1
|
Roth DM, Piña JO, Raju R, Iben J, Faucz FR, Makareeva E, Leikin S, Graf D, D'Souza RN. Tendon-associated gene expression precedes osteogenesis in mid-palatal suture establishment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.590129. [PMID: 38798531 PMCID: PMC11118303 DOI: 10.1101/2024.05.11.590129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Orthodontic maxillary expansion relies on intrinsic mid-palatal suture mechanobiology to induce guided osteogenesis, yet establishment of the mid-palatal suture within the continuous secondary palate and causes of maxillary insufficiency remain poorly understood. In contrast, advances in cranial suture research hold promise to improve surgical repair of prematurely fused cranial sutures in craniosynostosis to potentially restore the obliterated signaling environment and ensure continual success of the intervention. We hypothesized that mid-palatal suture establishment is governed by shared principles with calvarial sutures and involves functional linkage between expanding primary ossification centres with the midline mesenchyme. We characterized establishment of the mid-palatal suture from late embryonic to early postnatal timepoints. Suture establishment was visualized using histological techniques and multimodal transcriptomics. We identified that mid-palatal suture formation depends on a spatiotemporally controlled signalling milieu in which tendon-associated genes play a significant role. We mapped relationships between extracellular matrix-encoding gene expression, tenocyte markers, and novel suture patency candidate genes. We identified similar expression patterns in FaceBase-deposited scRNA-seq datasets from cranial sutures. These findings demonstrate shared biological principles for suture establishment, providing further avenues for future development and understanding of maxillofacial interventions.
Collapse
Affiliation(s)
- Daniela M Roth
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Jeremie Oliver Piña
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Resmi Raju
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - James Iben
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Fabio R Faucz
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Elena Makareeva
- Section on Physical Biochemistry, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sergey Leikin
- Section on Physical Biochemistry, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Daniel Graf
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Canada
| | - Rena N D'Souza
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
2
|
Jebeli M, Lopez SK, Goldblatt ZE, McCollum D, Mana-Capelli S, Wen Q, Billiar K. Multicellular aligned bands disrupt global collective cell behavior. Acta Biomater 2023; 163:117-130. [PMID: 36306982 PMCID: PMC10334361 DOI: 10.1016/j.actbio.2022.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/29/2022]
Abstract
Mechanical stress patterns emerging from collective cell behavior have been shown to play critical roles in morphogenesis, tissue repair, and cancer metastasis. In our previous work, we constrained valvular interstitial cell (VIC) monolayers on circular protein islands to study emergent behavior in a controlled manner and demonstrated that the general patterns of cell alignment, size, and apoptosis correlate with predicted mechanical stress fields if radially increasing stiffness or contractility are used in the computational models. However, these radially symmetric models did not predict the existence of local regions of dense aligned cells observed in seemingly random locations of individual aggregates. The goal of this study is to determine how the heterogeneities in cell behavior emerge over time and diverge from the predicted collective cell behavior. Cell-cell interactions in circular multicellular aggregates of VICs were studied with time-lapse imaging ranging from hours to days, and migration, proliferation, and traction stresses were measured. Our results indicate that elongated cells create strong local alignment within preconfluent cell populations on the microcontact printed protein islands. These cells influence the alignment of additional cells to create dense, locally aligned bands of cells which disrupt the predicted global behavior. Cells are highly elongated at the endpoints of the bands yet have decreased spread area in the middle and reduced mobility. Although traction stresses at the endpoints of bands are enhanced, even to the point of detaching aggregates from the culture surface, the cells in dense bands exhibit reduced proliferation, less nuclear YAP, and increased apoptotic rates indicating a low stress environment. These findings suggest that strong local cell-cell interactions between primary fibroblastic cells can disrupt the global collective cellular behavior leading to substantial heterogeneity of cell behaviors in constrained monolayers. This local emergent behavior within aggregated fibroblasts may play an important role in development and disease of connective tissues. STATEMENT OF SIGNIFICANCE: Mechanical stress patterns emerging from collective cell behavior play critical roles in morphogenesis, tissue repair, and cancer metastasis. Much has been learned of these collective behaviors by utilizing microcontact printing to constrain cell monolayers (aggregates) into specific shapes. Here we utilize these tools along with long-term video microscopy tracking of individual aggregates to determine how heterogeneous collective behaviors unique to primary fibroblastic cells emerge over time and diverge from computed stress fields. We find that dense multicellular bands form from local collective behavior and disrupt the global collective behavior resulting in heterogeneous patterns of migration, traction stresses, proliferation, and apoptosis. This local emergent behavior within aggregated fibroblasts may play an important role in development and disease of connective tissues.
Collapse
Affiliation(s)
- Mahvash Jebeli
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester MA, USA
| | - Samantha K Lopez
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester MA, USA
| | - Zachary E Goldblatt
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester MA, USA
| | - Dannel McCollum
- University of Massachusetts Medical School, Worcester MA, USA
| | | | - Qi Wen
- Physics Department, Worcester Polytechnic Institute, Worcester MA, USA
| | - Kristen Billiar
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester MA, USA.
| |
Collapse
|