1
|
Wagner WJ, Gross ML. Using mass spectrometry-based methods to understand amyloid formation and inhibition of alpha-synuclein and amyloid beta. MASS SPECTROMETRY REVIEWS 2024; 43:782-825. [PMID: 36224716 PMCID: PMC10090239 DOI: 10.1002/mas.21814] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Amyloid fibrils, insoluble β-sheets structures that arise from protein misfolding, are associated with several neurodegenerative disorders. Many small molecules have been investigated to prevent amyloid fibrils from forming; however, there are currently no therapeutics to combat these diseases. Mass spectrometry (MS) is proving to be effective for studying the high order structure (HOS) of aggregating proteins and for determining structural changes accompanying protein-inhibitor interactions. When combined with native MS (nMS), gas-phase ion mobility, protein footprinting, and chemical cross-linking, MS can afford regional and sometimes amino acid spatial resolution of the aggregating protein. The spatial resolution is greater than typical low-resolution spectroscopic, calorimetric, and the traditional ThT fluorescence methods used in amyloid research today. High-resolution approaches can struggle when investigating protein aggregation, as the proteins exist as complex oligomeric mixtures of many sizes and several conformations or polymorphs. Thus, MS is positioned to complement both high- and low-resolution approaches to studying amyloid fibril formation and protein-inhibitor interactions. This review covers basics in MS paired with ion mobility, continuous hydrogen-deuterium exchange (continuous HDX), pulsed hydrogen-deuterium exchange (pulsed HDX), fast photochemical oxidation of proteins (FPOP) and other irreversible labeling methods, and chemical cross-linking. We then review the applications of these approaches to studying amyloid-prone proteins with a focus on amyloid beta and alpha-synuclein. Another focus is the determination of protein-inhibitor interactions. The expectation is that MS will bring new insights to amyloid formation and thereby play an important role to prevent their formation.
Collapse
Affiliation(s)
- Wesley J Wagner
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Zangl R, Soravia S, Saft M, Löffler JG, Schulte J, Rosner CJ, Bredenbeck J, Essen LO, Morgner N. Time-Resolved Ion Mobility Mass Spectrometry to Solve Conformational Changes in a Cryptochrome. J Am Chem Soc 2024; 146:14468-14478. [PMID: 38757172 DOI: 10.1021/jacs.3c13818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Many biological mechanisms rely on the precise control of conformational changes in proteins. Understanding such dynamic processes requires methods for determining structures and their temporal evolution. In this study, we introduce a novel approach to time-resolved ion mobility mass spectrometry. We validated the method on a simple photoreceptor model and applied it to a more complex system, the animal-like cryptochrome from Chlamydomonas reinhardtii (CraCRY), to determine the role of specific amino acids affecting the conformational dynamics as reaction to blue light activation. In our setup, using a high-power LED mounted in the source region of an ion mobility mass spectrometer, we allow a time-resolved evaluation of mass and ion mobility spectra. Cryptochromes like CraCRY are a widespread type of blue light photoreceptors and mediate various light-triggered biological functions upon excitation of their inbuilt flavin chromophore. Another hallmark of cryptochromes is their flexible carboxy-terminal extension (CTE), whose structure and function as well as the details of its interaction with the photolyase homology region are not yet fully understood and differ among different cryptochromes types. Here, we addressed the highly conserved C-terminal domain of CraCRY, to study the effects of single mutations on the structural transition of the C-terminal helix α22 and the attached CTE upon lit-state formation. We show that D321, the putative proton acceptor of the terminal proton-coupled electron transfer event from Y373, is essential for triggering the large-scale conformational changes of helix α22 and the CTE in the lit state, while D323 influences the timing.
