1
|
Sharma V, Fernando V, Zheng X, Sweef O, Choi ES, Thomas V, Furuta S. Immunogenic shift of arginine metabolism triggers systemic metabolic and immunological reprogramming to prevent HER2+ breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619827. [PMID: 39484369 PMCID: PMC11527010 DOI: 10.1101/2024.10.23.619827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Arginine metabolism in tumors is often shunted into the pathway producing pro-tumor and immune suppressive polyamines (PAs), while downmodulating the alternative nitric oxide (NO) synthesis pathway. Aiming to correct arginine metabolism in tumors, arginine deprivation therapy and inhibitors of PA synthesis have been developed. Despite some therapeutic advantages, these approaches have often yielded severe side effects, making it necessary to explore an alternative strategy. We previously reported that supplementing SEP, the endogenous precursor of BH 4 (the essential NO synthase cofactor), could correct arginine metabolism in tumor cells and tumor-associated macrophages (TAMs) and induce their metabolic and phenotypic reprogramming. We saw that oral SEP treatment effectively suppressed the growth of HER2-positive mammary tumors in animals. SEP also has no reported dose-dependent toxicity in clinical trials for metabolic disorders. In the present study, we report that a long-term use of SEP in animals susceptible to HER2-positive mammary tumors effectively prevented tumor occurrence. These SEP-treated animals had undergone reprogramming of the systemic metabolism and immunity, elevating total T cell counts in the circulation and bone marrow. Given that bone marrow-resident T cells are mostly memory T cells, it is plausible that chronic SEP treatment promoted memory T cell formation, leading to a potent tumor prevention. These findings suggest the possible roles of the SEP/BH 4 /NO axis in promoting memory T cell formation and its potential therapeutic utility for preventing HER2-positive breast cancer.
Collapse
|
2
|
Shin B, Chang SJ, MacNabb BW, Rothenberg EV. Transcriptional network dynamics in early T cell development. J Exp Med 2024; 221:e20230893. [PMID: 39167073 PMCID: PMC11338287 DOI: 10.1084/jem.20230893] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/07/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
The rate at which cells enter the T cell pathway depends not only on the immigration of hematopoietic precursors into the strong Notch signaling environment of the thymus but also on the kinetics with which each individual precursor cell reaches T-lineage commitment once it arrives. Notch triggers a complex, multistep gene regulatory network in the cells in which the steps are stereotyped but the transition speeds between steps are variable. Progenitor-associated transcription factors delay T-lineage differentiation even while Notch-induced transcription factors within the same cells push differentiation forward. Progress depends on regulator cross-repression, on breaching chromatin barriers, and on shifting, competitive collaborations between stage-specific and stably expressed transcription factors, as reviewed here.
Collapse
Affiliation(s)
- Boyoung Shin
- Division of Biology and Biological Engineering California Institute of Technology , Pasadena, CA, USA
| | - Samantha J Chang
- Division of Biology and Biological Engineering California Institute of Technology , Pasadena, CA, USA
| | - Brendan W MacNabb
- Division of Biology and Biological Engineering California Institute of Technology , Pasadena, CA, USA
| | - Ellen V Rothenberg
- Division of Biology and Biological Engineering California Institute of Technology , Pasadena, CA, USA
| |
Collapse
|
3
|
Li L, Xu F, Han Y, Zeng J, Du S, Wang C. Thymic microenvironment's impact on immunosenescence. Immunol Res 2024:10.1007/s12026-024-09519-z. [PMID: 39042204 DOI: 10.1007/s12026-024-09519-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Age-related thymic involution is characterized by the loss of T cell development and the supporting epithelial network, which are replaced by adipose tissue. We previously showed that aging functionally impairs lymphohematopoietic progenitor cells, including thymic early T cell progenitors (ETPs), contributing to thymic involution. Considering that the thymic microenvironment is essential for thymocyte incubation, we aimed to investigate its role in age-related thymic involution and the mechanisms underlying these changes. The challenge in studying these processes led us to transplant T cell-depleted fetal thymus tissue into the kidney capsule of aged mice. This model allowed us to identify the mechanisms driving age-related changes in the thymic microenvironment and to assess whether these changes could be reversed. Flow cytometry was used to detect naïve T cells (CD62L+CD44-), including CD4 CD8 double-negative, double-positive, and single-positive T cells. Real-time PCR was used to detect and quantify signal-joint T cell receptor excision circles. We rearranged δRec-ΨJα in murine peripheral blood leukocytes to evaluate the thymic output of newly developed naïve T cells in the mice and gene expression in the thymus. Age-related thymic involution decreased naïve T cells and increased memory T cells, while fetal thymus transplantation improved thymic output and T cell production and reversed the impairment of thymopoiesis due to thymic involution in aged mice. Furthermore, the expression of key cytokines was restored and ETPs in the aged mice showed normal thymic T cell development. Our study suggests that degenerative changes in the thymic microenvironment are the primary cause of thymic dysfunction, leading to immunosenescence associated with age-related thymic involution.
