1
|
Sandnes M, Reikvam H. Hepcidin as a therapeutic target in iron overload. Expert Opin Ther Targets 2024:1-8. [PMID: 39679683 DOI: 10.1080/14728222.2024.2443081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/18/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
INTRODUCTION Dysregulation of the hepcidin-ferroportin axis is a hallmark in the pathogenesis of iron overload, ultimately leading to end-organ injury. Hereditary hemochromatosis and iron-loading anemias are characterized by a hepcidin deficiency, making hepcidin a novel therapeutic target for preventing and managing iron overload. AREAS COVERED Modulators of hepcidin expression and molecules mimicking hepcidin are emerging as highly promising therapeutic strategies. We present a summary of results from preclinical and clinical trials of such therapies in models of iron overload. EXPERT OPINION Current treatment alternatives in iron overload fail to address the underlying hepcidin deficiency - and may even exacerbate it. Until hepcidin-targeting therapies become available, several challenges remain, including the need to optimize dosing in order to manage the narrow treatment window and improving specificity in targeting iron metabolism pathways exclusively. Long-term studies are crucial to fully assess both the benefits and risks of these therapies and to explore their potential utility in combination with existing treatment guidelines. Furthermore, these therapies are expected to have applications, particularly in addressing other iron-maldistributed disorders, as seen in anemia of chronic disease and inflammation.
Collapse
Affiliation(s)
- Miriam Sandnes
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Håkon Reikvam
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center of Myeloid Malignancies, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
2
|
Park MY, Agoro R, Jankauskas SS, Le Henaff C, Sitara D. Phosphorus-independent role of FGF23 in erythropoiesis and iron homeostasis. PLoS One 2024; 19:e0315228. [PMID: 39666728 PMCID: PMC11637385 DOI: 10.1371/journal.pone.0315228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024] Open
Abstract
A number of studies have reported an association between phosphorus, red blood cell (RBC) production, and iron metabolism. However, it is difficult to distinguish whether the effect of phosphorus is direct or through the actions of FGF23, and it is not clear whether phosphorus is positively or negatively associated with RBC production. In the present study, we investigated the effects of a) increased phosphorus load and b) phosphorus deficiency on erythropoiesis and iron metabolism in association with FGF23. Mice were fed either a 1.2% or 1.65% phosphorus diet and compared to mice fed a control diet containing 0.6% of phosphorus. Moreover, we used two mouse models of hypophosphatemia-induced either by dietary intervention in the form of a low phosphorus (LP) diet (0.02% of Pi) or genetically in a mouse model of X-linked hypophosphatemia (XLH)-that had opposite FGF23 levels. Phosphorus supplementation appropriately increased FGF23 levels leading to excretion of excess phosphorus and normalization of serum phosphorus levels. We also found that a phosphorus-rich diet results in inflammation-induced hypoferremia associated with reduced iron export leading to tissue iron overload. Moreover, high phosphorus intake results in ineffective erythropoiesis caused by decreased production (decreased RBCs, hemoglobin, hematocrit, and erythroid progenitors in the bone marrow) and increased destruction of RBCs, leading to anemia despite increased EPO secretion. These complications occur through the actions of elevated FGF23 in the presence of normophosphatemia. Our data also show that LP diet induces a decrease in the serum concentrations of phosphorus and FGF23, resulting in increased RBC counts, hemoglobin concentration, and hematocrit compared to mice fed normal diet. Moreover, serum iron and transferrin saturation were increased and positively correlated with serum ferritin, liver ferritin protein and mRNA expression in mice fed LP diet. However, hyp mice, the murine model of XLH, exhibit hypophosphatemia and high serum FGF23 levels, along with low number of circulating RBCs, hemoglobin, and hematocrit compared to wild-type mice. In the bone marrow, hyp mice showed reduced number of erythroid progenitors and formed significantly less BFU-E colonies compared to control mice. Serum iron levels and transferrin saturation were also decreased in hyp mice in comparison to control mice. Taken together, our data show that FGF23 acts independent of phosphorus levels to regulate erythropoiesis and iron homeostasis.
