed forks. We show that WRN helicase inhibitor traps WRN on chromatin leading to rapid fork stalling and nucleolytic degradation of unprotected forks by MRE11, resulting in MUS81-dependent double-strand breaks, elevated non-homologous end-joining and chromosomal instability. WRN helicase inhibition reduces viability of BRCA2-deficient cells and potentiates cytotoxicity of a poly (ADP)ribose polymerase (PARP) inhibitor. Furthermore, BRCA2-deficient xenograft tumors in mice exhibited increased DNA damage and growth inhibition when treated with WRN helicase inhibitor. This work provides mechanistic insight into stalled fork stabilization by WRN helicase when BRCA2 is deficient.
Collapse
Affiliation(s)
- Arindam Datta
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, 21224, USA
| | - Kajal Biswas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, 21702, USA
| | - Joshua A Sommers
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, 21224, USA
| | - Haley Thompson
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, 21224, USA
| | - Sanket Awate
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, 21224, USA
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Tanay Thakar
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Robert H Shoemaker
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, NIH, Rockville, MD, 20850, USA
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, 21702, USA
| | - Robert M Brosh
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, 21224, USA.
| |
Collapse
|
35
|
Modi U, Makwana P, Vasita R. Molecular insights of metastasis and cancer progression derived using 3D cancer spheroid co-culture in vitro platform. Crit Rev Oncol Hematol 2021; 168:103511. [PMID: 34740822 DOI: 10.1016/j.critrevonc.2021.103511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 02/06/2023] Open
Abstract
The multistep metastasis process is carried out by the combinatorial effect of the stromal cells and the cancerous cells and plays vital role in the cancer progression. The scaffold/physical cues aided 3D cancer spheroid imitates the spatiotemporal organization and physiological properties of the tumor. Understanding the role of the key players in different stages of metastasis, the molecular cross-talk between the stromal cells and the cancer cells contributing in the advancement of the metastasis through 3D cancer spheroid co-culture in vitro platform is the center of discussion in the present review. This state-of-art in vitro platform utilized to study the cancer cell host defence and the role of exosomes in the cross talk leading to cancer progression has been critically examined here. 3D cancer spheroid co-culture technique is the promising next-generation in vitro approach for exploring potent treatments and personalized medicines to combat cancer metastasis leading to cancer progression.
Collapse
Affiliation(s)
- Unnati Modi
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Pooja Makwana
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Rajesh Vasita
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India.
| |
Collapse
|
36
|
Hamilton G, Plangger A. Cytotoxic activity of KRAS inhibitors in combination with chemotherapeutics. Expert Opin Drug Metab Toxicol 2021; 17:1065-1074. [PMID: 34347509 DOI: 10.1080/17425255.2021.1965123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION KRAS is the most frequently mutated oncogenic driver in pancreatic, lung, and colon cancer. Recently, KRAS inhibitors in clinical use show promising activity but most responses are partial and drug resistance develops. The use of therapeutics in combination with KRAS inhibitors are expected to improve outcomes. AREAS COVERED This review describes the KRAS G12C mutation-specific inhibitors and the SOS1-targeting inhibitors that reduce the GTP-loading of wildtype and mutated KRAS. Both types of compounds reduce tumor cell proliferation in vitro and in vivo. The combinations of the various KRAS inhibitors with downstream signaling effectors, modulators of KRAS-associated metabolic alterations and chemotherapeutics are summarized. EXPERT OPINION The clinical potency of mutated KRAS-specific inhibitors needs to be improved by suitable drug combinations. Inhibition of downstream signaling cascades increases toxicity and other combinations exploited comprise G12C-directed inhibitors with SOS1 inhibitors, glucose/glutamine metabolic modulators, classical chemotherapeutics, and others. The most suitable inhibitor combinations corroborated in preclinical development await clinical verification.