Collapse
Affiliation(s)
- Rene Zangl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| | - Sejla Soravia
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| | - Martin Saft
- Department of Chemistry, Philipps University Marburg Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Jan Gerrit Löffler
- Institute of Biophysics, Goethe University Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt/Main, Germany
| | - Jonathan Schulte
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| | - Christian Joshua Rosner
- Department of Chemistry, Philipps University Marburg Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Jens Bredenbeck
- Institute of Biophysics, Goethe University Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt/Main, Germany
| | - Lars-Oliver Essen
- Department of Chemistry, Philipps University Marburg Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| |
Collapse
|
3
|
Sahin C, Leppert A, Landreh M. Advances in mass spectrometry to unravel the structure and function of protein condensates. Nat Protoc 2023; 18:3653-3661. [PMID: 37907762 DOI: 10.1038/s41596-023-00900-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/09/2023] [Indexed: 11/02/2023]
Abstract
Membrane-less organelles assemble through liquid-liquid phase separation (LLPS) of partially disordered proteins into highly specialized microenvironments. Currently, it is challenging to obtain a clear understanding of the relationship between the structure and function of phase-separated protein assemblies, owing to their size, dynamics and heterogeneity. In this Perspective, we discuss recent advances in mass spectrometry (MS) that offer several promising approaches for the study of protein LLPS. We survey MS tools that have provided valuable insights into other insoluble protein systems, such as amyloids, and describe how they can also be applied to study proteins that undergo LLPS. On the basis of these recent advances, we propose to integrate MS into the experimental workflow for LLPS studies. We identify specific challenges and future opportunities for the analysis of protein condensate structure and function by MS.
Collapse
Affiliation(s)
- Cagla Sahin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet-Biomedicum, Solna, Sweden.
- Structural Biology and NMR laboratory and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Axel Leppert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet-Biomedicum, Solna, Sweden
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet-Biomedicum, Solna, Sweden.
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
Lupu L, Kleinekofort W, Morgner N. Epitope characterization of proteins and aptamers with mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2023; 29:359-369. [PMID: 37957929 DOI: 10.1177/14690667231208530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The way in which professor Michael Przybylski has combined the spirit of research with entrepreneurship has set an example for any and all scientists. He has made significant achievements in the fields of mass spectrometry, biochemistry and medicine, and has initiated important technological developments in the area of protein analysis. Between 2016 and 2023 professor Przybylski's scientific focus shifted on protein interactions with emphasis on aptamer-protein and antibody-protein analysis. This review focuses on professor Przybylski's achievements in the last few years highlighting his impact on the scientific community, on his students and colleagues.
Collapse
Affiliation(s)
- Loredana Lupu
- AffyMSLifeChem Centre for Analytical Biochemistry and Biomedical Mass Spectrometry, Rüsselsheim am Main, Germany
| | | | - Nina Morgner
- Institut für Physikalische und Theoretische Chemie, Goethe-Universität Frankfurt am Main, Frankfurt Am Main, Germany
| |
Collapse
|
5
|
Vargas-Rosales P, D’Addio A, Zhang Y, Caflisch A. Disrupting Dimeric β-Amyloid by Electric Fields. ACS PHYSICAL CHEMISTRY AU 2023; 3:456-466. [PMID: 37780539 PMCID: PMC10540290 DOI: 10.1021/acsphyschemau.3c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 10/03/2023]
Abstract
The early oligomers of the amyloid Aβ peptide are implicated in Alzheimer's disease, but their transient nature complicates the characterization of their structure and toxicity. Here, we investigate the stability of the minimal toxic species, i.e., β-amyloid dimers, in the presence of an oscillating electric field. We first use deep learning (AlphaFold-multimer) for generating initial models of Aβ42 dimers. The flexibility and secondary structure content of the models are then analyzed by multiple runs of molecular dynamics (MD). Structurally stable models are similar to ensemble representatives from microsecond-long MD sampling. Finally, we employ the validated model as the starting structure of MD simulations in the presence of an external oscillating electric field and observe a fast decay of β-sheet content at high field strengths. Control simulations using the helical dimer of the 42-residue leucine zipper peptide show higher structural stability than the Aβ42 dimer. The simulation results provide evidence that an external electric field (oscillating at 1 GHz) can disrupt amyloid oligomers which should be further investigated by experiments with brain organoids in vitro and eventually in vivo.
