1
|
Bizzell F, Pull CD. Ant queens cannibalise infected brood to contain disease spread and recycle nutrients. Curr Biol 2024; 34:R848-R849. [PMID: 39317151 DOI: 10.1016/j.cub.2024.07.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 09/26/2024]
Abstract
Filial cannibalism, where parents eat their own offspring, is a taxonomically widespread behaviour with a multitude of potential adaptive explanations1. Of these, the impact of pathogens on the expression of filial cannibalism is, in particular, poorly understood. Cannibalising young with low survival probability may enable parents to reinvest valuable resources into future reproduction1. However, cannibalising offspring that harbour pathogens may be potentially harmful to parents, and such risk may therefore select against this behaviour. Although disease-induced cannibalism of eggs has been reported in fish2, the benefits of consuming infected brood to contain infections - as an explanation for the evolution of filial cannibalism - remain largely unexplored. Here, we demonstrate that solitarily founding ant queens cannibalise sick larvae in their nests before they become contagious, showing that filial cannibalism both contains an otherwise lethal infection without any long-term consequences on queen survival and also enables the reinvestment of recouped energy into additional egg production.
Collapse
Affiliation(s)
- Flynn Bizzell
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | | |
Collapse
|
2
|
Cushnie TPT, Luang-In V, Sexton DW. Necrophages and necrophiles: a review of their antibacterial defenses and biotechnological potential. Crit Rev Biotechnol 2024:1-18. [PMID: 39198023 DOI: 10.1080/07388551.2024.2389175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 09/01/2024]
Abstract
With antibiotic resistance on the rise, there is an urgent need for new antibacterial drugs and products to treat or prevent infection. Many such products in current use, for example human and veterinary antibiotics and antimicrobial food preservatives, were discovered and developed from nature. Natural selection acts on all living organisms and the presence of bacterial competitors or pathogens in an environment can favor the evolution of antibacterial adaptations. In this review, we ask if vultures, blow flies and other carrion users might be a good starting point for antibacterial discovery based on the selection pressure they are under from bacterial disease. Dietary details are catalogued for over 600 of these species, bacterial pathogens associated with the diets are described, and an overview of the antibacterial defenses contributing to disease protection is given. Biotechnological applications for these defenses are then discussed, together with challenges facing developers and possible solutions. Examples include use of (a) the antimicrobial peptide (AMP) gene sarcotoxin IA to improve crop resistance to bacterial disease, (b) peptide antibiotics such as serrawettin W2 as antibacterial drug leads, (c) lectins for targeted drug delivery, (d) bioconversion-generated chitin as an antibacterial biomaterial, (e) bacteriocins as antibacterial food preservatives and (f) mutualistic microbiota bacteria as alternatives to antibiotics in animal feed. We show that carrion users encounter a diverse range of bacterial pathogens through their diets and interactions, have evolved many antibacterial defenses, and are a promising source of genes, molecules, and microbes for medical, agricultural, and food industry product development.
Collapse
Affiliation(s)
- T P Tim Cushnie
- Faculty of Medicine, Mahasarakham University, Mueang, Maha Sarakham, Thailand
| | - Vijitra Luang-In
- Department of Biotechnology, Faculty of Technology, Mahasarakham University, Khamriang, Maha Sarakham, Thailand
| | - Darren W Sexton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
3
|
Pull CD. Social evolution: Limb amputation prevents infection in ants. Curr Biol 2024; 34:R677-R679. [PMID: 39043138 DOI: 10.1016/j.cub.2024.05.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Social insect workers, renowned for their altruism, are frequently perceived as 'disposable'. A new study finds that ants amputate the limbs of nestmates, which saves them from infection, and indicates that worker care is as critical to colony success as sacrifice.
