1
|
Ghanbari A, Danaie Fard P, Azarmehr N, Mahmoudi R, Roozbehi A, Zibara K, Hosseini E. D-galactose Induces Senescence in Adult Mouse Neural Stem Cells by Imbalanced Oxidant and Antioxidant Activity and Differential Expression of Specific Hub Genes. Mol Neurobiol 2024:10.1007/s12035-024-04546-1. [PMID: 39425831 DOI: 10.1007/s12035-024-04546-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Cellular senescence is a permanent state of cell cycle arrest that occurs in proliferating cells under various stresses causing age-related disorders. This study investigated the role of D-galactose in inducing premature senescence of neural stem cells (NSCs) and the genes involved in this process. After NSC isolation and proliferation, senescence was induced with 10, 20, or 30 µM concentrations of D-galactose for 24 h. Cell viability was tested using the MTT assay, and senescent cells were identified based on increased lysosomal β-galactosidase activity. In addition, levels of NO and malondialdehyde (MDA) oxidative biomarkers but also total thiols (T-SH) and total antioxidant FRAP, as well as inflammatory cytokines, were investigated. Besides, RNA-Seq was performed on the various groups, the gene network was mapped, and genes with the most significant changes were examined. Treatment of NSCs with 20 or 30 µM concentrations of D-galactose caused a significant decrease in cell survival, a number of neurospheres, and a number of neurosphere-derived cells, compared to the control group. In addition, the number of BrdU + cells significantly decreased after induction of NSC senescence with 10 or 20 μM D-galactose, whereas aging-related β-galactosidase (SA-β-gal) increased significantly. Moreover, treatment with 10 or 20 μM D-galactose showed a significant increase in NO production, but not malondialdehyde (MDA). However, the levels of total thiol (T-SH) and antioxidant FRAP levels decreased significantly. Furthermore, TNF-α and IL-6 cytokines significantly increased in NSCs treated with 20 μM, but not 10 μM, D-galactose. Finally, a gene network consisting of 860 gene orthologs was mapped using RNA-Seq. Protein interactions were obtained in 11 hub genes which were classified using gene ontology based on molecular function, biological processes, or cellular processes. Genes with the most significant changes in aging included Fn1, Itga2, Itga3, Itga6, Itga8, Ptk2b, Grin2b, Cacna2d3, Pde4d, Shisa6, and Stac3. This study showed that D-galactose reduces NSC proliferation and antioxidant activity while increasing oxidative stress and inflammatory cytokines. A survey of the genes involved in premature aging may be used as therapeutic candidates for aging-related disorders.
Collapse
Affiliation(s)
- Amir Ghanbari
- Cellular and Molecular Research Center, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Parisa Danaie Fard
- Cellular and Molecular Research Center, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Nahid Azarmehr
- Medicinal Plants Research Center, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Reza Mahmoudi
- Cellular and Molecular Research Center, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Amrollah Roozbehi
- Cellular and Molecular Research Center, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Kazem Zibara
- ER045, Laboratory of Stem Cells, Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.
| | - Ebrahim Hosseini
- Medicinal Plants Research Center, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
2
|
Niu Y, Luo J, Zong C. Single-cell total-RNA profiling unveils regulatory hubs of transcription factors. Nat Commun 2024; 15:5941. [PMID: 39009595 PMCID: PMC11251146 DOI: 10.1038/s41467-024-50291-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
Recent development of RNA velocity uses master equations to establish the kinetics of the life cycle of RNAs from unspliced RNA to spliced RNA (i.e., mature RNA) to degradation. To feed this kinetic analysis, simultaneous measurement of unspliced RNA and spliced RNA in single cells is greatly desired. However, the majority of single-cell RNA-seq chemistry primarily captures mature RNA species to measure gene expressions. Here, we develop a one-step total-RNA chemistry-based single-cell RNA-seq method: snapTotal-seq. We benchmark this method with multiple single-cell RNA-seq assays in their performance in kinetic analysis of cell cycle by RNA velocity. Next, with LASSO regression between transcription factors, we identify the critical regulatory hubs mediating the cell cycle dynamics. We also apply snapTotal-seq to profile the oncogene-induced senescence and identify the key regulatory hubs governing the entry of senescence. Furthermore, from the comparative analysis of unspliced RNA and spliced RNA, we identify a significant portion of genes whose expression changes occur in spliced RNA but not to the same degree in unspliced RNA, indicating these gene expression changes are mainly controlled by post-transcriptional regulation. Overall, we demonstrate that snapTotal-seq can provide enriched information about gene regulation, especially during the transition between cell states.