Collapse
Affiliation(s)
| | - Alessio D’Addio
- Department of Biochemistry, University of Zurich, CH-8057 Zürich, Switzerland
| | - Yang Zhang
- Department of Biochemistry, University of Zurich, CH-8057 Zürich, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, CH-8057 Zürich, Switzerland
| |
Collapse
|
6
|
Bhopatkar AA, Kayed R. Flanking regions, amyloid cores, and polymorphism: the potential interplay underlying structural diversity. J Biol Chem 2023; 299:105122. [PMID: 37536631 PMCID: PMC10482755 DOI: 10.1016/j.jbc.2023.105122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/10/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023] Open
Abstract
The β-sheet-rich amyloid core is the defining feature of protein aggregates associated with neurodegenerative disorders. Recent investigations have revealed that there exist multiple examples of the same protein, with the same sequence, forming a variety of amyloid cores with distinct structural characteristics. These structural variants, termed as polymorphs, are hypothesized to influence the pathological profile and the progression of different neurodegenerative diseases, giving rise to unique phenotypic differences. Thus, identifying the origin and properties of these structural variants remain a focus of studies, as a preliminary step in the development of therapeutic strategies. Here, we review the potential role of the flanking regions of amyloid cores in inducing polymorphism. These regions, adjacent to the amyloid cores, show a preponderance for being structurally disordered, imbuing them with functional promiscuity. The dynamic nature of the flanking regions can then manifest in the form of conformational polymorphism of the aggregates. We take a closer look at the sequences flanking the amyloid cores, followed by a review of the polymorphic aggregates of the well-characterized proteins amyloid-β, α-synuclein, Tau, and TDP-43. We also consider different factors that can potentially influence aggregate structure and how these regions can be viewed as novel targets for therapeutic strategies by utilizing their unique structural properties.
Collapse
Affiliation(s)
- Anukool A Bhopatkar
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
7
|
Bouvet P, de Gea P, Aimard M, Chounlamountri N, Honnorat J, Delcros JG, Salin PA, Meissirel C. A novel peptide derived from vascular endothelial growth factor prevents amyloid beta aggregation and toxicity. Aging Cell 2023; 22:e13907. [PMID: 37415305 PMCID: PMC10497828 DOI: 10.1111/acel.13907] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/10/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
Amyloid-β oligomers (Aβo) are the most pathologically relevant Aβ species in Alzheimer's disease (AD), because they induce early synaptic dysfunction that leads to learning and memory impairments. In contrast, increasing VEGF (Vascular Endothelial Growth Factor) brain levels have been shown to improve learning and memory processes, and to alleviate Aβ-mediated synapse dysfunction. Here, we designed a new peptide, the blocking peptide (BP), which is derived from an Aβo-targeted domain of the VEGF protein, and investigated its effect on Aβ-associated toxicity. Using a combination of biochemical, 3D and ultrastructural imaging, and electrophysiological approaches, we demonstrated that BP strongly interacts with Aβo and blocks Aβ fibrillar aggregation process, leading to the formation of Aβ amorphous aggregates. BP further impedes the formation of structured Aβo and prevents their pathogenic binding to synapses. Importantly, acute BP treatment successfully rescues long-term potentiation (LTP) in the APP/PS1 mouse model of AD, at an age when LTP is highly impaired in hippocampal slices. Moreover, BP is also able to block the interaction between Aβo and VEGF, which suggests a dual mechanism aimed at both trapping Aβo and releasing VEGF to alleviate Aβo-induced synaptic damage. Our findings provide evidence for a neutralizing effect of the BP on Aβ aggregation process and pathogenic action, highlighting a potential new therapeutic strategy.