Collapse
|
4
|
Jin MK, Zhang Q, Xu N, Zhang Z, Guo HQ, Li J, Ding K, Sun X, Yang XR, Zhu D, Su X, Qian H, Zhu YG. Lipid Metabolites as Potential Regulators of the Antibiotic Resistome in Tetramorium caespitum. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4476-4486. [PMID: 38382547 DOI: 10.1021/acs.est.3c05741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Antibiotic resistance genes (ARGs) are ancient but have become a modern critical threat to health. Gut microbiota, a dynamic reservoir for ARGs, transfer resistance between individuals. Surveillance of the antibiotic resistome in the gut during different host growth phases is critical to understanding the dynamics of the resistome in this ecosystem. Herein, we disentangled the ARG profiles and the dynamic mechanism of ARGs in the egg and adult phases of Tetramorium caespitum. Experimental results showed a remarkable difference in both gut microbiota and gut resistome with the development of T. caespitum. Meta-based metagenomic results of gut microbiota indicated the generalizability of gut antibiotic resistome dynamics during host development. By using Raman spectroscopy and metabolomics, the metabolic phenotype and metabolites indicated that the biotic phase significantly changed lipid metabolism as T. caespitum aged. Lipid metabolites were demonstrated as the main factor driving the enrichment of ARGs in T. caespitum. Cuminaldehyde, the antibacterial lipid metabolite that displayed a remarkable increase in the adult phase, was demonstrated to strongly induce ARG abundance. Our findings show that the gut resistome is host developmental stage-dependent and likely modulated by metabolites, offering novel insights into possible steps to reduce ARG dissemination in the soil food chain.
Collapse
Affiliation(s)
- Ming-Kang Jin
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Nuohan Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Hong-Qin Guo
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Jian Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Kai Ding
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Xin Sun
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Xiaoxuan Su
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400715, China
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
5
|
Dong AZ, Cokcetin N, Carter DA, Fernandes KE. Unique antimicrobial activity in honey from the Australian honeypot ant ( Camponotus inflatus). PeerJ 2023; 11:e15645. [PMID: 37520253 PMCID: PMC10386826 DOI: 10.7717/peerj.15645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/05/2023] [Indexed: 08/01/2023] Open
Abstract
Honey produced by the Australian honeypot ant (Camponotus inflatus) is valued nutritionally and medicinally by Indigenous peoples, but its antimicrobial activity has never been formally studied. Here, we determine the activity of honeypot ant honey (HPAH) against a panel of bacterial and fungal pathogens, investigate its chemical properties, and profile the bacterial and fungal microbiome of the honeypot ant for the first time. We found HPAH to have strong total activity against Staphylococcus aureus but not against other bacteria, and strong non-peroxide activity against Cryptococcus and Aspergillus sp. When compared with therapeutic-grade jarrah and manuka honey produced by honey bees, we found HPAH to have a markedly different antimicrobial activity and chemical properties, suggesting HPAH has a unique mode of antimicrobial action. We found the bacterial microbiome of honeypot ants to be dominated by the known endosymbiont genus Candidatus Blochmannia (99.75%), and the fungal microbiome to be dominated by the plant-associated genus Neocelosporium (92.77%). This study demonstrates that HPAH has unique antimicrobial characteristics that validate its therapeutic use by Indigenous peoples and may provide a lead for the discovery of novel antimicrobial compounds.
Collapse
Affiliation(s)
- Andrew Z. Dong
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Nural Cokcetin
- Australian Institute for Microbiology and Infection, University of Technology, Sydney, NSW, Australia
| | - Dee A. Carter
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Camperdown, NSW, Australia
| | - Kenya E. Fernandes
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
6
|
Xu W, Zhao M, Tang L, Ma R, He H. Chemical Components of Dufour's and Venom Glands in Camponotus japonicus (Hymenoptera, Formicidae). INSECTS 2023; 14:664. [PMID: 37504670 PMCID: PMC10380308 DOI: 10.3390/insects14070664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
The Dufour's and venom glands are the most developed glands connected to the female reproductive organs, playing important roles in defense, foraging, information exchange, and reproduction in ants. The main chemical secretions of these glands vary among species and even among castes of the same species. In this study, we analyzed the chemical components of the Dufour's and venom glands in different castes of Camponotus japonicus (original worker, minor worker, major worker, gyne, and queen) using gas chromatography-mass spectrometry (GC-MS) with two sample processing methods (hexane solution and solid-phase microextraction). The secretion of the Dufour's gland is characterized by a high ratio of alkanes, with n-undecane being the dominant secretion in all castes except the original workers. The venom gland's secretion mainly includes alkanes, acids, ketones, and alcohols, with formic acid and n-undecane being the dominant components. Additionally, the chemical composition and proportion of the main components vary significantly among castes, which may be closely related to the division of labor in their social life. This study provides basic information to further understand the function of these two glands in the social life of ants.