Collapse
Affiliation(s)
- Min Young Park
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, United States of America
| | - Rafiou Agoro
- Department of Mammalian Genetics, The Jackson Laboratory, Bar Harbor, ME, United States of America
| | | | - Carole Le Henaff
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, United States of America
| | - Despina Sitara
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, United States of America
- Department of Medicine, Holman Division of Endocrinology, Diabetes and Metabolism, New York University Grossman School of Medicine, New York, NY, United States of America
| |
Collapse
|
3
|
Babar S, Saboor M. Erythroferrone in focus: emerging perspectives in iron metabolism and hematopathologies. BLOOD SCIENCE 2024; 6:e00198. [PMID: 39027903 PMCID: PMC11254117 DOI: 10.1097/bs9.0000000000000198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
Beyond its core role in iron metabolism, erythroferrone (ERFE) has emerged as a key player with far-reaching implications in various hematologic disorders. Its regulatory effect on hepcidin underlines its significance in conditions characterized by disrupted iron homeostasis. In β-thalassemia and myelodysplastic syndromes, its dysregulation intricately contributes to the clinical challenges of anemia and iron overload which highlights its potential as a therapeutic target. In anemia of chronic disease and iron deficiency anemia, ERFE presents a unique profile. In chronic kidney disease (CKD), the intricate interplay between ERFE, erythropoietin, and hepcidin undergoes dysregulation, contributing to the complex iron imbalance characteristic of this condition. Recent research suggests that ERFE plays a multifaceted role in restoring iron balance in CKD, beyond simply suppressing hepcidin production. The potential to modulate ERFE activity offers a novel approach to treating a spectrum of disorders associated with iron dysregulation. As our understanding of ERFE continues to evolve, it is poised to become a key focus in the development of targeted treatments, making it an exciting and dynamic area of ongoing research. Modulating ERFE activity presents a groundbreaking approach to treat iron dysregulation in conditions like iron deficiency anemia, thalassemia, and hemochromatosis. As new research unveils its intricate roles, ERFE has rapidly emerged as a key target for developing targeted therapies like ERFE agonists and antagonists. With promising studies underway, this dynamic field holds immense potential to improve patient outcomes, reduce complications, and offer personalized treatment options in hematology research. This comprehensive overview of ERFE's role across various conditions underscores its pivotal function in iron metabolism and associated pathologies.
Collapse
Affiliation(s)
- Sadia Babar
- Baqai Institute of Hematology, Baqai Medical University, Karachi, Pakistan
- Baqai Institute of Medical Technology, Baqai Medical University, Karachi, Pakistan
| | - Muhammad Saboor
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
4
|
Gu X, Huang C, Wang S, Deng J, Guo S, Sulitan A, Gu W, Lu Q, Yuan S, Yin X. Transcriptomic Analysis of the Rat Dorsal Root Ganglion After Fracture. Mol Neurobiol 2024; 61:1467-1478. [PMID: 37725213 DOI: 10.1007/s12035-023-03637-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023]
Abstract
In fractures, pain signals are transmitted from the dorsal root ganglion (DRG) to the brain, and the DRG generates efferent signals to the injured bone to participate in the injury response. However, little is known about how this process occurs. We analyzed DRG transcriptome at 3, 7, 14, and 28 days after fracture. We identified the key pathways through KEGG and GO enrichment analysis. We then used IPA analysis to obtain upstream regulators and disease pathways. Finally, we compared the sequencing results with those of nerve injury to identify the unique transcriptome changes in DRG after fracture. We found that the first 14 days after fracture were the main repair response period, the 3rd day was the peak of repair activity, the 14th day was dominated by the stimulus response, and on the 28th day, the repair response had reached a plateau. ECM-receptor interaction, protein digestion and absorption, and the PI3K-Akt signaling pathway were most significantly enriched, which may be involved in repair regeneration, injury response, and pain transmission. Compared with the nerve injury model, DRG after fracture produced specific alterations related to bone repair, and the bone density function was the most widely activated bone-related function. Our results obtained some important genes and pathways in DRG after fracture, and we also summarized the main features of transcriptome function at each time point through functional annotation clustering of GO pathway, which gave us a deeper understanding of the role played by DRG in fracture.
