1
|
Gutjahr R, Kéver L, Jonsson T, Talamantes Ontiveros D, Chagnaud BP, Herrel A. Gekko gecko as a model organism for understanding aspects of laryngeal vocal evolution. J Exp Biol 2024; 227:jeb247452. [PMID: 38989535 PMCID: PMC11418165 DOI: 10.1242/jeb.247452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
The ability to communicate through vocalization plays a key role in the survival of animals across all vertebrate groups. Although avian reptiles have received much attention relating to their stunning sound repertoire, non-avian reptiles have been wrongfully assumed to have less elaborate vocalization types, and little is known about the biomechanics of sound production and their underlying neural pathways in this group. We investigated alarm calls of Gekko gecko using audio and cineradiographic recordings. Acoustic analysis revealed three distinct call types: a sinusoidal call type (type 1); a train-like call type, characterized by distinct pulse trains (type 3); and an intermediate type, which showed both sinusoidal and pulse train components (type 2). Kinematic analysis of cineradiographic recordings showed that laryngeal movements differ significantly between respiratory and vocal behavior. During respiration, animals repeatedly moved their jaws to partially open their mouths, which was accompanied by small glottal movements. During vocalization, the glottis was pulled back, contrasting with what has previously been reported. In vitro retrograde tracing of the nerve innervating the laryngeal constrictor and dilator muscles revealed round to fusiform motoneurons in the hindbrain-spinal cord transition ipsilateral to the labeled nerve. Taken together, our observations provide insight into the alarm calls generated by G. gecko, the biomechanics of this sound generation and the underlying organization of motoneurons involved in the generation of vocalizations. Our observations suggest that G. gecko may be an excellent non-avian reptile model organism for enhancing our understanding of the evolution of vertebrate vocalization.
Collapse
Affiliation(s)
- Ruth Gutjahr
- Department of Biology, University of Graz, 8010 Graz, Austria
| | - Loïc Kéver
- UMR 7179 C.N.R.S/M.N.H.N., Département Adaptations du Vivant, Bâtiment d'Anatomie Comparée, 55 rue Buffon, 75005 Paris, France
| | - Thorin Jonsson
- Department of Biology, University of Graz, 8010 Graz, Austria
| | - Daniela Talamantes Ontiveros
- UMR 7179 C.N.R.S/M.N.H.N., Département Adaptations du Vivant, Bâtiment d'Anatomie Comparée, 55 rue Buffon, 75005 Paris, France
| | | | - Anthony Herrel
- UMR 7179 C.N.R.S/M.N.H.N., Département Adaptations du Vivant, Bâtiment d'Anatomie Comparée, 55 rue Buffon, 75005 Paris, France
- Department of Biology, Evolutionary Morphology of Vertebrates, Ghent University, Ghent 9000, Belgium
- Department of Biology, University of Antwerp, Wilrijk 2610, Belgium
- Naturhistorisches Museum Bern, 3005 Bern, Switzerland
| |
Collapse
|
2
|
Liu X, Zhang Y, Zhao Y, Zhang Q, Han F. The Neurovascular Unit Dysfunction in the Molecular Mechanisms of Epileptogenesis and Targeted Therapy. Neurosci Bull 2024; 40:621-634. [PMID: 38564049 PMCID: PMC11127907 DOI: 10.1007/s12264-024-01193-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/09/2023] [Indexed: 04/04/2024] Open
Abstract
Epilepsy is a multifaceted neurological syndrome characterized by recurrent, spontaneous, and synchronous seizures. The pathogenesis of epilepsy, known as epileptogenesis, involves intricate changes in neurons, neuroglia, and endothelium, leading to structural and functional disorders within neurovascular units and culminating in the development of spontaneous epilepsy. Although current research on epilepsy treatments primarily centers around anti-seizure drugs, it is imperative to seek effective interventions capable of disrupting epileptogenesis. To this end, a comprehensive exploration of the changes and the molecular mechanisms underlying epileptogenesis holds the promise of identifying vital biomarkers for accurate diagnosis and potential therapeutic targets. Emphasizing early diagnosis and timely intervention is paramount, as it stands to significantly improve patient prognosis and alleviate the socioeconomic burden. In this review, we highlight the changes and molecular mechanisms of the neurovascular unit in epileptogenesis and provide a theoretical basis for identifying biomarkers and drug targets.
