1
|
Tam R, Harris TJ. Centrosome-organized plasma membrane infoldings linked to growth of a cortical actin domain. J Cell Biol 2024; 223:e202403115. [PMID: 38935075 PMCID: PMC11215285 DOI: 10.1083/jcb.202403115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/27/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Regulated cell shape change requires the induction of cortical cytoskeletal domains. Often, local changes to plasma membrane (PM) topography are involved. Centrosomes organize cortical domains and can affect PM topography by locally pulling the PM inward. Are these centrosome effects coupled? At the syncytial Drosophila embryo cortex, centrosome-induced actin caps grow into dome-like compartments for mitoses. We found the nascent cap to be a collection of PM folds and tubules formed over the astral centrosomal MT array. The localized infoldings require centrosome and dynein activities, and myosin-based surface tension prevents them elsewhere. Centrosome-engaged PM infoldings become specifically enriched with an Arp2/3 induction pathway. Arp2/3 actin network growth between the infoldings counterbalances centrosomal pulling forces and disperses the folds for actin cap expansion. Abnormal domain topography with either centrosome or Arp2/3 disruption correlates with decreased exocytic vesicle association. Together, our data implicate centrosome-organized PM infoldings in coordinating Arp2/3 network growth and exocytosis for cortical domain assembly.
Collapse
Affiliation(s)
- Rebecca Tam
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Tony J.C. Harris
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Liu T, Cao L, Mladenov M, Jegou A, Way M, Moores CA. Cortactin stabilizes actin branches by bridging activated Arp2/3 to its nucleated actin filament. Nat Struct Mol Biol 2024; 31:801-809. [PMID: 38267598 PMCID: PMC11102864 DOI: 10.1038/s41594-023-01205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024]
Abstract
Regulation of the assembly and turnover of branched actin filament networks nucleated by the Arp2/3 complex is essential during many cellular processes, including cell migration and membrane trafficking. Cortactin is important for actin branch stabilization, but the mechanism by which this occurs is unclear. Given this, we determined the structure of vertebrate cortactin-stabilized Arp2/3 actin branches using cryogenic electron microscopy. We find that cortactin interacts with the new daughter filament nucleated by the Arp2/3 complex at the branch site, rather than the initial mother actin filament. Cortactin preferentially binds activated Arp3. It also stabilizes the F-actin-like interface of activated Arp3 with the first actin subunit of the new filament, and its central repeats extend along successive daughter-filament subunits. The preference of cortactin for activated Arp3 explains its retention at the actin branch and accounts for its synergy with other nucleation-promoting factors in regulating branched actin network dynamics.
Collapse
Affiliation(s)
- Tianyang Liu
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK
| | - Luyan Cao
- The Francis Crick Institute, London, UK
| | | | - Antoine Jegou
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Michael Way
- The Francis Crick Institute, London, UK.
- Department of Infectious Disease, Imperial College, London, UK.
| | - Carolyn A Moores
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK.
| |
Collapse
|
3
|
Tam R, Harris TJC. Reshaping the Syncytial Drosophila Embryo with Cortical Actin Networks: Four Main Steps of Early Development. Results Probl Cell Differ 2024; 71:67-90. [PMID: 37996673 DOI: 10.1007/978-3-031-37936-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Drosophila development begins as a syncytium. The large size of the one-cell embryo makes it ideal for studying the structure, regulation, and effects of the cortical actin cytoskeleton. We review four main steps of early development that depend on the actin cortex. At each step, dynamic remodelling of the cortex has specific effects on nuclei within the syncytium. During axial expansion, a cortical actomyosin network assembles and disassembles with the cell cycle, generating cytoplasmic flows that evenly distribute nuclei along the ovoid cell. When nuclei move to the cell periphery, they seed Arp2/3-based actin caps which grow into an array of dome-like compartments that house the nuclei as they divide at the cell cortex. To separate germline nuclei from the soma, posterior germ plasm induces full cleavage of mono-nucleated primordial germ cells from the syncytium. Finally, zygotic gene expression triggers formation of the blastoderm epithelium via cellularization and simultaneous division of ~6000 mono-nucleated cells from a single internal yolk cell. During these steps, the cortex is regulated in space and time, gains domain and sub-domain structure, and undergoes mesoscale interactions that lay a structural foundation of animal development.