Collapse
Affiliation(s)
- Xinyi Gu
- Department of Orthopedics and Traumatology, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, 100000, China
| | - Chen Huang
- Department of Orthopedics and Traumatology, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, 100000, China
| | - Shen Wang
- Department of Orthopedics and Traumatology, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, 100000, China
| | - Jin Deng
- Department of Orthopedics and Traumatology, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, 100000, China
| | - Shuhang Guo
- Department of Orthopedics and Traumatology, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, 100000, China
| | - Aihaiti Sulitan
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing, 210023, China
| | - Wanjun Gu
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing, 210023, China
- Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, Nanjing, 210023, China
| | - Qingguo Lu
- Trauma Center, Pizhou People's Hospital, Xuzhou, Jiangsu Province, 221300, China
| | - Shaoxun Yuan
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing, 210023, China.
| | - Xiaofeng Yin
- Department of Orthopedics and Traumatology, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, 100000, China.
| |
Collapse
|
5
|
Mast JF, Leach EAE, Thompson TB. Characterization of erythroferrone oligomerization and its impact on BMP antagonism. J Biol Chem 2024; 300:105452. [PMID: 37949218 PMCID: PMC10772735 DOI: 10.1016/j.jbc.2023.105452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
Hepcidin, a peptide hormone that negatively regulates iron metabolism, is expressed by bone morphogenetic protein (BMP) signaling. Erythroferrone (ERFE) is an extracellular protein that binds and inhibits BMP ligands, thus positively regulating iron import by indirectly suppressing hepcidin. This allows for rapid erythrocyte regeneration after blood loss. ERFE belongs to the C1Q/TNF-related protein family and is suggested to adopt multiple oligomeric forms: a trimer, a hexamer, and a high molecular weight species. The molecular basis for how ERFE binds BMP ligands and how the different oligomeric states impact BMP inhibition are poorly understood. In this study, we demonstrated that ERFE activity is dependent on the presence of stable dimeric or trimeric ERFE and that larger species are dispensable for BMP inhibition. Additionally, we used an in silico approach to identify a helix, termed the ligand-binding domain, that was predicted to bind BMPs and occlude the type I receptor pocket. We provide evidence that the ligand-binding domain is crucial for activity through luciferase assays and surface plasmon resonance analysis. Our findings provide new insight into how ERFE oligomerization impacts BMP inhibition, while identifying critical molecular features of ERFE essential for binding BMP ligands.
Collapse
Affiliation(s)
- Jacob F Mast
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Edmund A E Leach
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Thomas B Thompson
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, Ohio, USA.
| |
Collapse
|
6
|
Willimann R, Chougar C, Wolfe LC, Blanc L, Lipton JM. Defects in Bone and Bone Marrow in Inherited Anemias: the Chicken or the Egg. Curr Osteoporos Rep 2023; 21:527-539. [PMID: 37436584 DOI: 10.1007/s11914-023-00809-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/13/2023]
Abstract
PURPOSE OF REVIEW Recently, there has been an increasing number of studies on the crosstalk between the bone and the bone marrow and how it pertains to anemia. Here, we discuss four heritable clinical syndromes contrasting those in which anemia affects bone growth and development, with those in which abnormal bone development results in anemia, highlighting the multifaceted interactions between skeletal development and hematopoiesis. RECENT FINDINGS Anemia results from both inherited and acquired disorders caused by either impaired production or premature destruction of red blood cells or blood loss. The downstream effects on bone development and growth in patients with anemia often constitute an important part of their clinical condition. We will discuss the interdependence of abnormal bone development and growth and hematopoietic abnormalities, with a focus on the erythroid lineage. To illustrate those points, we selected four heritable anemias that arise from either defective hematopoiesis impacting the skeletal system (the hemoglobinopathies β-thalassemia and sickle cell disease) versus defective osteogenesis resulting in impaired hematopoiesis (osteopetrosis). Finally, we will discuss recent findings in Diamond Blackfan anemia, an intrinsic disorder of both the erythron and the bone. By focusing on four representative hereditary hematopoietic disorders, this complex relationship between bone and blood should lead to new areas of research in the field.