Collapse
Affiliation(s)
- Li Li
- Shenzhen Guangming District People's Hospital, 4253 Songbai Road, Matian Street, Guangming District, Shenzhen, 518106, Guangdong, China
| | - Feng Xu
- Shenzhen Guangming District People's Hospital, 4253 Songbai Road, Matian Street, Guangming District, Shenzhen, 518106, Guangdong, China
| | - Yi Han
- Shenzhen Guangming District People's Hospital, 4253 Songbai Road, Matian Street, Guangming District, Shenzhen, 518106, Guangdong, China
| | - Jun Zeng
- Shenzhen Guangming District People's Hospital, 4253 Songbai Road, Matian Street, Guangming District, Shenzhen, 518106, Guangdong, China
| | - Shan Du
- Shenzhen Guangming District People's Hospital, 4253 Songbai Road, Matian Street, Guangming District, Shenzhen, 518106, Guangdong, China
| | - Changshan Wang
- Shenzhen Guangming District People's Hospital, 4253 Songbai Road, Matian Street, Guangming District, Shenzhen, 518106, Guangdong, China.
| |
Collapse
|
4
|
Klocke C, Moran A, Adey A, McWeeney S, Wu G. Identification of Cellular Interactions in the Tumor Immune Microenvironment Underlying CD8 T Cell Exhaustion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566384. [PMID: 38014233 PMCID: PMC10680664 DOI: 10.1101/2023.11.09.566384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
While immune checkpoint inhibitors show success in treating a subset of patients with certain late-stage cancers, these treatments fail in many other patients as a result of mechanisms that have yet to be fully characterized. The process of CD8 T cell exhaustion, by which T cells become dysfunctional in response to prolonged antigen exposure, has been implicated in immunotherapy resistance. Single-cell RNA sequencing (scRNA-seq) produces an abundance of data to analyze this process; however, due to the complexity of the process, contributions of other cell types to a process within a single cell type cannot be simply inferred. We constructed an analysis framework to first rank human skin tumor samples by degree of exhaustion in tumor-infiltrating CD8 T cells and then identify immune cell type-specific gene-regulatory network patterns significantly associated with T cell exhaustion. Using this framework, we further analyzed scRNA-seq data from human tumor and chronic viral infection samples to compare the T cell exhaustion process between these two contexts. In doing so, we identified transcription factor activity in the macrophages of both tissue types associated with this process. Our framework can be applied beyond the tumor immune microenvironment to any system involving cell-cell communication, facilitating insights into key biological processes that underpin the effective treatment of cancer and other complicated diseases.
Collapse
|
5
|
Shin B, Rothenberg EV. Multi-modular structure of the gene regulatory network for specification and commitment of murine T cells. Front Immunol 2023; 14:1108368. [PMID: 36817475 PMCID: PMC9928580 DOI: 10.3389/fimmu.2023.1108368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
T cells develop from multipotent progenitors by a gradual process dependent on intrathymic Notch signaling and coupled with extensive proliferation. The stages leading them to T-cell lineage commitment are well characterized by single-cell and bulk RNA analyses of sorted populations and by direct measurements of precursor-product relationships. This process depends not only on Notch signaling but also on multiple transcription factors, some associated with stemness and multipotency, some with alternative lineages, and others associated with T-cell fate. These factors interact in opposing or semi-independent T cell gene regulatory network (GRN) subcircuits that are increasingly well defined. A newly comprehensive picture of this network has emerged. Importantly, because key factors in the GRN can bind to markedly different genomic sites at one stage than they do at other stages, the genes they significantly regulate are also stage-specific. Global transcriptome analyses of perturbations have revealed an underlying modular structure to the T-cell commitment GRN, separating decisions to lose "stem-ness" from decisions to block alternative fates. Finally, the updated network sheds light on the intimate relationship between the T-cell program, which depends on the thymus, and the innate lymphoid cell (ILC) program, which does not.