Collapse
Affiliation(s)
- Gerhard Hamilton
- Department Of Vascular Surgery, Medical University Of Vienna, Vienna, Austria
| | - Adelina Plangger
- Department Of Vascular Surgery, Medical University Of Vienna, Vienna, Austria
| |
Collapse
|
37
|
Baltanás FC, García-Navas R, Santos E. SOS2 Comes to the Fore: Differential Functionalities in Physiology and Pathology. Int J Mol Sci 2021; 22:ijms22126613. [PMID: 34205562 PMCID: PMC8234257 DOI: 10.3390/ijms22126613] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
The SOS family of Ras-GEFs encompasses two highly homologous and widely expressed members, SOS1 and SOS2. Despite their similar structures and expression patterns, early studies of constitutive KO mice showing that SOS1-KO mutants were embryonic lethal while SOS2-KO mice were viable led to initially viewing SOS1 as the main Ras-GEF linking external stimuli to downstream RAS signaling, while obviating the functional significance of SOS2. Subsequently, different genetic and/or pharmacological ablation tools defined more precisely the functional specificity/redundancy of the SOS1/2 GEFs. Interestingly, the defective phenotypes observed in concomitantly ablated SOS1/2-DKO contexts are frequently much stronger than in single SOS1-KO scenarios and undetectable in single SOS2-KO cells, demonstrating functional redundancy between them and suggesting an ancillary role of SOS2 in the absence of SOS1. Preferential SOS1 role was also demonstrated in different RASopathies and tumors. Conversely, specific SOS2 functions, including a critical role in regulation of the RAS-PI3K/AKT signaling axis in keratinocytes and KRAS-driven tumor lines or in control of epidermal stem cell homeostasis, were also reported. Specific SOS2 mutations were also identified in some RASopathies and cancer forms. The relevance/specificity of the newly uncovered functional roles suggests that SOS2 should join SOS1 for consideration as a relevant biomarker/therapy target.
Collapse
|
38
|
Koga T, Suda K, Fujino T, Ohara S, Hamada A, Nishino M, Chiba M, Shimoji M, Takemoto T, Arita T, Gmachl M, Hofmann MH, Soh J, Mitsudomi T. KRAS Secondary Mutations That Confer Acquired Resistance to KRAS G12C Inhibitors, Sotorasib and Adagrasib, and Overcoming Strategies: Insights From In Vitro Experiments. J Thorac Oncol 2021; 16:1321-1332. [PMID: 33971321 DOI: 10.1016/j.jtho.2021.04.015] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION KRAS mutations have been recognized as undruggable for many years. Recently, novel KRAS G12C inhibitors, such as sotorasib and adagrasib, are being developed in clinical trials and have revealed promising results in metastatic NSCLC. Nevertheless, it is strongly anticipated that acquired resistance will limit their clinical use. In this study, we developed in vitro models of the KRAS G12C cancer, derived from resistant clones against sotorasib and adagrasib, and searched for secondary KRAS mutations as on-target resistance mechanisms to develop possible strategies to overcome such resistance. METHODS We chronically exposed Ba/F3 cells transduced with KRASG12C to sotorasib or adagrasib in the presence of N-ethyl-N-nitrosourea and searched for secondary KRAS mutations. Strategies to overcome resistance were also investigated. RESULTS We generated 142 Ba/F3 clones resistant to either sotorasib or adagrasib, of which 124 (87%) harbored secondary KRAS mutations. There were 12 different secondary KRAS mutations. Y96D and Y96S were resistant to both inhibitors. A combination of novel SOS1 inhibitor, BI-3406, and trametinib had potent activity against this resistance. Although G13D, R68M, A59S and A59T, which were highly resistant to sotorasib, remained sensitive to adagrasib, Q99L was resistant to adagrasib but sensitive to sotorasib. CONCLUSIONS We identified many secondary KRAS mutations causing resistance to sotorasib, adagrasib, or both, in vitro. The differential activities of these two inhibitors depending on the secondary mutations suggest sequential use in some cases. In addition, switching to BI-3406 plus trametinib might be a useful strategy to overcome acquired resistance owing to the secondary Y96D and Y96S mutations.
Collapse
Affiliation(s)
- Takamasa Koga
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kenichi Suda
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Toshio Fujino
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Shuta Ohara
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Akira Hamada
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Masaya Nishino
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Masato Chiba
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Masaki Shimoji
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Toshiki Takemoto
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Takeo Arita
- Specialty Care Medicine, Medicine Division, Nippon Boehringer Ingelheim Co., Ltd., Tokyo, Japan
| | | | | | - Junichi Soh
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Tetsuya Mitsudomi
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan.
| |
Collapse
|
39
|
Sheffels E, Kortum RL. Breaking Oncogene Addiction: Getting RTK/RAS-Mutated Cancers off the SOS. J Med Chem 2021; 64:6566-6568. [PMID: 33961431 DOI: 10.1021/acs.jmedchem.1c00698] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In RTK/RAS-mutated cancers, therapeutic resistance is driven by rebound activation of multiple RTKs; broad inhibition of RTK signaling can potentially delay therapeutic resistance for a majority of patients. A new SOS1 inhibitor, BI-3406, broadly inhibits proximal RTK signaling will greatly expand the efficacy of therapies used to treat RTK/RAS-mutated cancers.