Collapse
Affiliation(s)
- Rachel Willimann
- Division of Hematology Oncology and Cellular Therapy, Steven and Alexandra Cohen Children's Medical Center of New York, 269-01 76th Avenue, New Hyde Park, NY, 11040, USA
| | - Christina Chougar
- Division of Hematology Oncology and Cellular Therapy, Steven and Alexandra Cohen Children's Medical Center of New York, 269-01 76th Avenue, New Hyde Park, NY, 11040, USA
- Division of Pediatric Radiology, Steven and Alexandra Cohen Children's Medical Center of New York, 269-01 76th Avenue, New Hyde Park, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Lawrence C Wolfe
- Division of Hematology Oncology and Cellular Therapy, Steven and Alexandra Cohen Children's Medical Center of New York, 269-01 76th Avenue, New Hyde Park, NY, 11040, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Lionel Blanc
- Division of Hematology Oncology and Cellular Therapy, Steven and Alexandra Cohen Children's Medical Center of New York, 269-01 76th Avenue, New Hyde Park, NY, 11040, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Jeffrey M Lipton
- Division of Hematology Oncology and Cellular Therapy, Steven and Alexandra Cohen Children's Medical Center of New York, 269-01 76th Avenue, New Hyde Park, NY, 11040, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
- The Feinstein Institutes for Medical Research, Manhasset, NY, USA.
| |
Collapse
|
7
|
Mast JF, Leach EAE, Thompson TB. Characterization of erythroferrone oligomerization and its impact on BMP antagonism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555965. [PMID: 37693455 PMCID: PMC10491252 DOI: 10.1101/2023.09.01.555965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Hepcidin, a peptide hormone that negatively regulates iron metabolism, is expressed by bone morphogenetic protein (BMP) signaling. Erythroferrone (ERFE) is an extracellular protein that binds and inhibits BMP ligands, thus positively regulating iron import by indirectly suppressing hepcidin. This allows for rapid erythrocyte regeneration after blood loss. ERFE belongs to the C1Q/TNF related protein (CTRP) family and is suggested to adopt multiple oligomeric forms: a trimer, a hexamer, and a high molecular weight species. The molecular basis for how ERFE binds BMP ligands and how the different oligomeric states impact BMP inhibition are poorly understood. In this study, we demonstrated that ERFE activity is dependent on the presence of stable dimeric or trimeric ERFE, and that larger species are dispensable for BMP inhibition. Additionally, we used an in-silico approach to identify a helix, termed the ligand binding domain (LBD), that was predicted to bind BMPs and occlude the type I receptor pocket. We provide evidence that the LBD is crucial for activity through luciferase assays and surface plasmon resonance (SPR) analysis. Our findings provide new insight into how ERFE oligomerization impacts BMP inhibition, while identifying critical molecular features of ERFE essential for binding BMP ligands.
Collapse
Affiliation(s)
- Jacob F Mast
- Department of Molecular and Cellular Biosciences, University of Cincinnati
| | - Edmund A E Leach
- Department of Molecular and Cellular Biosciences, University of Cincinnati
| | - Thomas B Thompson
- Department of Molecular and Cellular Biosciences, University of Cincinnati
| |
Collapse
|
8
|
Aprile A, Raggi L, Bolamperti S, Villa I, Storto M, Morello G, Marktel S, Tripodo C, Cappellini MD, Motta I, Rubinacci A, Ferrari G. Inhibition of FGF23 is a therapeutic strategy to target hematopoietic stem cell niche defects in β-thalassemia. Sci Transl Med 2023; 15:eabq3679. [PMID: 37256933 DOI: 10.1126/scitranslmed.abq3679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/27/2023] [Indexed: 06/02/2023]
Abstract
Clinical evidence highlights a relationship between the blood and the bone, but the underlying mechanism linking these two tissues is not fully elucidated. Here, we used β-thalassemia as a model of congenital anemia with bone and bone marrow (BM) niche defects. We demonstrate that fibroblast growth factor 23 (FGF23) is increased in patients and mice with β-thalassemia because erythropoietin induces FGF23 overproduction in bone and BM erythroid cells via ERK1/2 and STAT5 pathways. We show that in vivo inhibition of FGF23 signaling by carboxyl-terminal FGF23 peptide is a safe and efficacious therapeutic strategy to rescue bone mineralization and deposition in mice with β-thalassemia, normalizing the expression of niche factors and restoring hematopoietic stem cell (HSC) function. FGF23 may thus represent a molecular link connecting anemia, bone, and the HSC niche. This study provides a translational approach to targeting bone defects and rescuing HSC niche interactions, with potential clinical relevance for improving HSC transplantation and gene therapy for hematopoietic disorders.