Collapse
Affiliation(s)
- Boyoung Shin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Ellen V. Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
6
|
Owen JS, Clayton A, Pearson HB. Cancer-Associated Fibroblast Heterogeneity, Activation and Function: Implications for Prostate Cancer. Biomolecules 2022; 13:67. [PMID: 36671452 PMCID: PMC9856041 DOI: 10.3390/biom13010067] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
The continuous remodeling of the tumor microenvironment (TME) during prostate tumorigenesis is emerging as a critical event that facilitates cancer growth, progression and drug-resistance. Recent advances have identified extensive communication networks that enable tumor-stroma cross-talk, and emphasized the functional importance of diverse, heterogeneous stromal fibroblast populations during malignant growth. Cancer-associated fibroblasts (CAFs) are a vital component of the TME, which mediate key oncogenic events including angiogenesis, immunosuppression, metastatic progression and therapeutic resistance, thus presenting an attractive therapeutic target. Nevertheless, how fibroblast heterogeneity, recruitment, cell-of-origin and differential functions contribute to prostate cancer remains to be fully delineated. Developing our molecular understanding of these processes is fundamental to developing new therapies and biomarkers that can ultimately improve clinical outcomes. In this review, we explore the current challenges surrounding fibroblast identification, discuss new mechanistic insights into fibroblast functions during normal prostate tissue homeostasis and tumorigenesis, and illustrate the diverse nature of fibroblast recruitment and CAF generation. We also highlight the promise of CAF-targeted therapies for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Jasmine S. Owen
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Aled Clayton
- Tissue Microenvironment Group, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| |
Collapse
|
7
|
Koizumi M, Kama Y, Hirano KI, Endo Y, Tanaka T, Hozumi K, Hosokawa H. Transcription factor Zbtb1 interacts with bridging factor Lmo2 and maintains the T-lineage differentiation capacity of lymphoid progenitor cells. J Biol Chem 2022; 298:102506. [PMID: 36126774 PMCID: PMC9582733 DOI: 10.1016/j.jbc.2022.102506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/19/2022] Open
Abstract
Hematopoietic stem and progenitor cells can differentiate into all types of blood cells. Regulatory mechanisms underlying pluripotency in progenitors, such as the ability of lymphoid progenitor cells to differentiate into T-lineage, remain unclear. We have previously reported that LIM domain only 2 (Lmo2), a bridging factor in large transcriptional complexes, is essential to retain the ability of lymphoid progenitors to differentiate into T-lineage. However, biochemical characterization of Lmo2 protein complexes in physiological hematopoietic progenitors remains obscure. Here, we identified approximately 600 Lmo2-interacting molecules in a lymphoid progenitor cell line by two-step affinity purification with LC-MS/MS analysis. Zinc finger and BTB domain containing 1 (Zbtb1) and CBFA2/RUNX1 partner transcriptional corepressor 3 (Cbfa2t3) were found to be the functionally important binding partners of Lmo2. We determined CRISPR/Cas9-mediated acute disruption of Zbtb1 or Cbfa2t3 in the lymphoid progenitor or bone marrow–derived primary hematopoietic progenitor cells causes significant defects in the initiation of T-cell development when Notch signaling is activated. Our transcriptome analysis of Zbtb1- or Cbfa2t3-deficient lymphoid progenitors revealed that Tcf7 was a common target for both factors. Additionally, ChIP-seq analysis showed that Lmo2, Zbtb1, and Cbfa2t3 cobind to the Tcf7 upstream enhancer region, which is occupied by the Notch intracellular domain/RBPJ transcriptional complex after Notch stimulation, in lymphoid progenitors. Moreover, transduction with Tcf7 restored the defect in the T-lineage potential of Zbtb1-deficient lymphoid progenitors. Thus, in lymphoid progenitors, the Lmo2/Zbtb1/Cbfa2t3 complex directly binds to the Tcf7 locus and maintains responsiveness to the Notch-mediated inductive signaling to facilitate T-lineage differentiation.
Collapse
Affiliation(s)
- Maria Koizumi
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yuichi Kama
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Ken-Ichi Hirano
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yusuke Endo
- Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Chiba, Japan; Department of Omics Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Katsuto Hozumi
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Hiroyuki Hosokawa
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan; Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan.
| |
Collapse
|