Collapse
Affiliation(s)
- Erin Sheffels
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Robert L Kortum
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| |
Collapse
|
40
|
Baltanás FC, Mucientes-Valdivieso C, Lorenzo-Martín LF, Fernández-Parejo N, García-Navas R, Segrelles C, Calzada N, Fuentes-Mateos R, Paramio JM, Bustelo XR, Santos E. Functional Specificity of the Members of the Sos Family of Ras-GEF Activators: Novel Role of Sos2 in Control of Epidermal Stem Cell Homeostasis. Cancers (Basel) 2021; 13:cancers13092152. [PMID: 33946974 PMCID: PMC8124217 DOI: 10.3390/cancers13092152] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The Sos Ras-GEFs are known to participate in a wide range of skin-related diseases including cutaneous cancers, cardio-facio-cutaneous syndromes, or hirsutism. However, the specific functional roles played by the Sos1 and/or Sos2 family members in specific skin compartments remain largely unknown. This report aimed at precisely characterizing the specific functions played by Sos1 and/or Sos2 in keratinocytes, an essential cellular component of the skin. Our data show that Sos1 and Sos2 make overlapping contributions to both keratinocyte proliferation and survival. However, Sos1 seems to have a preferential involvement in regulating the ERK axis, whereas Sos2 seems to control the signaling output from the PI3K axis. We also uncovered an essential role of Sos2 in the control of the population of epidermal stem cells. Abstract Prior reports showed the critical requirement of Sos1 for epithelial carcinogenesis, but the specific functionalities of the homologous Sos1 and Sos2 GEFs in skin homeostasis and tumorigenesis remain unclear. Here, we characterize specific mechanistic roles played by Sos1 or Sos2 in primary mouse keratinocytes (a prevalent skin cell lineage) under different experimental conditions. Functional analyses of actively growing primary keratinocytes of relevant genotypes—WT, Sos1-KO, Sos2-KO, and Sos1/2-DKO—revealed a prevalent role of Sos1 regarding transcriptional regulation and control of RAS activation and mechanistic overlapping of Sos1 and Sos2 regarding cell proliferation and survival, with dominant contribution of Sos1 to the RAS-ERK axis and Sos2 to the RAS-PI3K/AKT axis. Sos1/2-DKO keratinocytes could not grow under 3D culture conditions, but single Sos1-KO and Sos2-KO keratinocytes were able to form pseudoepidermis structures that showed disorganized layer structure, reduced proliferation, and increased apoptosis in comparison with WT 3D cultures. Remarkably, analysis of the skin of both newborn and adult Sos2-KO mice uncovered a significant reduction of the population of stem cells located in hair follicles. These data confirm that Sos1 and Sos2 play specific, cell-autonomous functions in primary keratinocytes and reveal a novel, essential role of Sos2 in control of epidermal stem cell homeostasis.
Collapse
Affiliation(s)
- Fernando C. Baltanás
- Mechanisms of Cancer Program, Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), University of Salamanca-CSIC, E-37007 Salamanca, Spain; (C.M.-V.); (L.F.L.-M.); (N.F.-P.); (R.G.-N.); (N.C.); (R.F.-M.); (X.R.B.)
- Mechanisms of Tumor Progression Program, CIBERONC, University of Salamanca-CSIC, E-37007 Salamanca, Spain; (C.S.); (J.M.P.)
- Correspondence: (F.C.B.); (E.S.)
| | - Cynthia Mucientes-Valdivieso
- Mechanisms of Cancer Program, Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), University of Salamanca-CSIC, E-37007 Salamanca, Spain; (C.M.-V.); (L.F.L.-M.); (N.F.-P.); (R.G.-N.); (N.C.); (R.F.-M.); (X.R.B.)
- Mechanisms of Tumor Progression Program, CIBERONC, University of Salamanca-CSIC, E-37007 Salamanca, Spain; (C.S.); (J.M.P.)
| | - L. Francisco Lorenzo-Martín
- Mechanisms of Cancer Program, Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), University of Salamanca-CSIC, E-37007 Salamanca, Spain; (C.M.-V.); (L.F.L.-M.); (N.F.-P.); (R.G.-N.); (N.C.); (R.F.-M.); (X.R.B.)
- Mechanisms of Tumor Progression Program, CIBERONC, University of Salamanca-CSIC, E-37007 Salamanca, Spain; (C.S.); (J.M.P.)
| | - Natalia Fernández-Parejo
- Mechanisms of Cancer Program, Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), University of Salamanca-CSIC, E-37007 Salamanca, Spain; (C.M.-V.); (L.F.L.-M.); (N.F.-P.); (R.G.-N.); (N.C.); (R.F.-M.); (X.R.B.)
