1
|
Dong X, Lu S, Tian Y, Ma H, Wang Y, Zhang X, Sun G, Luo Y, Sun X. Bavachinin protects the liver in NAFLD by promoting regeneration via targeting PCNA. J Adv Res 2024; 55:131-144. [PMID: 36801384 PMCID: PMC10770097 DOI: 10.1016/j.jare.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/23/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
INTRODUCTION Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease all over the world, and no drug is approved for the treatment of NAFLD. Bavachinin (BVC) is proven to possess liver-protecting effect against NAFLD, but its mechanism is still blurry. OBJECTIVES With the use of Click Chemistry-Activity-Based Protein Profiling (CC-ABPP) technology, this study aims to identify the target of BVC, and investigate the mechanism by which BVC exerts its liver-protecting effect. METHODS The high fat diet induced hamster NAFLD model is introduced to investigate BVC's lipid-lowering and liver-protecting effects. Then, a small molecular probe ofBVC is designed and synthesized based on theCC-ABPP technology, and BVC's target is fished out. A series of experiments are performed to identify the target, including competitive inhibition assay, surface-plasmon resonance (SPR), cellular thermal shift assay (CETSA), drug affinity responsive target stability (DARTS) assay, and co-immunoprecipitation (Co-IP). Afterward, the pro-regeneration effects of BVC are validated in vitro and in vivo through flow cytometry, immunofluorescence, and the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL). RESULT In the hamster NAFLD model, BVC shows lipid-lowing effect and improvement on the histology. PCNA is identified as the target of BVC with the method mentioned above, and BVC facilitates the interaction between PCNA and DNA polymerase delta. BVC promotes HepG2 cells proliferation which is inhibited by T2AA, an inhibitor suppresses the interaction between PCNA and DNA polymerase delta. In NAFLD hamsters, BVC enhances PCNA expression and liver regeneration, reduces hepatocyte apoptosis. CONCLUSION This study suggests that, besides the anti-lipemic effect, BVC binds to the pocket of PCNA facilitating its interaction with DNA polymerase delta and pro-regeneration effect, thereby exerts the protective effect against HFD induced liver injury.
Collapse
Affiliation(s)
- Xi Dong
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Shan Lu
- Beijing Increasepharm Safety and Efficacy Co., Ltd, Beijing, China
| | - Yu Tian
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Han Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yang Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Xuelian Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| |
Collapse
|
2
|
Hu Y, Wang R, An N, Li C, Wang Q, Cao Y, Li C, Liu J, Wang Y. Unveiling the power of microenvironment in liver regeneration: an in-depth overview. Front Genet 2023; 14:1332190. [PMID: 38152656 PMCID: PMC10751322 DOI: 10.3389/fgene.2023.1332190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023] Open
Abstract
The liver serves as a vital regulatory hub for various physiological processes, including sugar, protein, and fat metabolism, coagulation regulation, immune system maintenance, hormone inactivation, urea metabolism, and water-electrolyte acid-base balance control. These functions rely on coordinated communication among different liver cell types, particularly within the liver's fundamental hepatic lobular structure. In the early stages of liver development, diverse liver cells differentiate from stem cells in a carefully orchestrated manner. Despite its susceptibility to damage, the liver possesses a remarkable regenerative capacity, with the hepatic lobule serving as a secure environment for cell division and proliferation during liver regeneration. This regenerative process depends on a complex microenvironment, involving liver resident cells, circulating cells, secreted cytokines, extracellular matrix, and biological forces. While hepatocytes proliferate under varying injury conditions, their sources may vary. It is well-established that hepatocytes with regenerative potential are distributed throughout the hepatic lobules. However, a comprehensive spatiotemporal model of liver regeneration remains elusive, despite recent advancements in genomics, lineage tracing, and microscopic imaging. This review summarizes the spatial distribution of cell gene expression within the regenerative microenvironment and its impact on liver regeneration patterns. It offers valuable insights into understanding the complex process of liver regeneration.