Collapse
Affiliation(s)
- P. Bouvet
- MeLiS, Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1314Centre National de la Recherche Scientifique (CNRS), UMR5284LyonFrance
- Univ LyonUniversité Claude Bernard Lyon 1LyonFrance
| | - P. de Gea
- MeLiS, Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1314Centre National de la Recherche Scientifique (CNRS), UMR5284LyonFrance
- Univ LyonUniversité Claude Bernard Lyon 1LyonFrance
| | - M. Aimard
- MeLiS, Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1314Centre National de la Recherche Scientifique (CNRS), UMR5284LyonFrance
- Univ LyonUniversité Claude Bernard Lyon 1LyonFrance
| | - N. Chounlamountri
- MeLiS, Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1314Centre National de la Recherche Scientifique (CNRS), UMR5284LyonFrance
- Univ LyonUniversité Claude Bernard Lyon 1LyonFrance
| | - J. Honnorat
- MeLiS, Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1314Centre National de la Recherche Scientifique (CNRS), UMR5284LyonFrance
- Univ LyonUniversité Claude Bernard Lyon 1LyonFrance
| | - J. G. Delcros
- Univ LyonUniversité Claude Bernard Lyon 1LyonFrance
- Centre de Recherche en Cancérologie de Lyon, Apoptosis, Cancer and Development, Institut PLAsCAN, INSERM U1052, CNRS UMR5286Centre Léon BérardLyonFrance
- Centre de Recherche en Cancérologie de Lyon, Small Molecules for Biological TargetsINSERM U1052 – CNRS UMR5286, ISPB RockefellerLyonFrance
| | - P. A. Salin
- Univ LyonUniversité Claude Bernard Lyon 1LyonFrance
- Centre de Recherche en Neurosciences de Lyon, Forgetting Processes and Cortical DynamicsINSERM U1028, CNRS UMR5292BronFrance
| | - C. Meissirel
- MeLiS, Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1314Centre National de la Recherche Scientifique (CNRS), UMR5284LyonFrance
- Univ LyonUniversité Claude Bernard Lyon 1LyonFrance
| |
Collapse
|
8
|
Khaled M, Rönnbäck I, Ilag LL, Gräslund A, Strodel B, Österlund N. A Hairpin Motif in the Amyloid-β Peptide Is Important for Formation of Disease-Related Oligomers. J Am Chem Soc 2023; 145:18340-18354. [PMID: 37555670 PMCID: PMC10450692 DOI: 10.1021/jacs.3c03980] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Indexed: 08/10/2023]
Abstract
The amyloid-β (Aβ) peptide is associated with the development of Alzheimer's disease and is known to form highly neurotoxic prefibrillar oligomeric aggregates, which are difficult to study due to their transient, low-abundance, and heterogeneous nature. To obtain high-resolution information about oligomer structure and dynamics as well as relative populations of assembly states, we here employ a combination of native ion mobility mass spectrometry and molecular dynamics simulations. We find that the formation of Aβ oligomers is dependent on the presence of a specific β-hairpin motif in the peptide sequence. Oligomers initially grow spherically but start to form extended linear aggregates at oligomeric states larger than those of the tetramer. The population of the extended oligomers could be notably increased by introducing an intramolecular disulfide bond, which prearranges the peptide in the hairpin conformation, thereby promoting oligomeric structures but preventing conversion into mature fibrils. Conversely, truncating one of the β-strand-forming segments of Aβ decreased the hairpin propensity of the peptide and thus decreased the oligomer population, removed the formation of extended oligomers entirely, and decreased the aggregation propensity of the peptide. We thus propose that the observed extended oligomer state is related to the formation of an antiparallel sheet state, which then nucleates into the amyloid state. These studies provide increased mechanistic understanding of the earliest steps in Aβ aggregation and suggest that inhibition of Aβ folding into the hairpin conformation could be a viable strategy for reducing the amount of toxic oligomers.