Collapse
Affiliation(s)
- Xiuxiu Liu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing, 211166, China.
- International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Ying Zhang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing, 211166, China
- International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yanming Zhao
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing, 211166, China
- International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Qian Zhang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing, 211166, China
- International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing, 211166, China.
- International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Institute of Brain Science, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 211166, China.
- Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 210019, China.
| |
Collapse
|
3
|
Bass AH. A tale of two males: Behavioral and neural mechanisms of alternative reproductive tactics in midshipman fish. Horm Behav 2024; 161:105507. [PMID: 38479349 DOI: 10.1016/j.yhbeh.2024.105507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 05/04/2024]
Abstract
An amalgam of investigations at the interface of neuroethology and behavioral neuroendocrinology first established the most basic behavioral, neuroanatomical, and neurophysiological characters of vocal-acoustic communication morphs in the plainfin midshipman fish, Porichthys notatus Girard. This foundation has led, in turn, to the repeated demonstration that neuro-behavioral mechanisms driving reproductive-related, vocal-acoustic behaviors can be uncoupled from gonadal state for two adult male phenotypes that follow alternative reproductive tactics (ARTs).
Collapse
Affiliation(s)
- Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
4
|
Abstract
Bass describes the fascinating life history, behavior, and neurobiology of the California singing fish, including its remarkable vocal abilities.
Collapse
Affiliation(s)
- Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
5
|
Intrinsic Sources and Functional Impacts of Asymmetry at Electrical Synapses. eNeuro 2022; 9:ENEURO.0469-21.2022. [PMID: 35135867 PMCID: PMC8925721 DOI: 10.1523/eneuro.0469-21.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/14/2022] [Accepted: 02/02/2022] [Indexed: 11/21/2022] Open
Abstract
Electrical synapses couple inhibitory neurons across the brain, underlying a variety of functions that are modifiable by activity. Despite recent advances, many functions and contributions of electrical synapses within neural circuitry remain underappreciated. Among these are the sources and impacts of electrical synapse asymmetry. Using multi-compartmental models of neurons coupled through dendritic electrical synapses, we investigated intrinsic factors that contribute to effective synaptic asymmetry and that result in modulation of spike timing and synchrony between coupled cells. We show that electrical synapse location along a dendrite, input resistance, internal dendritic resistance, or directional conduction of the electrical synapse itself each alter asymmetry as measured by coupling between cell somas. Conversely, we note that asymmetrical gap junction (GJ) conductance can be masked by each of these properties. Furthermore, we show that asymmetry modulates spike timing and latency of coupled cells by up to tens of milliseconds, depending on direction of conduction or dendritic location of the electrical synapse. Coordination of rhythmic activity between two cells also depends on asymmetry. These simulations illustrate that causes of asymmetry are diverse, may not be apparent in somatic measurements of electrical coupling, influence dendritic processing, and produce a variety of outcomes on spiking and synchrony of coupled cells. Our findings highlight aspects of electrical synapses that should always be included in experimental demonstrations of coupling, and when assembling simulated networks containing electrical synapses.
Collapse
|
6
|
Falgairolle M, O'Donovan MJ. Motoneuronal Regulation of Central Pattern Generator and Network Function. ADVANCES IN NEUROBIOLOGY 2022; 28:259-280. [PMID: 36066829 DOI: 10.1007/978-3-031-07167-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This chapter reviews recent work showing that vertebrate motoneurons can trigger spontaneous rhythmic activity in the developing spinal cord and can modulate the function of several different central pattern generators later in development. In both the embryonic chick and the fetal mouse spinal cords, antidromic activation of motoneurons can trigger bouts of rhythmic activity. In the neonatal mouse, optogenetic manipulation of motoneuron firing can modulate the frequency of fictive locomotion activated by a drug cocktail. In adult animals, motoneurons have been shown to regulate swimming in the zebrafish, and vocalization in fish and frogs. We discuss the significance of these findings and the degree to which motoneurons may be considered a part of these central pattern generators.