Collapse
Affiliation(s)
- Yuelei Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Ruilin Wang
- Department of Cadre’s Wards Ultrasound Diagnostics, Ultrasound Diagnostic Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Ni An
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Chen Li
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- College of Life Science and Bioengineering, Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Qi Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yannan Cao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Chao Li
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Juan Liu
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yunfang Wang
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Cook SA. Understanding interleukin 11 as a disease gene and therapeutic target. Biochem J 2023; 480:1987-2008. [PMID: 38054591 PMCID: PMC10754292 DOI: 10.1042/bcj20220160] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
Interleukin 11 (IL11) is an elusive member of the IL6 family of cytokines. While initially thought to be a haematopoietic and cytoprotective factor, more recent data show instead that IL11 is redundant for haematopoiesis and toxic. In this review, the reasons that led to the original misunderstandings of IL11 biology, which are now understandable, are explained with particular attention on the use of recombinant human IL11 in mice and humans. Following tissue injury, as part of an evolutionary ancient homeostatic response, IL11 is secreted from damaged mammalian cells to signal via JAK/STAT3, ERK/P90RSK, LKB1/mTOR and GSK3β/SNAI1 in autocrine and paracrine. This activates a program of mesenchymal transition of epithelial, stromal, and endothelial cells to cause inflammation, fibrosis, and stalled endogenous tissue repair, leading to organ failure. The role of IL11 signalling in cell- and organ-specific pathobiology is described, the large unknowns about IL11 biology are discussed and the promise of targeting IL11 signalling as a therapeutic approach is reviewed.
Collapse
Affiliation(s)
- Stuart A. Cook
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| |
Collapse
|
4
|
Li R, Xiang C, Li Y, Nie Y. Targeting immunoregulation for cardiac regeneration. J Mol Cell Cardiol 2023; 177:1-8. [PMID: 36801268 DOI: 10.1016/j.yjmcc.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Inducing endogenous cardiomyocyte proliferation and heart regeneration is a promising strategy to treat ischemic heart failure. The immune response has recently been considered critical in cardiac regeneration. Thus, targeting the immune response is a potent strategy to improve cardiac regeneration and repair after myocardial infarction. Here we reviewed the characteristics of the relationship between the postinjury immune response and heart regenerative capacity and summarized the latest studies focusing on inflammation and heart regeneration to identify potent targets of the immune response and strategies in the immune response to promote cardiac regeneration.
Collapse
Affiliation(s)
- Ruopu Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Chenying Xiang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yixun Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou 450046, China.
| |
Collapse
|
5
|
Widjaja AA, Viswanathan S, Shekeran SG, Adami E, Lim WW, Chothani S, Tan J, Goh JWT, Chen HM, Lim SY, Boustany-Kari CM, Hawkins J, Petretto E, Hübner N, Schafer S, Coffman TM, Cook SA. Targeting endogenous kidney regeneration using anti-IL11 therapy in acute and chronic models of kidney disease. Nat Commun 2022; 13:7497. [PMID: 36470928 PMCID: PMC9723120 DOI: 10.1038/s41467-022-35306-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/27/2022] [Indexed: 12/12/2022] Open
Abstract
The kidney has large regenerative capacity, but this is compromised when kidney damage is excessive and renal tubular epithelial cells (TECs) undergo SNAI1-driven growth arrest. Here we investigate the role of IL11 in TECs, kidney injury and renal repair. IL11 stimulation of TECs induces ERK- and p90RSK-mediated GSK3β inactivation, SNAI1 upregulation and pro-inflammatory gene expression. Mice with acute kidney injury upregulate IL11 in TECs leading to SNAI1 expression and kidney dysfunction, which is not seen in Il11 deleted mice or in mice administered a neutralizing IL11 antibody in either preemptive or treatment modes. In acute kidney injury, anti-TGFβ reduces renal fibrosis but exacerbates inflammation and tubule damage whereas anti-IL11 reduces all pathologies. Mice with TEC-specific deletion of Il11ra1 have reduced pathogenic signaling and are protected from renal injury-induced inflammation, fibrosis, and failure. In a model of chronic kidney disease, anti-IL11 therapy promotes TEC proliferation and parenchymal regeneration, reverses fibroinflammation and restores renal mass and function. These data highlight IL11-induced mesenchymal transition of injured TECs as an important renal pathology and suggest IL11 as a therapeutic target for restoring stalled endogenous regeneration in the diseased kidney.
Collapse
Affiliation(s)
- Anissa A Widjaja
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore.
| | - Sivakumar Viswanathan
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Shamini G Shekeran
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Eleonora Adami
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore.,Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| | - Wei-Wen Lim
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Sonia Chothani
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Jessie Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Joyce Wei Ting Goh
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Hui Mei Chen
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Sze Yun Lim
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | | | - Julie Hawkins
- Boehringer Ingelheim, CardioMetabolic Disease Research, Berlin, Germany
| | - Enrico Petretto
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Norbert Hübner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany.,Charité-Universitätsmedizin, 10117, Berlin, Germany
| | - Sebastian Schafer
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Thomas M Coffman
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Stuart A Cook
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore. .,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore. .,MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London, UK.