- Mechanisms of Tumor Progression Program, CIBERONC, University of Salamanca-CSIC, E-37007 Salamanca, Spain; (C.S.); (J.M.P.)
| | - Rósula García-Navas
- Mechanisms of Cancer Program, Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), University of Salamanca-CSIC, E-37007 Salamanca, Spain; (C.M.-V.); (L.F.L.-M.); (N.F.-P.); (R.G.-N.); (N.C.); (R.F.-M.); (X.R.B.)
- Mechanisms of Tumor Progression Program, CIBERONC, University of Salamanca-CSIC, E-37007 Salamanca, Spain; (C.S.); (J.M.P.)
| | - Carmen Segrelles
- Mechanisms of Tumor Progression Program, CIBERONC, University of Salamanca-CSIC, E-37007 Salamanca, Spain; (C.S.); (J.M.P.)
- Molecular Oncology Division, CIEMAT and Instituto de Investigación Sanitaria Hospital Universitario 12 de Octubre, E-28040 Madrid, Spain
| | - Nuria Calzada
- Mechanisms of Cancer Program, Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), University of Salamanca-CSIC, E-37007 Salamanca, Spain; (C.M.-V.); (L.F.L.-M.); (N.F.-P.); (R.G.-N.); (N.C.); (R.F.-M.); (X.R.B.)
- Mechanisms of Tumor Progression Program, CIBERONC, University of Salamanca-CSIC, E-37007 Salamanca, Spain; (C.S.); (J.M.P.)
| | - Rocío Fuentes-Mateos
- Mechanisms of Cancer Program, Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), University of Salamanca-CSIC, E-37007 Salamanca, Spain; (C.M.-V.); (L.F.L.-M.); (N.F.-P.); (R.G.-N.); (N.C.); (R.F.-M.); (X.R.B.)
- Mechanisms of Tumor Progression Program, CIBERONC, University of Salamanca-CSIC, E-37007 Salamanca, Spain; (C.S.); (J.M.P.)
| | - Jesús M. Paramio
- Mechanisms of Tumor Progression Program, CIBERONC, University of Salamanca-CSIC, E-37007 Salamanca, Spain; (C.S.); (J.M.P.)
- Molecular Oncology Division, CIEMAT and Instituto de Investigación Sanitaria Hospital Universitario 12 de Octubre, E-28040 Madrid, Spain
| | - Xosé R. Bustelo
- Mechanisms of Cancer Program, Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), University of Salamanca-CSIC, E-37007 Salamanca, Spain; (C.M.-V.); (L.F.L.-M.); (N.F.-P.); (R.G.-N.); (N.C.); (R.F.-M.); (X.R.B.)
- Mechanisms of Tumor Progression Program, CIBERONC, University of Salamanca-CSIC, E-37007 Salamanca, Spain; (C.S.); (J.M.P.)
| | - Eugenio Santos
- Mechanisms of Cancer Program, Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), University of Salamanca-CSIC, E-37007 Salamanca, Spain; (C.M.-V.); (L.F.L.-M.); (N.F.-P.); (R.G.-N.); (N.C.); (R.F.-M.); (X.R.B.)
- Mechanisms of Tumor Progression Program, CIBERONC, University of Salamanca-CSIC, E-37007 Salamanca, Spain; (C.S.); (J.M.P.)
- Correspondence: (F.C.B.); (E.S.)
| |
Collapse
|
41
|
Ramharter J, Kessler D, Ettmayer P, Hofmann MH, Gerstberger T, Gmachl M, Wunberg T, Kofink C, Sanderson M, Arnhof H, Bader G, Rumpel K, Zöphel A, Schnitzer R, Böttcher J, O'Connell JC, Mendes RL, Richard D, Pototschnig N, Weiner I, Hela W, Hauer K, Haering D, Lamarre L, Wolkerstorfer B, Salamon C, Werni P, Munico-Martinez S, Meyer R, Kennedy MD, Kraut N, McConnell DB. One Atom Makes All the Difference: Getting a Foot in the Door between SOS1 and KRAS. J Med Chem 2021; 64:6569-6580. [PMID: 33719426 DOI: 10.1021/acs.jmedchem.0c01949] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
KRAS, the most common oncogenic driver in human cancers, is controlled and signals primarily through protein-protein interactions (PPIs). The interaction between KRAS and SOS1, crucial for the activation of KRAS, is a typical, challenging PPI with a large contact surface area and high affinity. Here, we report that the addition of only one atom placed between Y884SOS1 and A73KRAS is sufficient to convert SOS1 activators into SOS1 inhibitors. We also disclose the discovery of BI-3406. Combination with the upstream EGFR inhibitor afatinib shows in vivo efficacy against KRASG13D mutant colorectal tumor cells, demonstrating the utility of BI-3406 to probe SOS1 biology. These findings challenge the dogma that large molecules are required to disrupt challenging PPIs. Instead, a "foot in the door" approach, whereby single atoms or small functional groups placed between key PPI interactions, can lead to potent inhibitors even for challenging PPIs such as SOS1-KRAS.