Collapse
Affiliation(s)
- Mohammed Khaled
- Institute
of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Isabel Rönnbäck
- Department
of Biochemistry and Biophysics, Stockholm
University, 106 91 Stockholm, Sweden
| | - Leopold L. Ilag
- Department
of Materials and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| | - Astrid Gräslund
- Department
of Biochemistry and Biophysics, Stockholm
University, 106 91 Stockholm, Sweden
| | - Birgit Strodel
- Institute
of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52428 Jülich, Germany
- Institute
of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Nicklas Österlund
- Department
of Biochemistry and Biophysics, Stockholm
University, 106 91 Stockholm, Sweden
- Department
of Materials and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
- Department
of Microbiology, Tumor and Cell Biology, Karolinska Institutet − Biomedicum, 171 65 Solna, Sweden
| |
Collapse
|
9
|
Oluwatoba DS, Chakraborty P, Laor Bar-Yosef D, Limbach MN, Gazit E, Do TD. Self-Assembly of Cysteine into Nanofibrils Precedes Cystine Crystal Formation: Implications for Aggregation Inhibition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:32177-32187. [PMID: 37387421 DOI: 10.1021/acsami.3c03267] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The self-association of metabolites into well-ordered assemblies at the nanoscale has significant biological and medical implications. The thiol-containing amino acid cysteine (CYS) can assemble into amyloid-like nanofibrils, and its oxidized form, the disulfide-bonded cystine (CTE), forms hexagonal crystals as those found in cystinuria due to metabolic disorder. Yet, there have been no attempts to connect these two phenomena, especially the fibril-to-crystal transition. Here, we reveal that these are not separated events, and the CYS-forming amyloid fibrils are mechanistically linked to hexagonal CTE crystals. For the first time, we demonstrated that cysteine fibrils are a prerequisite for forming cystine crystals, as observed experimentally. To further understand this mechanism, we studied the effects of thiol-containing cystinuria drugs (tiopronin, TIO; and d-penicillamine, PEN) and the canonical epigallocatechin gallate (EGCG) amyloid inhibitor on fibril formation by CYS. The thiol-containing drugs do not solely interact with monomeric CYS via disulfide bond formation but can disrupt amyloid formation by targeting CYS oligomers. On the other hand, EGCG forms inhibitor-dominant complexes (more than one EGCG molecule per cysteine unit) to prevent CYS fibril formation. Interestingly, while CYS can be oxidized into CTE, the thiol drugs can reduce CTE back to CYS. We thus suggest that the formation of crystals in cystinuria could be halted at the initial stage by targeting CYS fibril formation as an alternative to solubilizing the water-insoluble hexagonal CTE crystals at a later stage. Taken together, we depicted a complex hierarchical organization in a simple amino acid assembly with implications for therapeutic intervention.
Collapse
Affiliation(s)
- Damilola S Oluwatoba
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, Tennessee 37996, United States
| | - Poulami Chakraborty
- Department of Molecular Microbiology and Biotechnology, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dana Laor Bar-Yosef
- Department of Molecular Microbiology and Biotechnology, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Miranda N Limbach
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, Tennessee 37996, United States
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Thanh D Do
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, Tennessee 37996, United States
| |
Collapse
|
10
|
Hutchison MT, Bellomo G, Cherepanov A, Stirnal E, Fürtig B, Richter C, Linhard V, Gurewitsch E, Lelli M, Morgner N, Schrader T, Schwalbe H. Modulation of Aβ42 Aggregation Kinetics and Pathway by Low-Molecular-Weight Inhibitors. Chembiochem 2023; 24:e202200760. [PMID: 36652672 DOI: 10.1002/cbic.202200760] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
The aggregation of amyloid-β 42 (Aβ42) is directly related to the pathogenesis of Alzheimer's disease. Here, we have investigated the early stages of the aggregation process, during which most of the cytotoxic species are formed. Aβ42 aggregation kinetics, characterized by the quantification of Aβ42 monomer consumption, were tracked by real-time solution NMR spectroscopy (RT-NMR) allowing the impact that low-molecular-weight (LMW) inhibitors and modulators exert on the aggregation process to be analysed. Distinct differences in the Aβ42 kinetic profiles were apparent and were further investigated kinetically and structurally by using thioflavin T (ThT) and transmission electron microscopy (TEM), respectively. LMW inhibitors were shown to have a differential impact on early-state aggregation. Insight provided here could direct future therapeutic design based on kinetic profiling of the process of fibril formation.