Collapse
Affiliation(s)
- Yichi Niu
- Department of Molecular and Human Genetics, Houston, TX, USA
- Genetics & Genomics Program, Houston, TX, USA
| | - Jiayi Luo
- Department of Molecular and Human Genetics, Houston, TX, USA
- Cancer and Cell Biology Program, Houston, TX, USA
| | - Chenghang Zong
- Department of Molecular and Human Genetics, Houston, TX, USA.
- Genetics & Genomics Program, Houston, TX, USA.
- Cancer and Cell Biology Program, Houston, TX, USA.
- Integrative Molecular and Biomedical Sciences Program, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Houston, TX, USA.
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
3
|
Liang H, Zheng X, Zhang X, Zhang Y, Zheng J. The role of SWI/SNF complexes in digestive system neoplasms. Med Oncol 2024; 41:119. [PMID: 38630164 DOI: 10.1007/s12032-024-02343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/22/2024] [Indexed: 04/19/2024]
Abstract
Chromatin remodeling is a critical step in the DNA damage response, and the ATP-dependent chromatin remodelers are a group of epigenetic regulators that alter nucleosome assembly and regulate transcription factor accessibility to DNA, preventing genomic instability and tumorigenesis caused by DNA damage. The SWI/SNF chromatin remodeling complex is one of them, and mutations in the gene encoding the SWI/SNF subunit are frequently found in digestive tumors. We review the most recent literature on the role of SWI/SNF complexes in digestive tumorigenesis, with different SWI/SNF subunits playing different roles. They regulate the biological behavior of tumor cells, participate in multiple signaling pathways, interact with multiple genes, and have some correlation with the prognosis of patients. Their carcinogenic properties may help discover new therapeutic targets. Understanding the mutations and defects of SWI/SNF complexes, as well as the underlying functional mechanisms, may lead to new strategies for treating the digestive system by targeting relevant genes or modulating the tumor microenvironment.
Collapse
Affiliation(s)
- Hanyun Liang
- Department of Diagnostic Pathology, Shandong Second Medical University, Weifang, 261053, China
| | - Xin Zheng
- Department of Diagnostic Pathology, Shandong Second Medical University, Weifang, 261053, China
| | - Xiao Zhang
- Department of Ultrasound, Weifang People's Hospital, Weifang, 261041, China
| | - Yan Zhang
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261053, China.
| | - Jie Zheng
- Department of Diagnostic Pathology, Shandong Second Medical University, Weifang, 261053, China.
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang, 261053, China.
| |
Collapse
|
4
|
Dancik GM, Varisli L, Vlahopoulos SA. The Molecular Context of Oxidant Stress Response in Cancer Establishes ALDH1A1 as a Critical Target: What This Means for Acute Myeloid Leukemia. Int J Mol Sci 2023; 24:ijms24119372. [PMID: 37298333 DOI: 10.3390/ijms24119372] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The protein family of aldehyde dehydrogenases (ALDH) encompasses nineteen members. The ALDH1 subfamily consists of enzymes with similar activity, having the capacity to neutralize lipid peroxidation products and to generate retinoic acid; however, only ALDH1A1 emerges as a significant risk factor in acute myeloid leukemia. Not only is the gene ALDH1A1 on average significantly overexpressed in the poor prognosis group at the RNA level, but its protein product, ALDH1A1 protects acute myeloid leukemia cells from lipid peroxidation byproducts. This capacity to protect cells can be ascribed to the stability of the enzyme under conditions of oxidant stress. The capacity to protect cells is evident both in vitro, as well as in mouse xenografts of those cells, shielding cells effectively from a number of potent antineoplastic agents. However, the role of ALDH1A1 in acute myeloid leukemia has been unclear in the past due to evidence that normal cells often have higher aldehyde dehydrogenase activity than leukemic cells. This being true, ALDH1A1 RNA expression is significantly associated with poor prognosis. It is hence imperative that ALDH1A1 is methodically targeted, particularly for the acute myeloid leukemia patients of the poor prognosis risk group that overexpress ALDH1A1 RNA.