| |
Collapse
|
6
|
Li Q, Chen F, Wang F. The immunological mechanisms and therapeutic potential in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Cell Biosci 2022; 12:187. [PMID: 36414987 PMCID: PMC9682794 DOI: 10.1186/s13578-022-00921-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/01/2022] [Indexed: 11/24/2022] Open
Abstract
Acute liver failure caused by drug overdose is a significant clinical problem in developed countries. Acetaminophen (APAP), a widely used analgesic and antipyretic drug, but its overdose can cause acute liver failure. In addition to APAP-induced direct hepatotoxicity, the intracellular signaling mechanisms of APAP-induced liver injury (AILI) including metabolic activation, mitochondrial oxidant stress and proinflammatory response further affect progression and severity of AILI. Liver inflammation is a result of multiple interactions of cell death molecules, immune cell-derived cytokines and chemokines, as well as damaged cell-released signals which orchestrate hepatic immune cell infiltration. The immunoregulatory interplay of these inflammatory mediators and switching of immune responses during AILI lead to different fate of liver pathology. Thus, better understanding the complex interplay of immune cell subsets in experimental models and defining their functional involvement in disease progression are essential to identify novel therapeutic targets for the treatment of AILI. Here, this present review aims to systematically elaborate on the underlying immunological mechanisms of AILI, its relevance to immune cells and their effector molecules, and briefly discuss great therapeutic potential based on inflammatory mediators.
Collapse
Affiliation(s)
- Qianhui Li
- grid.511083.e0000 0004 7671 2506Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, No.628, Zhenyuan Road, Shenzhen, 518107 China
| | - Feng Chen
- grid.511083.e0000 0004 7671 2506Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, No.628, Zhenyuan Road, Shenzhen, 518107 China
| | - Fei Wang
- grid.511083.e0000 0004 7671 2506Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, No.628, Zhenyuan Road, Shenzhen, 518107 China
| |
Collapse
|
7
|
Widjaja AA, Viswanathan S, Wei Ting JG, Tan J, Shekeran SG, Carling D, Lim WW, Cook SA. IL11 stimulates ERK/P90RSK to inhibit LKB1/AMPK and activate mTOR initiating a mesenchymal program in stromal, epithelial, and cancer cells. iScience 2022; 25:104806. [PMID: 35992082 PMCID: PMC9386112 DOI: 10.1016/j.isci.2022.104806] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/04/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
IL11 initiates fibroblast activation but also causes epithelial cell dysfunction. The mechanisms underlying these processes are not known. We report that IL11-stimulated ERK/P90RSK activity causes the phosphorylation of LKB1 at S325 and S428, leading to its inactivation. This inhibits AMPK and activates mTOR across cell types. In stromal cells, IL11-stimulated ERK activity inhibits LKB1/AMPK which is associated with mTOR activation, ⍺SMA expression, and myofibroblast transformation. In hepatocytes and epithelial cells, IL11/ERK activity inhibits LKB1/AMPK leading to mTOR activation, SNAI1 expression, and cell dysfunction. Across cells, IL11-induced phenotypes were inhibited by metformin stimulated AMPK activation. In mice, genetic or pharmacologic manipulation of IL11 activity revealed a critical role of IL11/ERK signaling for LKB1/AMPK inhibition and mTOR activation in fatty liver disease. These data identify the IL11/mTOR axis as a signaling commonality in stromal, epithelial, and cancer cells and reveal a shared IL11-driven mesenchymal program across cell types.