Collapse
Affiliation(s)
- Marie-Theres Hutchison
- Institute for Organic Chemistry and Chemical Biology Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/Main, Germany
| | - Giovanni Bellomo
- Laboratory of Clinical Neurochemistry Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1/8, 06132, Perugia, Italy
| | - Alexey Cherepanov
- Institute for Organic Chemistry and Chemical Biology Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/Main, Germany
| | - Elke Stirnal
- Institute for Organic Chemistry and Chemical Biology Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/Main, Germany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/Main, Germany
| | - Christian Richter
- Institute for Organic Chemistry and Chemical Biology Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/Main, Germany
| | - Verena Linhard
- Institute for Organic Chemistry and Chemical Biology Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/Main, Germany
| | - Elina Gurewitsch
- Institute for Organic Chemistry and Chemical Biology Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/Main, Germany
| | - Moreno Lelli
- Chemistry Department, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy.,Magnetic Resonance Center (CERM/CIRMMP), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Nina Morgner
- Institute for Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - Thomas Schrader
- Institute for Organic Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/Main, Germany
| |
Collapse
|
11
|
Mass spectrometric insights into protein aggregation. Essays Biochem 2023; 67:243-253. [PMID: 36636963 PMCID: PMC10070474 DOI: 10.1042/ebc20220103] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 01/14/2023]
Abstract
Protein aggregation is now recognized as a generic and significant component of the protein energy landscape. Occurring through a complex and dynamic pathway of structural interconversion, the assembly of misfolded proteins to form soluble oligomers and insoluble aggregates remains a challenging topic of study, both in vitro and in vivo. Since the etiology of numerous human diseases has been associated with protein aggregation, and it has become a field of increasing importance in the biopharmaceutical industry, the biophysical characterization of protein misfolded states and their aggregation mechanisms continues to receive increased attention. Mass spectrometry (MS) has firmly established itself as a powerful analytical tool capable of both detection and characterization of proteins at all levels of structure. Given inherent advantages of biological MS, including high sensitivity, rapid timescales of analysis, and the ability to distinguish individual components from complex mixtures with unrivalled specificity, it has found widespread use in the study of protein aggregation, importantly, where traditional structural biology approaches are often not amenable. The present review aims to provide a brief overview of selected MS-based approaches that can provide a range of biophysical descriptors associated with protein conformation and the aggregation pathway. Recent examples highlight where this technology has provided unique structural and mechanistic understanding of protein aggregation.
Collapse
|
12
|
Huang L, Lu Z, Zhang H, Wen H, Li Z, Liu Q, Wang R. A Novel Strategy for Alzheimer's Disease Based on the Regulatory Effect of Amyloid-β on Gut Flora. J Alzheimers Dis 2023; 94:S227-S239. [PMID: 36336932 PMCID: PMC10473151 DOI: 10.3233/jad-220651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases worldwide. The accumulation of amyloid-β (Aβ) protein and plaque formation in the brain are two major causes of AD. Interestingly, growing evidence demonstrates that the gut flora can alleviate AD by affecting amyloid production and metabolism. However, the underlying mechanism remains largely unknown. This review will discuss the possible association between the gut flora and Aβ in an attempt to provide novel therapeutic directions for AD treatment based on the regulatory effect of Aβ on the gut flora.