Collapse
Affiliation(s)
- Annamaria Aprile
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Laura Raggi
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- University of Milano Bicocca, 20126 Milan, Italy
| | - Simona Bolamperti
- Bone Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Endocrine and Osteometabolic Laboratory, Institute of Endocrine and Metabolic Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Isabella Villa
- Bone Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Endocrine and Osteometabolic Laboratory, Institute of Endocrine and Metabolic Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Mariangela Storto
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gaia Morello
- Tumor Immunology Unit, Human Pathology Section, Department of Health Sciences, University of Palermo, 90134 Palermo, Italy
| | - Sarah Marktel
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Human Pathology Section, Department of Health Sciences, University of Palermo, 90134 Palermo, Italy
- IFOM ETS, AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Maria Domenica Cappellini
- General Medicine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Irene Motta
- General Medicine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Alessandro Rubinacci
- Bone Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giuliana Ferrari
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
9
|
Means RT. Ineffective erythropoiesis and osteoporosis in thalassemia: Mechanistic insights? Am J Med Sci 2023:S0002-9629(23)01171-0. [PMID: 37149035 DOI: 10.1016/j.amjms.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Affiliation(s)
- Robert T Means
- Departments of Internal Medicine and Pathology, James H. Quillen College of Medicine, Johnson City, TN, USA.
| |
Collapse
|
10
|
Sardo U, Perrier P, Cormier K, Sotin M, Desquesnes A, Cannizzo L, Ruiz-Martinez M, Thevenin J, Billoré B, Jung G, Abboud E, Peyssonnaux C, Nemeth E, Ginzburg YZ, Ganz T, Kautz L. The hepatokine FGL1 regulates hepcidin and iron metabolism during the recovery from hemorrhage-induced anemia in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535920. [PMID: 37066218 PMCID: PMC10104156 DOI: 10.1101/2023.04.06.535920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
As a functional component of erythrocyte hemoglobin, iron is essential for oxygen delivery to all tissues in the body. The liver-derived peptide hepcidin is the master regulator of iron homeostasis. During anemia, the erythroid hormone erythroferrone regulates hepcidin synthesis to ensure adequate supply of iron to the bone marrow for red blood cells production. However, mounting evidence suggested that another factor may exert a similar function. We identified the hepatokine FGL1 as a previously undescribed suppressor of hepcidin that is induced in the liver in response to hypoxia during the recovery from anemia and in thalassemic mice. We demonstrated that FGL1 is a potent suppressor of hepcidin in vitro and in vivo . Deletion of Fgl1 in mice results in a blunted repression of hepcidin after bleeding. FGL1 exerts its activity by direct binding to BMP6, thereby inhibiting the canonical BMP-SMAD signaling cascade that controls hepcidin transcription. Key points 1/ FGL1 regulates iron metabolism during the recovery from anemia. 2/ FGL1 is an antagonist of the BMP/SMAD signaling pathway.
Collapse
|
11
|
Peng Y, Liang L, Zhang H, Liu H, Zhang G, Sun S, Guo X, Wang Y, Hu B, Liu R, Li Y, Nie L, Zhang J, Ye M, Ginzburg YZ, Lin Z, Yin B, Chen H, Liu J. Single-cell profiling of ineffective erythropoiesis in a mouse model of β-thalassaemia intermedia. Br J Haematol 2023; 201:982-994. [PMID: 36872867 DOI: 10.1111/bjh.18706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 03/07/2023]
Abstract
Beta-thalassaemia is an inherited haemoglobin disorder characterised by ineffective erythropoiesis (IE). The detailed pathogenesis of IE remains unclear. In this study, we used single-cell RNA sequencing (scRNA-seq) to examine IE in Th3/+ β-thalassaemic mice. The results showed that the erythroid group was remarkably expanded, and genes involved in biological processes such as iron metabolism, haeme synthesis, protein folding, and response to heat were significantly upregulated from erythroid progenitors to reticulocytes in β-thalassaemic mice. In particular, we identified a unique cell population close to reticulocytes, named ThReticulocytes, characterised by a high level of heat shock protein 70 (Hsp70) expression and dysregulation of iron metabolism and haeme synthesis signalling. Treatment of β-thalassaemic mice with the haeme oxygenase inhibitor tin-mesoporphyrin effectively improved the iron disorder and IE, and the ThReticulocyte population and Hsp70 expression were significantly suppressed. This study revealed in detail the progression of IE at the single-cell level and possibly provided clues to find therapeutic targets in thalassaemia.