Collapse
Affiliation(s)
- Wenjing Xu
- Key Laboratory of National Forestry and Grassland Administration on Management of Forest Bio-Disaster, College of Forestry, Northwest A & F University, Xianyang 712100, China
- Department of Entomology, South China Agricultural University, Guangzhou 510642, China
| | - Mengqin Zhao
- Key Laboratory of National Forestry and Grassland Administration on Management of Forest Bio-Disaster, College of Forestry, Northwest A & F University, Xianyang 712100, China
| | - Lingxiao Tang
- Key Laboratory of National Forestry and Grassland Administration on Management of Forest Bio-Disaster, College of Forestry, Northwest A & F University, Xianyang 712100, China
| | - Ruoqing Ma
- Key Laboratory of National Forestry and Grassland Administration on Management of Forest Bio-Disaster, College of Forestry, Northwest A & F University, Xianyang 712100, China
| | - Hong He
- Key Laboratory of National Forestry and Grassland Administration on Management of Forest Bio-Disaster, College of Forestry, Northwest A & F University, Xianyang 712100, China
| |
Collapse
|
7
|
Mazumdar T, Hänniger S, Shukla SP, Murali A, Bartram S, Heckel DG, Boland W. 8-HQA adjusts the number and diversity of bacteria in the gut microbiome of Spodoptera littoralis. Front Microbiol 2023; 14:1075557. [PMID: 36744087 PMCID: PMC9891463 DOI: 10.3389/fmicb.2023.1075557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Quinolinic carboxylic acids are known for their metal ion chelating properties in insects, plants and bacteria. The larval stages of the lepidopteran pest, Spodoptera littoralis, produce 8-hydroxyquinoline-2-carboxylic acid (8-HQA) in high concentrations from tryptophan in the diet. At the same time, the larval midgut is known to harbor a bacterial population. The motivation behind the work was to investigate whether 8-HQA is controlling the bacterial community in the gut by regulating the concentration of metal ions. Knocking out the gene for kynurenine 3-monooxygenase (KMO) in the insect using CRISPR/Cas9 eliminated production of 8-HQA and significantly increased bacterial numbers and diversity in the larval midgut. Adding 8-HQA to the diet of knockout larvae caused a dose-dependent reduction of bacterial numbers with minimal effects on diversity. Enterococcus mundtii dominates the community in all treatments, probably due to its highly efficient iron uptake system and production of the colicin, mundticin. Thus host factors and bacterial properties interact to determine patterns of diversity and abundance in the insect midgut.
Collapse
Affiliation(s)
- Tilottama Mazumdar
- Department of Zoology, Institute of Zoology, Freie Universität Berlin, Berlin, Germany
| | - Sabine Hänniger
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Shantanu P. Shukla
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Aishwarya Murali
- Department of Experimental Toxicology & Ecology, BASF SE, Ludwigshafen am Rhein, Germany
| | - Stefan Bartram
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - David G. Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany,*Correspondence: David G. Heckel, ✉
| | - Wilhelm Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
8
|
Hurka S, Lüddecke T, Paas A, Dersch L, Schulte L, Eichberg J, Hardes K, Brinkrolf K, Vilcinskas A. Bioactivity Profiling of In Silico Predicted Linear Toxins from the Ants Myrmica rubra and Myrmica ruginodis. Toxins (Basel) 2022; 14:toxins14120846. [PMID: 36548743 PMCID: PMC9784689 DOI: 10.3390/toxins14120846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
The venoms of ants (Formicidae) are a promising source of novel bioactive molecules with potential for clinical and agricultural applications. However, despite the rich diversity of ant species, only a fraction of this vast resource has been thoroughly examined in bioprospecting programs. Previous studies focusing on the venom of Central European ants (subfamily Myrmicinae) identified a number of short linear decapeptides and nonapeptides resembling antimicrobial peptides (AMPs). Here, we describe the in silico approach and bioactivity profiling of 10 novel AMP-like peptides from the fellow Central European myrmicine ants Myrmica rubra and Myrmica ruginodis. Using the sequences of known ant venom peptides as queries, we screened the venom gland transcriptomes of both species. We found transcripts of nine novel decapeptides and one novel nonapeptide. The corresponding peptides were synthesized for bioactivity profiling in a broad panel of assays consisting of tests for cytotoxicity as well as antiviral, insecticidal, and antimicrobial activity. U-MYRTX-Mrug5a showed moderately potent antimicrobial effects against several bacteria, including clinically relevant pathogens such as Listeria monocytogenes and Staphylococcus epidermidis, but high concentrations showed negligible cytotoxicity. U-MYRTX-Mrug5a is, therefore, a probable lead for the development of novel peptide-based antibiotics.