Collapse
Affiliation(s)
- Rebecca Tam
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Tony J C Harris
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Rollins KR, Blankenship JT. Dysregulation of the endoplasmic reticulum blocks recruitment of centrosome-associated proteins resulting in mitotic failure. Development 2023; 150:dev201917. [PMID: 37971218 PMCID: PMC10690056 DOI: 10.1242/dev.201917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/17/2023] [Indexed: 11/19/2023]
Abstract
The endoplasmic reticulum (ER) undergoes a remarkable transition in morphology during cell division to aid in the proper portioning of the ER. However, whether changes in ER behaviors modulate mitotic events is less clear. Like many animal embryos, the early Drosophila embryo undergoes rapid cleavage cycles in a lipid-rich environment. Here, we show that mitotic spindle formation, centrosomal maturation, and ER condensation occur with similar time frames in the early syncytium. In a screen for Rab family GTPases that display dynamic function at these stages, we identified Rab1. Rab1 disruption led to an enhanced buildup of ER at the spindle poles and produced an intriguing 'mini-spindle' phenotype. ER accumulation around the mitotic space negatively correlates with spindle length/intensity. Importantly, centrosomal maturation is defective in these embryos, as mitotic recruitment of key centrosomal proteins is weakened after Rab1 disruption. Finally, division failures and ER overaccumulation is rescued by Dynein inhibition, demonstrating that Dynein is essential for ER spindle recruitment. These results reveal that ER levels must be carefully tuned during mitotic processes to ensure proper assembly of the division machinery.
Collapse
Affiliation(s)
| | - J. Todd Blankenship
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| |
Collapse
|
5
|
Miao H, Millage M, Rollins KR, Blankenship JT. A Rab39-Klp98A-Rab35 endocytic recycling pathway is essential for rapid Golgi-dependent furrow ingression. Development 2023; 150:dev201547. [PMID: 37590130 PMCID: PMC10445802 DOI: 10.1242/dev.201547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/18/2023] [Indexed: 08/19/2023]
Abstract
Ingression of the plasma membrane is an essential part of the cell topology-distorting repertoire and a key element in animal cell cytokinesis. Many embryos have rapid cleavage stages in which they are furrowing powerhouses, quickly forming and disassembling cleavage furrows on timescales of just minutes. Previous work has shown that cytoskeletal proteins and membrane trafficking coordinate to drive furrow ingression, but where these membrane stores are derived from and how they are directed to furrowing processes has been less clear. Here, we identify an extensive Rab35/Rab4>Rab39/Klp98A>trans-Golgi network (TGN) endocytic recycling pathway necessary for fast furrow ingression in the Drosophila embryo. Rab39 is present in vesiculotubular compartments at the TGN where it receives endocytically derived cargo through a Rab35/Rab4-dependent pathway. A Kinesin-3 family member, Klp98A, drives the movements and tubulation activities of Rab39, and disruption of this Rab39-Klp98A-Rab35 pathway causes deep furrow ingression defects and genomic instability. These data suggest that an endocytic recycling pathway rapidly remobilizes membrane cargo from the cell surface and directs it to the trans-Golgi network to permit the initiation of new cycles of cleavage furrow formation.
Collapse
Affiliation(s)
- Hui Miao
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Megan Millage
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | | | - J. Todd Blankenship
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| |
Collapse
|
6
|
Yeh AR, Hoeprich GJ, Goode BL, Martin AC. Bitesize bundles F-actin and influences actin remodeling in syncytial Drosophila embryo development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537198. [PMID: 37131807 PMCID: PMC10153138 DOI: 10.1101/2023.04.17.537198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Actin networks undergo rearrangements that influence cell and tissue shape. Actin network assembly and organization is regulated in space and time by a host of actin binding proteins. The Drosophila Synaptotagmin-like protein, Bitesize (Btsz), is known to organize actin at epithelial cell apical junctions in a manner that depends on its interaction with the actin-binding protein, Moesin. Here, we showed that Btsz functions in actin reorganization at earlier, syncytial stages of Drosophila embryo development. Btsz was required for the formation of stable metaphase pseudocleavage furrows that prevented spindle collisions and nuclear fallout prior to cellularization. While previous studies focused on Btsz isoforms containing the Moesin Binding Domain (MBD), we found that isoforms lacking the MBD also function in actin remodeling. Consistent with this, we found that the C-terminal half of BtszB cooperatively binds to and bundles F-actin, suggesting a direct mechanism for Synaptotagmin-like proteins regulating actin organization during animal development.