Collapse
Affiliation(s)
- Garrett M Dancik
- Department of Computer Science, Eastern Connecticut State University, Willimantic, CT 06226, USA
| | - Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey
| | - Spiros A Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527 Athens, Greece
| |
Collapse
|
5
|
Wei Y, Li Y, Chen Y, Liu P, Huang S, Zhang Y, Sun Y, Wu Z, Hu M, Wu Q, Wu H, Liu F, She T, Ning Z. ALDH1: A potential therapeutic target for cancer stem cells in solid tumors. Front Oncol 2022; 12:1026278. [PMID: 36387165 PMCID: PMC9650078 DOI: 10.3389/fonc.2022.1026278] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/12/2022] [Indexed: 12/02/2022] Open
Abstract
Solid tumors can be divided into benign solid tumors and solid malignant tumors in the academic community, among which malignant solid tumors are called cancers. Cancer is the second leading cause of death in the world, and the global incidence of cancer is increasing yearly New cancer patients in China are always the first. After the concept of stem cells was introduced in the tumor community, the CSC markers represented by ALDH1 have been widely studied due to their strong CSC cell characteristics and potential to be the driving force of tumor metastasis. In the research results in the past five years, it has been found that ALDH1 is highly expressed in various solid cancers such as breast cancer, lung cancer, colorectal cancer, liver cancer, gastric cancer, cervical cancer, esophageal cancer, ovarian cancer, head,and neck cancer. ALDH1 can activate and transform various pathways (such as the USP28/MYC signaling pathway, ALDH1A1/HIF-1α/VEGF axis, wnt/β-catenin signaling pathway), as well as change the intracellular pH value to promote formation and maintenance, resulting in drug resistance in tumors. By targeting and inhibiting ALDH1 in tumor stem cells, it can enhance the sensitivity of drugs and inhibit the proliferation, differentiation, and metastasis of solid tumor stem cells to some extent. This review discusses the relationship and pathway of ALDH1 with various solid tumors. It proposes that ALDH1 may serve as a diagnosis and therapeutic target for CSC, providing new insights and new strategies for reliable tumor treatment.
Collapse
Affiliation(s)
- Yaolu Wei
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yan Li
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yenan Chen
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Pei Liu
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Sheng Huang
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yuping Zhang
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yanling Sun
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zhe Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Meichun Hu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Qian Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Hongnian Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Fuxing Liu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| | - Tonghui She
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| | - Zhifeng Ning
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| |
Collapse
|
6
|
Zhang FL, Li DQ. Targeting Chromatin-Remodeling Factors in Cancer Cells: Promising Molecules in Cancer Therapy. Int J Mol Sci 2022; 23:12815. [PMID: 36361605 PMCID: PMC9655648 DOI: 10.3390/ijms232112815] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 03/28/2024] Open
Abstract
ATP-dependent chromatin-remodeling complexes can reorganize and remodel chromatin and thereby act as important regulator in various cellular processes. Based on considerable studies over the past two decades, it has been confirmed that the abnormal function of chromatin remodeling plays a pivotal role in genome reprogramming for oncogenesis in cancer development and/or resistance to cancer therapy. Recently, exciting progress has been made in the identification of genetic alteration in the genes encoding the chromatin-remodeling complexes associated with tumorigenesis, as well as in our understanding of chromatin-remodeling mechanisms in cancer biology. Here, we present preclinical evidence explaining the signaling mechanisms involving the chromatin-remodeling misregulation-induced cancer cellular processes, including DNA damage signaling, metastasis, angiogenesis, immune signaling, etc. However, even though the cumulative evidence in this field provides promising emerging molecules for therapeutic explorations in cancer, more research is needed to assess the clinical roles of these genetic cancer targets.