Collapse
Affiliation(s)
- Sabine Hurka
- Institute for Insect Biotechnology, Justus Liebig University Giessen, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt, Germany
- Correspondence: (S.H.); (T.L.)
| | - Tim Lüddecke
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, 35392 Giessen, Germany
- Correspondence: (S.H.); (T.L.)
| | - Anne Paas
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, 35392 Giessen, Germany
| | - Ludwig Dersch
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, 35392 Giessen, Germany
| | - Lennart Schulte
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, 35392 Giessen, Germany
| | - Johanna Eichberg
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, 35392 Giessen, Germany
- BMBF Junior Research Group in Infection Research “ASCRIBE”, 35392 Giessen, Germany
| | - Kornelia Hardes
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, 35392 Giessen, Germany
- BMBF Junior Research Group in Infection Research “ASCRIBE”, 35392 Giessen, Germany
| | - Karina Brinkrolf
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig University Giessen, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, 35392 Giessen, Germany
| |
Collapse
|
9
|
Chen J, Du Y. Fire ants feed their nestmates with their own venom. JOURNAL OF INSECT PHYSIOLOGY 2022; 142:104437. [PMID: 35970221 DOI: 10.1016/j.jinsphys.2022.104437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Venom secretion is widely used by ants for disease control and more generally as an external surface disinfectant. Here we report evidence that Solenopsis invicta feed their nestmates with their own venom. Venom alkaloids were found in crops and midguts of ants at concentration levels that have previously been reported as effective against various pathogens. These venom alkaloids were found in midguts of the larvae, indicating that trophallaxis must be involved in the transfer of venom, since larvae do not produce alkaloids and they depend on workers to be fed. After the mating flight, the female alates shed their wings, burrow into the soil, and start new colonies. The new queen provided alkaloids to her first batch of larvae in the new colony. Since the crops of female alates contain venom alkaloids donated from their nestmate workers, the transfer of worker alkaloids to new generation occurred. After minim adult workers emerged, they took the role in providing venom to the larvae in the colony. Minim adult workers eventually died out and the normal workers became the venom donors in the colony. Although other functions may be possible, considering the well-known antimicrobial property of venom alkaloids and their detected concentration levels, venom in the digestive system is most likely used as an internal antibiotic by fire ants.
Collapse
Affiliation(s)
- Jian Chen
- USDA-ARS, Biological Control of Pests Research Unit, Stoneville, MS 38776, USA.
| | - Yuzhe Du
- USDA-ARS, Southern Insect Management Research Unit, Stoneville, MS 38776, USA
| |
Collapse
|
10
|
Armitage SA, Genersch E, McMahon DP, Rafaluk-Mohr C, Rolff J. Tripartite interactions: how immunity, microbiota and pathogens interact and affect pathogen virulence evolution. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100871. [PMID: 34999035 DOI: 10.1016/j.cois.2021.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
The bipartite interactions between insect hosts and their bacterial gut microbiota, or their bacterial pathogens, are empirically and theoretically well-explored. However, direct, and indirect tripartite interactions will also likely occur inside a host. These interactions will almost certainly affect the trajectory of pathogen virulence evolution, an area that is currently under researched. The interactions within tripartite associations can be competitive, that is, exploitative-competition, interference-competition or apparent-competition. Competitive interactions will be significantly influenced by non-competitive effects, for example, immunopathology, immunosuppression, and microbiota-mediated tolerance. Considering a combination of these interactions and effects, will enable an increased understanding of the evolution of pathogen virulence. This new perspective allows us to identify several novel research questions, which we hope will be a useful framework for future research.
Collapse
Affiliation(s)
- Sophie Ao Armitage
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195 Berlin, Germany.