Collapse
Affiliation(s)
- Anissa A Widjaja
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore 169857, Singapore
| | - Sivakumar Viswanathan
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore 169857, Singapore
| | - Joyce Goh Wei Ting
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jessie Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
| | - Shamini G Shekeran
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore 169857, Singapore
| | - David Carling
- MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Wei-Wen Lim
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore 169857, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
| | - Stuart A Cook
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore 169857, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore.,MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London W12 0NN, UK
| |
Collapse
|
8
|
Dong J, Lim WW, Shekeran SG, Tan J, Lim SY, Goh JWT, George BL, Schafer S, Cook SA, Widjaja AA. Hepatocyte Specific gp130 Signalling Underlies APAP Induced Liver Injury. Int J Mol Sci 2022; 23:ijms23137089. [PMID: 35806094 PMCID: PMC9266364 DOI: 10.3390/ijms23137089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022] Open
Abstract
N-acetyl-p-aminophenol (APAP)-induced liver damage is associated with upregulation of Interleukin-11 (IL11), which is thought to stimulate IL6ST (gp130)-mediated STAT3 activity in hepatocytes, as a compensatory response. However, recent studies have found IL11/IL11RA/gp130 signaling to be hepatotoxic. To investigate further the role of IL11 and gp130 in APAP liver injury, we generated two new mouse strains with conditional knockout (CKO) of either Il11 (CKOIl11) or gp130 (CKOgp130) in adult hepatocytes. Following APAP, as compared to controls, CKOgp130 mice had lesser liver damage with lower serum Alanine Transaminase (ALT) and Aspartate Aminotransferase (AST), greatly reduced serum IL11 levels (90% lower), and lesser centrilobular necrosis. Livers from APAP-injured CKOgp130 mice had lesser ERK, JNK, NOX4 activation and increased markers of regeneration (PCNA, Cyclin D1, Ki67). Experiments were repeated in CKOIl11 mice that, as compared to wild-type mice, had lower APAP-induced ALT/AST, reduced centrilobular necrosis and undetectable IL11 in serum. As seen with CKOgp130 mice, APAP-treated CKOIl11 mice had lesser ERK/JNK/NOX4 activation and greater features of regeneration. Both CKOgp130 and CKOIl11 mice had normal APAP metabolism. After APAP, CKOgp130 and CKOIl11 mice had reduced Il6, Ccl2, Ccl5, Il1β, and Tnfα expression. These studies exclude IL11 upregulation as compensatory and establish autocrine, self-amplifying, gp130-dependent IL11 secretion from damaged hepatocytes as toxic and anti-regenerative.
Collapse
Affiliation(s)
- Jinrui Dong
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (J.D.); (W.-W.L.); (S.G.S.); (S.Y.L.); (J.W.T.G.); (B.L.G.); (S.S.)
| | - Wei-Wen Lim
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (J.D.); (W.-W.L.); (S.G.S.); (S.Y.L.); (J.W.T.G.); (B.L.G.); (S.S.)
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169857, Singapore;
| | - Shamini G. Shekeran
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (J.D.); (W.-W.L.); (S.G.S.); (S.Y.L.); (J.W.T.G.); (B.L.G.); (S.S.)
| | - Jessie Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169857, Singapore;
| | - Sze Yun Lim
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (J.D.); (W.-W.L.); (S.G.S.); (S.Y.L.); (J.W.T.G.); (B.L.G.); (S.S.)
| | - Joyce Wei Ting Goh
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (J.D.); (W.-W.L.); (S.G.S.); (S.Y.L.); (J.W.T.G.); (B.L.G.); (S.S.)
| | - Benjamin L. George
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (J.D.); (W.-W.L.); (S.G.S.); (S.Y.L.); (J.W.T.G.); (B.L.G.); (S.S.)
| | - Sebastian Schafer
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (J.D.); (W.-W.L.); (S.G.S.); (S.Y.L.); (J.W.T.G.); (B.L.G.); (S.S.)
| | - Stuart A. Cook
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (J.D.); (W.-W.L.); (S.G.S.); (S.Y.L.); (J.W.T.G.); (B.L.G.); (S.S.)
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169857, Singapore;
- MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London W12 0NN, UK
- Correspondence: (S.A.C.); (A.A.W.)
| | - Anissa A. Widjaja
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (J.D.); (W.-W.L.); (S.G.S.); (S.Y.L.); (J.W.T.G.); (B.L.G.); (S.S.)
- Correspondence: (S.A.C.); (A.A.W.)
| |
Collapse
|
9
|
Wang J, Zhang L, Shi Q, Yang B, He Q, Wang J, Weng Q. Targeting innate immune responses to attenuate acetaminophen-induced hepatotoxicity. Biochem Pharmacol 2022; 202:115142. [PMID: 35700755 DOI: 10.1016/j.bcp.2022.115142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/02/2022]
Abstract
Acetaminophen (APAP) hepatotoxicity is an important cause of acute liver failure, resulting in massive deaths in many developed countries. Currently, the metabolic process of APAP in the body has been well studied. However, the underlying mechanism of APAP-induced liver injury remains elusive. Increasing clinical and experimental evidences indicate that the innate immune responses are involved in the pathogenesis of APAP-induced acute liver injury (AILI), in which immune cells have dual roles of inducing inflammation to exacerbate hepatotoxicity and removing dead cells and debris to help liver regeneration. In this review, we summarize the latest findings of innate immune cells involved in AILI, particularly emphasizing the activation of innate immune cells and their different roles during the injury and repair phases. Moreover, current available treatments are discussed according to the different roles of innate immune cells in the development of AILI. This review aims to update the knowledge about innate immune responses in the pathogenesis of AILI, and provide potential therapeutic interventions for AILI.
Collapse
Affiliation(s)
- Jincheng Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lulu Zhang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Shi
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|