Collapse
Affiliation(s)
- Yuanliang Peng
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, China.,Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, China
| | - Long Liang
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Haihang Zhang
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Guanxiong Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Shuming Sun
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Xianfeng Guo
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanpeng Wang
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Bin Hu
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Rui Liu
- Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Yanan Li
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling Nie
- Xiangya Hospital, Central South University, Changsha, China
| | - Ji Zhang
- Department of Rheumatology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Yelena Z Ginzburg
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Zhong Lin
- Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Biao Yin
- Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, China
| | - Huiyong Chen
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, China.,Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, China
| | - Jing Liu
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Zaidi M, Kim SM, Mathew M, Korkmaz F, Sultana F, Miyashita S, Gumerova AA, Frolinger T, Moldavski O, Barak O, Pallapati A, Rojekar S, Caminis J, Ginzburg Y, Ryu V, Davies TF, Lizneva D, Rosen CJ, Yuen T. Bone circuitry and interorgan skeletal crosstalk. eLife 2023; 12:83142. [PMID: 36656634 PMCID: PMC9851618 DOI: 10.7554/elife.83142] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023] Open
Abstract
The past decade has seen significant advances in our understanding of skeletal homeostasis and the mechanisms that mediate the loss of bone integrity in disease. Recent breakthroughs have arisen mainly from identifying disease-causing mutations and modeling human bone disease in rodents, in essence, highlighting the integrative nature of skeletal physiology. It has become increasingly clear that bone cells, osteoblasts, osteoclasts, and osteocytes, communicate and regulate the fate of each other through RANK/RANKL/OPG, liver X receptors (LXRs), EphirinB2-EphB4 signaling, sphingolipids, and other membrane-associated proteins, such as semaphorins. Mounting evidence also showed that critical developmental pathways, namely, bone morphogenetic protein (BMP), NOTCH, and WNT, interact each other and play an important role in postnatal bone remodeling. The skeleton communicates not only with closely situated organs, such as bone marrow, muscle, and fat, but also with remote vital organs, such as the kidney, liver, and brain. The metabolic effect of bone-derived osteocalcin highlights a possible role of skeleton in energy homeostasis. Furthermore, studies using genetically modified rodent models disrupting the reciprocal relationship with tropic pituitary hormone and effector hormone have unraveled an independent role of pituitary hormone in skeletal remodeling beyond the role of regulating target endocrine glands. The cytokine-mediated skeletal actions and the evidence of local production of certain pituitary hormones by bone marrow-derived cells displays a unique endocrine-immune-skeletal connection. Here, we discuss recently elucidated mechanisms controlling the remodeling of bone, communication of bone cells with cells of other lineages, crosstalk between bone and vital organs, as well as opportunities for treating diseases of the skeleton.
Collapse
Affiliation(s)
- Mone Zaidi
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Se-Min Kim
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Mehr Mathew
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Funda Korkmaz
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Farhath Sultana
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Sari Miyashita
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Anisa Azatovna Gumerova
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Tal Frolinger
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Ofer Moldavski
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Orly Barak
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Anusha Pallapati
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Satish Rojekar
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - John Caminis
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Yelena Ginzburg
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Vitaly Ryu
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Terry F Davies
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Daria Lizneva
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | | | - Tony Yuen
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| |
Collapse
|
13
|
Abstract
An abundant metal in the human body, iron is essential for key biological pathways including oxygen transport, DNA metabolism, and mitochondrial function. Most iron is bound to heme but it can also be incorporated into iron-sulfur clusters or bind directly to proteins. Iron's capacity to cycle between Fe2+ and Fe3+ contributes to its biological utility but also renders it toxic in excess. Heme is an iron-containing tetrapyrrole essential for diverse biological functions including gas transport and sensing, oxidative metabolism, and xenobiotic detoxification. Like iron, heme is essential yet toxic in excess. As such, both iron and heme homeostasis are tightly regulated. Here we discuss molecular and physiologic aspects of iron and heme metabolism. We focus on dietary absorption; cellular import; utilization; and export, recycling, and elimination, emphasizing studies published in recent years. We end with a discussion on current challenges and needs in the field of iron and heme biology.