Collapse
Affiliation(s)
- Li Huang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Zhaogang Lu
- Department of Pharmacy, People’s Hospital of Ningxia /First Affiliated Hospital of Northwest University for Nationalities, Yinchuan, China
| | - Hexin Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Hongyong Wen
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Zongji Li
- Laboratory Department, Clinical College of Ningxia Medical University, Yinchuan, China
| | - Qibing Liu
- Department of Pharmacology, Hainan Medical University, Haikou, China
| | - Rui Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
13
|
Löhr T, Kohlhoff K, Heller GT, Camilloni C, Vendruscolo M. A Small Molecule Stabilizes the Disordered Native State of the Alzheimer's Aβ Peptide. ACS Chem Neurosci 2022; 13:1738-1745. [PMID: 35649268 PMCID: PMC9204762 DOI: 10.1021/acschemneuro.2c00116] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
The stabilization of native states of proteins is a powerful drug discovery strategy. It is still unclear, however, whether this approach can be applied to intrinsically disordered proteins. Here, we report a small molecule that stabilizes the native state of the Aβ42 peptide, an intrinsically disordered protein fragment associated with Alzheimer's disease. We show that this stabilization takes place by a disordered binding mechanism, in which both the small molecule and the Aβ42 peptide remain disordered. This disordered binding mechanism involves enthalpically favorable local π-stacking interactions coupled with entropically advantageous global effects. These results indicate that small molecules can stabilize disordered proteins in their native states through transient non-specific interactions that provide enthalpic gain while simultaneously increasing the conformational entropy of the proteins.
Collapse
Affiliation(s)
- Thomas Löhr
- Department
of Chemistry, University of Cambridge, CB2 1EW Cambridge, UK
| | - Kai Kohlhoff
- Google
Research, Mountain
View, California 94043, United States
| | - Gabriella T. Heller
- Department
of Chemistry, University of Cambridge, CB2 1EW Cambridge, UK
- Department
of Structural and Molecular Biology, University
College London, WC1E 6BT London, UK
| | - Carlo Camilloni
- Dipartimento
di Bioscienze, Università degli Studi
di Milano, 20133 Milano, Italy
| | | |
Collapse
|
14
|
Österlund N, Wärmländer SKTS, Gräslund A. Cell-Penetrating Peptides with Unexpected Anti-Amyloid Properties. Pharmaceutics 2022; 14:823. [PMID: 35456657 PMCID: PMC9027922 DOI: 10.3390/pharmaceutics14040823] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022] Open
Abstract
Cell-penetrating peptides (CPPs) with sequences derived originally from a prion protein (PrP) have been shown to exhibit both anti-prion and anti-amyloid properties particularly against prion proteins and the amyloid-β (Aβ) peptide active in Alzheimer's disease. These disease-modifying properties are so far observed in cell cultures and in vitro. The CPP sequences are composed of a hydrophobic signal sequence followed by a highly positively charged hexapeptide segment. The original signal sequence of the prion protein can be changed to the signal sequence of the NCAM1 protein without losing the anti-prion activity. Although the detailed molecular mechanisms of these CPP peptides are not fully understood, they do form amyloid aggregates by themselves, and molecular interactions between the CPPs and PrP/Aβ can be observed in vitro using various spectroscopic techniques. These initial intermolecular interactions appear to re-direct the aggregation pathways for prion/amyloid formation to less cell-toxic molecular structures (i.e., co-aggregates), which likely is why the disease-inducing PrP/Aβ aggregation is counteracted in vivo.
Collapse
Affiliation(s)
- Nicklas Österlund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 10691 Stockholm, Sweden;
| | - Sebastian K. T. S. Wärmländer
- Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden;
- CellPept Sweden AB, Kvarngatan 10B, 11847 Stockholm, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 10691 Stockholm, Sweden;
- CellPept Sweden AB, Kvarngatan 10B, 11847 Stockholm, Sweden
| |
Collapse
|
15
|
Matuszyk MM, Garwood CJ, Ferraiuolo L, Simpson JE, Staniforth RA, Wharton SB. Biological and methodological complexities of beta-amyloid peptide: Implications for Alzheimer's disease research. J Neurochem 2021; 160:434-453. [PMID: 34767256 DOI: 10.1111/jnc.15538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 01/01/2023]
Abstract
Although controversial, the amyloid cascade hypothesis remains central to the Alzheimer's disease (AD) field and posits amyloid-beta (Aβ) as the central factor initiating disease onset. In recent years, there has been an increase in emphasis on studying the role of low molecular weight aggregates, such as oligomers, which are suggested to be more neurotoxic than fibrillary Aβ. Other Aβ isoforms, such as truncated Aβ, have also been implicated in disease. However, developing a clear understanding of AD pathogenesis has been hampered by the complexity of Aβ biochemistry in vitro and in vivo. This review explores factors contributing to the lack of consistency in experimental approaches taken to model Aβ aggregation and toxicity and provides an overview of the different techniques available to analyse Aβ, such as electron and atomic force microscopy, nuclear magnetic resonance spectroscopy, dye-based assays, size exclusion chromatography, mass spectrometry and SDS-PAGE. The review also explores how different types of Aβ can influence Aβ aggregation and toxicity, leading to variation in experimental outcomes, further highlighting the need for standardisation in Aβ preparations and methods used in current research.