Collapse
Affiliation(s)
- Fang-Lin Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Da-Qiang Li
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
7
|
Li R, Xiong G, Zhao J, Yang L. Targeting the alterations of ARID1A in pancreatic cancer: tumorigenesis, prediction of treatment, and prognostic value. Am J Transl Res 2022; 14:5952-5964. [PMID: 36247295 PMCID: PMC9556451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/01/2022] [Indexed: 06/16/2023]
Abstract
The chromatin remodeling gene AT-rich interactive domain 1A (ARID1A), encoding a subunit of the switch/sucrose non-fermentable (SWI/SNF) complex, is one of the most frequently mutated chromatin regulators across a broad spectrum of cancers. Most of the ARID1A alterations are inactivating, leading to the loss or reduced expression of the protein. Recently, ARID1A has been demonstrated as a tumor suppressor gene in pancreatic ductal adenocarcinoma (PDAC), as its inactive alterations attribute to carcinogenesis. Importantly, ARID1A alterations are revealed as predictive biomarkers for the selection of targeted therapy and immune checkpoint blockade (ICB) therapy. In PDAC, the application of ARID1A alterations in stratifying patients for precise treatment has also been widely explored in preclinical and early clinic studies with encouraging preliminary results. Furthermore, the prognostic value of ARID1A mutations in PDAC has been suggested by various studies. In this review, we focus on the functions of ARID1A alterations in PDAC, particularly their functions during carcinogenesis and their predictive value in treatment selection and prognosis, to provide a comprehensive overview on our current understanding of ARID1A alterations in PDAC.
Collapse
Affiliation(s)
- Ruichao Li
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Guangbing Xiong
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Jun Zhao
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Lin Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| |
Collapse
|
8
|
Li Z, Zhao B, Qin C, Wang Y, Li T, Wang W. Chromatin Dynamics in Digestive System Cancer: Commander and Regulator. Front Oncol 2022; 12:935877. [PMID: 35965507 PMCID: PMC9372441 DOI: 10.3389/fonc.2022.935877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
Digestive system tumors have a poor prognosis due to complex anatomy, insidious onset, challenges in early diagnosis, and chemoresistance. Epidemiological statistics has verified that digestive system tumors rank first in tumor-related death. Although a great number of studies are devoted to the molecular biological mechanism, early diagnostic markers, and application of new targeted drugs in digestive system tumors, the therapeutic effect is still not satisfactory. Epigenomic alterations including histone modification and chromatin remodeling are present in human cancers and are now known to cooperate with genetic changes to drive the cancer phenotype. Chromatin is the carrier of genetic information and consists of DNA, histones, non-histone proteins, and a small amount of RNA. Chromatin and nucleosomes control the stability of the eukaryotic genome and regulate DNA processes such as transcription, replication, and repair. The dynamic structure of chromatin plays a key role in this regulatory function. Structural fluctuations expose internal DNA and thus provide access to the nuclear machinery. The dynamic changes are affected by various complexes and epigenetic modifications. Variation of chromatin dynamics produces early and superior regulation of the expression of related genes and downstream pathways, thereby controlling tumor development. Intervention at the chromatin level can change the process of cancer earlier and is a feasible option for future tumor diagnosis and treatment. In this review, we introduced chromatin dynamics including chromatin remodeling, histone modifications, and chromatin accessibility, and current research on chromatin regulation in digestive system tumors was also summarized.
Collapse
|