Collapse
|
7
|
Contractile and expansive actin networks in Drosophila: Developmental cell biology controlled by network polarization and higher-order interactions. Curr Top Dev Biol 2023; 154:99-129. [PMID: 37100525 DOI: 10.1016/bs.ctdb.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Actin networks are central to shaping and moving cells during animal development. Various spatial cues activate conserved signal transduction pathways to polarize actin network assembly at sub-cellular locations and to elicit specific physical changes. Actomyosin networks contract and Arp2/3 networks expand, and to affect whole cells and tissues they do so within higher-order systems. At the scale of tissues, actomyosin networks of epithelial cells can be coupled via adherens junctions to form supracellular networks. Arp2/3 networks typically integrate with distinct actin assemblies, forming expansive composites which act in conjunction with contractile actomyosin networks for whole-cell effects. This review explores these concepts using examples from Drosophila development. First, we discuss the polarized assembly of supracellular actomyosin cables which constrict and reshape epithelial tissues during embryonic wound healing, germ band extension, and mesoderm invagination, but which also form physical borders between tissue compartments at parasegment boundaries and during dorsal closure. Second, we review how locally induced Arp2/3 networks act in opposition to actomyosin structures during myoblast cell-cell fusion and cortical compartmentalization of the syncytial embryo, and how Arp2/3 and actomyosin networks also cooperate for the single cell migration of hemocytes and the collective migration of border cells. Overall, these examples show how the polarized deployment and higher-order interactions of actin networks organize developmental cell biology.
Collapse
|
8
|
Sponge/DOCK-dependent regulation of F-actin networks directing cortical cap behaviors and syncytial furrow ingression. Dev Biol 2022; 491:82-93. [PMID: 36067836 DOI: 10.1016/j.ydbio.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/03/2022] [Accepted: 08/17/2022] [Indexed: 11/22/2022]
Abstract
In the early syncytial Drosophila embryo, rapid changes in filamentous actin networks and membrane trafficking pathways drive the formation and remodeling of cortical and furrow morphologies. Interestingly, genomic integrity and the completion of mitoses during cell cycles 10-13 depends on the formation of transient membrane furrows that serve to separate and anchor individual spindles during division. While substantial work has led to a better understanding of the core network components that are responsible for the formation of these furrows, less is known about the regulation that controls cytoskeletal and trafficking function. The DOCK protein Sponge was one of the first proteins identified as being required for syncytial furrow formation, and disruption of Sponge deeply compromises F-actin populations in the early embryo, but how this occurs is less clear. Here, we perform quantitative analysis of the effects of Sponge disruption on cortical cap growth, furrow formation, membrane trafficking, and cytoskeletal network regulation through live-imaging of the syncytial embryo. We find that membrane trafficking is relatively unaffected by the defects in branched actin networks that occur after Sponge disruption, but that Sponge acts as a master regulator of a diverse cohort of Arp2/3 regulatory proteins. As DOCK family proteins have been implicated in regulating GTP exchange on small GTPases, we also suggest that Rac GTPase activity bridges Sponge regulation to the regulators of Arp2/3 function. Finally, we demonstrate the phasic requirements for branched F-actin and linear F-actin networks in potentiating furrow ingression. In total, these results provide quantitative insights into how a large DOCK scaffolding protein coordinates the activity of a variety of different actin regulatory proteins to direct the remodeling of the apical cortex into cytokinetic-like furrows.
Collapse
|
9
|
Hunt EL, Rai H, Harris TJC. SCAR/WAVE complex recruitment to a supracellular actomyosin cable by myosin activators and a junctional Arf-GEF during Drosophila dorsal closure. Mol Biol Cell 2022; 33. [DOI: 10.1091/mbc.e22-03-0107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Expansive Arp2/3 actin networks and contractile actomyosin networks can be spatially and temporally segregated within the cell, but the networks also interact closely at various sites, including adherens junctions. However, molecular mechanisms coordinating these interactions remain unclear. We found that the SCAR/WAVE complex, an Arp2/3 activator, is enriched at adherens junctions of the leading edge actomyosin cable during Drosophila dorsal closure. Myosin activators were both necessary and sufficient for SCAR/WAVE accumulation at leading edge junctions. The same myosin activators were previously shown to recruit the cytohesin Arf-GEF Steppke to these sites, and mammalian studies have linked Arf small G protein signaling to SCAR/WAVE activation. During dorsal closure, we find that Steppke is required for SCAR/WAVE enrichment at the actomyosin-linked junctions. Arp2/3 also localizes to adherens junctions of the leading edge cable. We propose that junctional actomyosin activity acts through Steppke to recruit SCAR/WAVE and Arp2/3 for regulation of the leading edge supracellular actomyosin cable during dorsal closure.
Collapse
Affiliation(s)
- Erin L. Hunt
- Department of Cell & Systems Biology, University of Toronto
| | - Hrishika Rai
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata
- International Visiting Graduate Students Study Abroad Program, University of Toronto
| | | |
Collapse
|