| | - Elke Genersch
- Institute for Bee Research, Friedrich-Engels-Straße 32, 16540 Hohen Neuendorf, Germany; Institute of Microbiology and Epizootics, Faculty of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany
| | - Dino P McMahon
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195 Berlin, Germany; Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany
| | - Charlotte Rafaluk-Mohr
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195 Berlin, Germany
| | - Jens Rolff
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195 Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
11
|
Leroy C, Maes AQ, Louisanna E, Carrias J, Céréghino R, Corbara B, Séjalon‐Delmas N. Ants mediate community composition of root‐associated fungi in an ant‐plant mutualism. Biotropica 2022. [DOI: 10.1111/btp.13079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Céline Leroy
- AMAP Univ Montpellier, CIRAD, CNRS, INRAE, IRD Montpellier France
- ECOFOG, AgroParisTech, CIRAD, CNRS, INRAE, Université de Guyane Université des Antilles Kourou France
| | | | - Eliane Louisanna
- ECOFOG, AgroParisTech, CIRAD, CNRS, INRAE, Université de Guyane Université des Antilles Kourou France
| | | | - Régis Céréghino
- Laboratoire Écologie Fonctionnelle et Environnement, CNRS Université Paul Sabatier Toulouse 3 Toulouse France
| | - Bruno Corbara
- LMGE, CNRS Université Clermont Auvergne Clermont‐Ferrand France
| | | |
Collapse
|
12
|
Hakala SM, Meurville MP, Stumpe M, LeBoeuf AC. Biomarkers in a socially exchanged /fluid reflect colony maturity, behavior, and distributed metabolism. eLife 2021; 10:74005. [PMID: 34725037 PMCID: PMC8608388 DOI: 10.7554/elife.74005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 10/15/2021] [Indexed: 12/24/2022] Open
Abstract
In cooperative systems exhibiting division of labor, such as microbial communities, multicellular organisms, and social insect colonies, individual units share costs and benefits through both task specialization and exchanged materials. Socially exchanged fluids, like seminal fluid and milk, allow individuals to molecularly influence conspecifics. Many social insects have a social circulatory system, where food and endogenously produced molecules are transferred mouth-to-mouth (stomodeal trophallaxis), connecting all the individuals in the society. To understand how these endogenous molecules relate to colony life, we used quantitative proteomics to investigate the trophallactic fluid within colonies of the carpenter ant Camponotus floridanus. We show that different stages of the colony life cycle circulate different types of proteins: young colonies prioritize direct carbohydrate processing; mature colonies prioritize accumulation and transmission of stored resources. Further, colonies circulate proteins implicated in oxidative stress, ageing, and social insect caste determination, potentially acting as superorganismal hormones. Brood-caring individuals that are also closer to the queen in the social network (nurses) showed higher abundance of oxidative stress-related proteins. Thus, trophallaxis behavior could provide a mechanism for distributed metabolism in social insect societies. The ability to thoroughly analyze the materials exchanged between cooperative units makes social insect colonies useful models to understand the evolution and consequences of metabolic division of labor at other scales. Division of labor is essential for cooperation, because groups can achieve more when individuals specialize in different tasks. This happens across the natural world, from different cells in organisms performing specific roles, to the individuals in an ant colony carrying out diverse duties. In both of these systems, individuals work together to ensure the survival of the collective unit – the body or the colony – instead of competing against each other. One of the main ways division of labor is evident within these two systems is regarding reproduction. Both in the body and in an ant colony, only one or a few individual units can reproduce, while the rest provide support. In the case of ant colonies, only queens and males reproduce, while the young workers nurse the brood and older workers forage for food. This intense cooperation requires close communication between individual units – in the case of some species of ants, by sharing fluids mouth-to-mouth. These fluids contain food but also many molecules produced by the ants themselves, including proteins. Given that both individuals and the colony as a whole change as they age – with workers acquiring new roles, and new queens and males only reared once the colony is mature – it is likely that the proteins transmitted in the fluid also change. To better understand whether the lifecycles of individuals and the age of the colony affect the fluids shared by carpenter ants Camponotus floridanus, Hakala et al. examined the ant-produced proteins in these fluids. This revealed differences in the proteins shared by young and mature colonies, and young nurse ants and older forager ants. In young colonies, the fluids contained proteins involved in fast sugar processing; while in mature colonies, the fluids contained more proteins to store nutrients, which help insect larvae grow into larger individuals, like queens. Young worker ants, who spend their time nursing the brood, produced more anti-aging proteins. This may be because these ants are in close contact with the queen, who lives much longer than the rest of the ants in the colony. Taken together, these observations suggest that ants divide the labor of metabolism, as well as work and reproduction. Dividing the labor of metabolism among individuals is one more similarity between ants and the cells of a multicellular organism, like a fly or a human. Division of labor allows the sharing of burden, with some individuals lightening the load of others. Understanding how ants achieve this by sharing fluids could shed new light on this complex exchange at other scales or in other organisms. By matching proteins to life stages, researchers have a starting point to examine individual molecules in more detail.