Collapse
Affiliation(s)
- Sohini Dutt
- Department of Animal and Avian Sciences and Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Iqbal Hamza
- Department of Animal and Avian Sciences and Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | | |
Collapse
|
14
|
Lokesh KN, Raichur AM. Bioactive nutraceutical ligands and their efficiency to chelate elemental iron of varying dynamic oxidation states to mitigate associated clinical conditions. Crit Rev Food Sci Nutr 2022; 64:517-543. [PMID: 35943179 DOI: 10.1080/10408398.2022.2106936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The natural bioactive or nutraceuticals exhibit several health benefits, including anti-inflammatory, anti-cancer, metal chelation, antiviral, and antimicrobial activity. The inherent limitation of nutraceuticals or bioactive ligand(s) in terms of poor pharmacokinetic and other physicochemical properties affects their overall therapeutic efficiency. The excess of iron in the physiological compartments and its varying dynamic oxidation state [Fe(II) and Fe(III)] precipitates various clinical conditions such as non-transferrin bound iron (NTBI), labile iron pool (LIP), ferroptosis, cancer, etc. Though several natural bioactive ligands are proposed to chelate iron, the efficiency of bioactive ligands is limited due to poor bioavailability, denticity, and other related physicochemical properties. The present review provides insight into the relevance of studying the dynamic oxidation state of iron(II) and iron(III) in the physiological compartments and its clinical significance for selecting diagnostics and therapeutic regimes. We suggested a three-pronged approach, i.e., diagnosis, selection of therapeutic regime (natural bioactive), and integration of novel drug delivery systems (NDDS) or nanotechnology-based principles. This systematic approach improves the overall therapeutic efficiency of natural iron chelators to manage iron overload-related clinical conditions.
Collapse
Affiliation(s)
- K N Lokesh
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | - Ashok M Raichur
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
15
|
Feng R, Lu M, Yang Y, Luo P, Liu L, Xu K, Xu P. Genome- and transcriptome-wide association studies show that pulmonary embolism is associated with bone-forming proteins. Expert Rev Hematol 2022; 15:951-958. [PMID: 35848930 DOI: 10.1080/17474086.2022.2103534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Pulmonary embolism (PE) is a leading cause of death in stroke patients and a severe health burden worldwide. There is a pressing need to understand the mechanisms by which it occurs and to identify at-risk patients efficiently and accurately. OBJECTIVES The aim of this paper was to analyze the genetic correlation between PE and human plasma proteins through genome-wide association study (GWAS) with transcriptome-wide association study (TWAS), in combination with mRNA expression profiling at three levels: DNA, RNA, and protein. METHODS First, based on data from GWAS in European populations, we performed a linkage disequilibrium score regression (LDSC) analysis of plasma proteins and PE in 3,283 individuals and additionally analyzed the genetic association between PE and fracture. Then, we performed a TWAS on PE GWAS data using skeletal muscle and blood for gene expression references. Finally, we validated the genetic correlation between PE and human plasma proteins by co-matching the genes encoding the identified proteins and those identified using TWAS with the differentially expressed genes obtained from mRNA expression profiling of PE (Figure1). RESULTS We identified five plasma proteins associated with PE, including hydroxycarboxylic acid receptor 2, defensin 118, and bone morphogenetic protein (BMP) 7, as well as a relationship between PE and fracture. Comparison of genes encoding these proteins with genes obtained from TWAS and then with differentially expressed genes obtained from PE mRNA expression profiling revealed that PE was highly correlated with the BMP family of genes.
Collapse
Affiliation(s)
- Ruoyang Feng
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi, 710054, China
| | - Mengnan Lu
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yanni Yang
- Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Pan Luo
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi, 710054, China
| | - Lin Liu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi, 710054, China
| | - Ke Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi, 710054, China
| | - Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi, 710054, China
| |
Collapse
|
16
|
The mutual crosstalk between iron and erythropoiesis. Int J Hematol 2022; 116:182-191. [PMID: 35618957 DOI: 10.1007/s12185-022-03384-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 02/08/2023]
Abstract
Iron homeostasis and erythropoiesis are strongly interconnected. On one side iron is essential to terminal erythropoiesis for hemoglobin production, on the other erythropoiesis may increase iron absorption through the production of erythroferrone, the erythroid hormone that suppresses hepcidin expression Also erythropoietin production is modulated by iron through the iron regulatory proteins-iron responsive elements that control the hypoxia inducible factor 2-α. The second transferrin receptor, an iron sensor both in the liver and in erythroid cells modulates erythropoietin sensitivity and is a further link between hepcidin and erythropoiesis. When erythropoietin is decreased in iron deficiency the erythropoietin sensitivity is increased because the second transferrin receptor is removed from cell surface. A deranged balance between erythropoiesis and iron/hepcidin may lead to anemia, as in the case of iron deficiency, defective iron uptake and erythroid utilization or subnormal recycling. Defective control of hepcidin production may cause iron deficiency, as in the recessive disorder iron refractory iron deficiency anemia or in anemia of inflammation, or in iron loading anemias, which are characterized by excessive but ineffective erythropoiesis. The elucidation of the mechanisms that regulates iron homeostasis and erythropoiesis is leading to the development of drugs for the benefit of both iron and erythropoiesis disorders.