Collapse
Affiliation(s)
- Martyna M Matuszyk
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Claire J Garwood
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Julie E Simpson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | | | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
16
|
Zhao H, Huang X, Tong Z. Formaldehyde-Crosslinked Nontoxic Aβ Monomers to Form Toxic Aβ Dimers and Aggregates: Pathogenicity and Therapeutic Perspectives. ChemMedChem 2021; 16:3376-3390. [PMID: 34396700 DOI: 10.1002/cmdc.202100428] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/14/2021] [Indexed: 01/02/2023]
Abstract
Alzheimer's disease (AD) is characterized by the presence of senile plaques in the brain. However, medicines targeting amyloid-beta (Aβ) have not achieved the expected clinical effects. This review focuses on the formation mechanism of the Aβ dimer (the basic unit of oligomers and fibrils) and its tremendous potential as a drug target. Recently, age-associated formaldehyde and Aβ-derived formaldehyde have been found to crosslink the nontoxic Aβ monomer to form the toxic dimers, oligomers and fibrils. Particularly, Aβ-induced formaldehyde accumulation and formaldehyde-promoted Aβ aggregation form a vicious cycle. Subsequently, formaldehyde initiates Aβ toxicity in both the early-and late-onset AD. These facts also explain why AD drugs targeting only Aβ do not have the desired therapeutic effects. Development of the nanoparticle-based medicines targeting both formaldehyde and Aβ dimer is a promising strategy for improving the drug efficacy by penetrating blood-brain barrier and extracellular space into the cortical neurons in AD patients.
Collapse
Affiliation(s)
- Hang Zhao
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xuerong Huang
- Wenzhou Medical University Affiliated Hospital 3, Department of Neurology, Wenzhou, 325200, China
| | - Zhiqian Tong
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
17
|
Kulenkampff K, Wolf Perez AM, Sormanni P, Habchi J, Vendruscolo M. Quantifying misfolded protein oligomers as drug targets and biomarkers in Alzheimer and Parkinson diseases. Nat Rev Chem 2021; 5:277-294. [PMID: 37117282 DOI: 10.1038/s41570-021-00254-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
Protein misfolding and aggregation are characteristic of a wide range of neurodegenerative disorders, including Alzheimer and Parkinson diseases. A hallmark of these diseases is the aggregation of otherwise soluble and functional proteins into amyloid aggregates. Although for many decades such amyloid deposits have been thought to be responsible for disease progression, it is now increasingly recognized that the misfolded protein oligomers formed during aggregation are, instead, the main agents causing pathological processes. These oligomers are transient and heterogeneous, which makes it difficult to detect and quantify them, generating confusion about their exact role in disease. The lack of suitable methods to address these challenges has hampered efforts to investigate the molecular mechanisms of oligomer toxicity and to develop oligomer-based diagnostic and therapeutic tools to combat protein misfolding diseases. In this Review, we describe methods to quantify misfolded protein oligomers, with particular emphasis on diagnostic applications as disease biomarkers and on therapeutic applications as target biomarkers. The development of these methods is ongoing, and we discuss the challenges that remain to be addressed to establish measurement tools capable of overcoming existing limitations and to meet present needs.
Collapse
|