Collapse
Affiliation(s)
- Sanja M Hakala
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Michael Stumpe
- Metabolomics and Proteomics Platform, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Adria C LeBoeuf
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
13
|
Zhou F, Gao Y, Liu M, Xu L, Wu X, Zhao X, Zhang X. Bacterial Inhibition on Beauveria bassiana Contributes to Microbiota Stability in Delia antiqua. Front Microbiol 2021; 12:710800. [PMID: 34690955 PMCID: PMC8527029 DOI: 10.3389/fmicb.2021.710800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/01/2021] [Indexed: 02/01/2023] Open
Abstract
Given the multiple roles of associated microbiota in improving animal host fitness in a microbial environment, increasing numbers of researchers have focused on how the associated microbiota keeps stable under complex environmental factors, especially some biological ones. Recent studies show that associated microbiota interacts with pathogenic microbes. However, whether and how the interaction would influence microbiota stability is limitedly investigated. Based on the interaction among Delia antiqua, its associated microbiota, and one pathogen Beauveria bassiana, the associated microbiota's response to the pathogen was determined in this study. Besides, the underlying mechanism for the response was also preliminarily investigated. Results showed that B. bassiana neither infect D. antiqua larvae nor did it colonize inside the associated microbiota, and both the bacterial and fungal microbiota kept stable during the interaction. Further experiments showed that bacterial microbiota almost completely inhibited conidial germination and mycelial growth of B. bassiana during its invasion, while fungal microbiota did not inhibit conidial germination and mycelial growth of B. bassiana. According to the above results, individual dominant bacterial species were isolated, and their inhibition on conidial germination and mycelial growth of B. bassiana was reconfirmed. Thus, these results indicated that bacterial instead of fungal microbiota blocked B. bassiana conidia and stabilized the associated microbiota of D. antiqua larvae during B. bassiana invasion. The findings deepened the understanding of the role of associated microbiota–pathogen microbe interaction in maintaining microbiota stability. They may also contribute to the development of novel biological control agents and pest management strategies.
Collapse
Affiliation(s)
- Fangyuan Zhou
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Yunxiao Gao
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Mei Liu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xiaoqing Wu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Xiaoyan Zhao
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Xinjian Zhang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| |
Collapse
|
14
|
Worsley SF, Innocent TM, Holmes NA, Al-Bassam MM, Schiøtt M, Wilkinson B, Murrell JC, Boomsma JJ, Yu DW, Hutchings MI. Competition-based screening helps to secure the evolutionary stability of a defensive microbiome. BMC Biol 2021; 19:205. [PMID: 34526023 PMCID: PMC8444595 DOI: 10.1186/s12915-021-01142-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/03/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The cuticular microbiomes of Acromyrmex leaf-cutting ants pose a conundrum in microbiome biology because they are freely colonisable, and yet the prevalence of the vertically transmitted bacteria Pseudonocardia, which contributes to the control of Escovopsis fungus garden disease, is never compromised by the secondary acquisition of other bacterial strains. Game theory suggests that competition-based screening can allow the selective recruitment of antibiotic-producing bacteria from the environment, by providing abundant resources to foment interference competition between bacterial species and by using Pseudonocardia to bias the outcome of competition in favour of antibiotic producers. RESULTS Here, we use RNA-stable isotope probing (RNA-SIP) to confirm that Acromyrmex ants can maintain a range of microbial symbionts on their cuticle by supplying public resources. We then used RNA sequencing, bioassays, and competition experiments to show that vertically transmitted Pseudonocardia strains produce antibacterials that differentially reduce the growth rates of other microbes, ultimately biassing the bacterial competition to allow the selective establishment of secondary antibiotic-producing strains while excluding non-antibiotic-producing strains that would parasitise the symbiosis. CONCLUSIONS Our findings are consistent with the hypothesis that competition-based screening is a plausible mechanism for maintaining the integrity of the co-adapted mutualism between the leaf-cutting ant farming symbiosis and its defensive microbiome. Our results have broader implications for explaining the stability of other complex symbioses involving horizontal acquisition.
Collapse
Affiliation(s)
- Sarah F Worsley
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Tabitha M Innocent
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Neil A Holmes
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK
| | - Mahmoud M Al-Bassam
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Morten Schiøtt
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Barrie Wilkinson
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK
| | - J Colin Murrell
- School of Environmental Sciences, Norwich Research Park, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Jacobus J Boomsma
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Douglas W Yu
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| | - Matthew I Hutchings
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK.
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK.
| |
Collapse
|