Collapse
|
17
|
Correnti M, Gammella E, Cairo G, Recalcati S. Iron Mining for Erythropoiesis. Int J Mol Sci 2022; 23:ijms23105341. [PMID: 35628152 PMCID: PMC9140467 DOI: 10.3390/ijms23105341] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 01/27/2023] Open
Abstract
Iron is necessary for essential processes in every cell of the body, but the erythropoietic compartment is a privileged iron consumer. In fact, as a necessary component of hemoglobin and myoglobin, iron assures oxygen distribution; therefore, a considerable amount of iron is required daily for hemoglobin synthesis and erythroid cell proliferation. Therefore, a tight link exists between iron metabolism and erythropoiesis. The liver-derived hormone hepcidin, which controls iron homeostasis via its interaction with the iron exporter ferroportin, coordinates erythropoietic activity and iron homeostasis. When erythropoiesis is enhanced, iron availability to the erythron is mainly ensured by inhibiting hepcidin expression, thereby increasing ferroportin-mediated iron export from both duodenal absorptive cells and reticuloendothelial cells that process old and/or damaged red blood cells. Erythroferrone, a factor produced and secreted by erythroid precursors in response to erythropoietin, has been identified and characterized as a suppressor of hepcidin synthesis to allow iron mobilization and facilitate erythropoiesis.
Collapse
|
18
|
Sanchez-Villalobos M, Blanquer M, Moraleda JM, Salido EJ, Perez-Oliva AB. New Insights Into Pathophysiology of β-Thalassemia. Front Med (Lausanne) 2022; 9:880752. [PMID: 35492364 PMCID: PMC9041707 DOI: 10.3389/fmed.2022.880752] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
β-thalassemia is a disease caused by genetic mutations including a nucleotide change, small insertions or deletions in the β-globin gene, or in rare cases, gross deletions into the β-globin gene. These mutations affect globin-chain subunits within the hemoglobin tetramer what induces an imbalance in the α/β-globin chain ratio, with an excess of free α-globin chains that triggers the most important pathogenic events of the disease: ineffective erythropoiesis, chronic anemia/chronic hypoxia, compensatory hemopoietic expansion and iron overload. Based on advances in our knowledge of the pathophysiology of β-thalassemia, in recent years, emerging therapies and clinical trials are being conducted and are classified into three major categories based on the different approach features of the underlying pathophysiology: correction of the α/β-globin disregulation; improving iron overload and reverse ineffective erythropoiesis. However, pathways such as the dysregulation of transcriptional factors, activation of the inflammasome, or approach to mechanisms of bone mineral loss, remain unexplored for future therapeutic targets. In this review, we update the main pathophysiological pathways involved in β-thalassemia, focusing on the development of new therapies directed at new therapeutic targets.
Collapse
Affiliation(s)
| | - Miguel Blanquer
- Hematology Service, Virgen de la Arrixaca University Hospital, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Jose M Moraleda
- Hematology Service, Virgen de la Arrixaca University Hospital, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Eduardo J Salido
- Hematology Service, Virgen de la Arrixaca University Hospital, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Ana B Perez-Oliva
- Biomedical Research Institute of Murcia (IMIB), Murcia, Spain.,Centro de Investigaci3n Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
19
|
Erythroferrone in iron regulation and beyond. Blood 2022; 139:319-321. [PMID: 35050338 DOI: 10.1182/blood.2021014326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/17/2021] [Indexed: 01/10/2023] Open
|