Collapse
|
7
|
Dunlap KD, Koukos HM, Chagnaud BP, Zakon HH, Bass AH. Vocal and Electric Fish: Revisiting a Comparison of Two Teleost Models in the Neuroethology of Social Behavior. Front Neural Circuits 2021; 15:713105. [PMID: 34489647 PMCID: PMC8418312 DOI: 10.3389/fncir.2021.713105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/12/2021] [Indexed: 11/30/2022] Open
Abstract
The communication behaviors of vocal fish and electric fish are among the vertebrate social behaviors best understood at the level of neural circuits. Both forms of signaling rely on midbrain inputs to hindbrain pattern generators that activate peripheral effectors (sonic muscles and electrocytes) to produce pulsatile signals that are modulated by frequency/repetition rate, amplitude and call duration. To generate signals that vary by sex, male phenotype, and social context, these circuits are responsive to a wide range of hormones and neuromodulators acting on different timescales at multiple loci. Bass and Zakon (2005) reviewed the behavioral neuroendocrinology of these two teleost groups, comparing how the regulation of their communication systems have both converged and diverged during their parallel evolution. Here, we revisit this comparison and review the complementary developments over the past 16 years. We (a) summarize recent work that expands our knowledge of the neural circuits underlying these two communication systems, (b) review parallel studies on the action of neuromodulators (e.g., serotonin, AVT, melatonin), brain steroidogenesis (via aromatase), and social stimuli on the output of these circuits, (c) highlight recent transcriptomic studies that illustrate how contemporary molecular methods have elucidated the genetic regulation of social behavior in these fish, and (d) describe recent studies of mochokid catfish, which use both vocal and electric communication, and that use both vocal and electric communication and consider how these two systems are spliced together in the same species. Finally, we offer avenues for future research to further probe how similarities and differences between these two communication systems emerge over ontogeny and evolution.
Collapse
Affiliation(s)
- Kent D Dunlap
- Department of Biology, Trinity College, Hartford, CT, United States
| | - Haley M Koukos
- Department of Biology, Trinity College, Hartford, CT, United States
| | - Boris P Chagnaud
- Institute of Biology, Karl-Franzens-University Graz, Graz, Austria
| | - Harold H Zakon
- Department of Neuroscience, University of Texas at Austin, Austin, TX, United States.,Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, United States
| |
Collapse
|
8
|
Chagnaud BP, Perelmuter JT, Forlano PM, Bass AH. Gap junction-mediated glycinergic inhibition ensures precise temporal patterning in vocal behavior. eLife 2021; 10:e59390. [PMID: 33721553 PMCID: PMC7963477 DOI: 10.7554/elife.59390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/28/2021] [Indexed: 01/30/2023] Open
Abstract
Precise neuronal firing is especially important for behaviors highly dependent on the correct sequencing and timing of muscle activity patterns, such as acoustic signaling. Acoustic signaling is an important communication modality for vertebrates, including many teleost fishes. Toadfishes are well known to exhibit high temporal fidelity in synchronous motoneuron firing within a hindbrain network directly determining the temporal structure of natural calls. Here, we investigated how these motoneurons maintain synchronous activation. We show that pronounced temporal precision in population-level motoneuronal firing depends on gap junction-mediated, glycinergic inhibition that generates a period of reduced probability of motoneuron activation. Super-resolution microscopy confirms glycinergic release sites formed by a subset of adjacent premotoneurons contacting motoneuron somata and dendrites. In aggregate, the evidence supports the hypothesis that gap junction-mediated, glycinergic inhibition provides a timing mechanism for achieving synchrony and temporal precision in the millisecond range for rapid modulation of acoustic waveforms.
Collapse
Affiliation(s)
| | | | - Paul M Forlano
- Department of Biology, Brooklyn College, City University of New YorkBrooklyn, NYUnited States
- Subprograms in Behavioral and Cognitive Neuroscience, Neuroscience, and Ecology, Evolutionary Biology and Behavior, The Graduate Center, City University of New YorkNew York, NYUnited States
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell UniversityIthaca, NYUnited States
| |
Collapse
|