Collapse
Affiliation(s)
- Juergen Ramharter
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Dirk Kessler
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Peter Ettmayer
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Marco H Hofmann
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Thomas Gerstberger
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Michael Gmachl
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Tobias Wunberg
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Christiane Kofink
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Michael Sanderson
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Heribert Arnhof
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Gerd Bader
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Klaus Rumpel
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Andreas Zöphel
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Renate Schnitzer
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Jark Böttcher
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Jonathan C O'Connell
- Forma Therapeutics, 500 Arsenal Street, Suite 100, Watertown, Massachusetts 02472, United States
| | - Rachel L Mendes
- Forma Therapeutics, 500 Arsenal Street, Suite 100, Watertown, Massachusetts 02472, United States
| | - David Richard
- Forma Therapeutics, 500 Arsenal Street, Suite 100, Watertown, Massachusetts 02472, United States
| | - Nikolai Pototschnig
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Irene Weiner
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Wolfgang Hela
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Katja Hauer
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Daniela Haering
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Lyne Lamarre
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Bernhard Wolkerstorfer
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Christian Salamon
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Patrick Werni
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Silvia Munico-Martinez
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Reiner Meyer
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Matthew D Kennedy
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Norbert Kraut
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Darryl B McConnell
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| |
Collapse
|
42
|
Hofmann MH, Gmachl M, Ramharter J, Savarese F, Gerlach D, Marszalek JR, Sanderson MP, Kessler D, Trapani F, Arnhof H, Rumpel K, Botesteanu DA, Ettmayer P, Gerstberger T, Kofink C, Wunberg T, Zoephel A, Fu SC, Teh JL, Böttcher J, Pototschnig N, Schachinger F, Schipany K, Lieb S, Vellano CP, O'Connell JC, Mendes RL, Moll J, Petronczki M, Heffernan TP, Pearson M, McConnell DB, Kraut N. BI-3406, a Potent and Selective SOS1-KRAS Interaction Inhibitor, Is Effective in KRAS-Driven Cancers through Combined MEK Inhibition. Cancer Discov 2020; 11:142-157. [PMID: 32816843 DOI: 10.1158/2159-8290.cd-20-0142] [Citation(s) in RCA: 259] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/14/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022]
Abstract
KRAS is the most frequently mutated driver of pancreatic, colorectal, and non-small cell lung cancers. Direct KRAS blockade has proved challenging, and inhibition of a key downstream effector pathway, the RAF-MEK-ERK cascade, has shown limited success because of activation of feedback networks that keep the pathway in check. We hypothesized that inhibiting SOS1, a KRAS activator and important feedback node, represents an effective approach to treat KRAS-driven cancers. We report the discovery of a highly potent, selective, and orally bioavailable small-molecule SOS1 inhibitor, BI-3406, that binds to the catalytic domain of SOS1, thereby preventing the interaction with KRAS. BI-3406 reduces formation of GTP-loaded RAS and limits cellular proliferation of a broad range of KRAS-driven cancers. Importantly, BI-3406 attenuates feedback reactivation induced by MEK inhibitors and thereby enhances sensitivity of KRAS-dependent cancers to MEK inhibition. Combined SOS1 and MEK inhibition represents a novel and effective therapeutic concept to address KRAS-driven tumors. SIGNIFICANCE: To date, there are no effective targeted pan-KRAS therapies. In-depth characterization of BI-3406 activity and identification of MEK inhibitors as effective combination partners provide an attractive therapeutic concept for the majority of KRAS-mutant cancers, including those fueled by the most prevalent mutant KRAS oncoproteins, G12D, G12V, G12C, and G13D.See related commentary by Zhao et al., p. 17.This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
| | | | | | | | | | - Joseph R Marszalek
- TRACTION Platform, Division of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Dirk Kessler
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | | | - Klaus Rumpel
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | | | | | | | | | | | - Szu-Chin Fu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jessica L Teh
- TRACTION Platform, Division of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jark Böttcher
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | | | | | - Simone Lieb
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Christopher P Vellano
- TRACTION Platform, Division of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Jurgen Moll
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | - Timothy P Heffernan
- TRACTION Platform, Division of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mark Pearson
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | - Norbert Kraut
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria.
| |
Collapse
|