1
|
Zuurbier KR, Fonseca RS, Arneaud SLB, Wall JM, Kim J, Tatge L, Otuzoglu G, Bali S, Metang P, Douglas PM. Yin Yang 1 and guanine quadruplexes protect dopaminergic neurons from cellular stress via transmissive dormancy. Nat Commun 2024; 15:10592. [PMID: 39632864 PMCID: PMC11618784 DOI: 10.1038/s41467-024-54958-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Neurons deploy diverse adaptive strategies to ensure survival and neurotransmission amid cellular stress. When these adaptive pathways are overwhelmed, functional impairment or neurodegeneration follows. Here we show that stressed neurons actively induce a state of transmissive dormancy as a protective measure. Extending observations of neurotrauma in C. elegans and mice, human dopaminergic neurons capable of surviving severe cellular challenges both decrease spontaneous activity and modulate dopamine homeostasis through the transcriptional regulator Yin Yang 1 (YY1). To bolster stress resilience and mitigate dopamine toxicity, YY1 increases expression of the vesicular monoamine transporter 2, vMAT2, while coordinately inhibiting dopamine synthesis through stabilization of a guanine quadruplex in intron 10 of tyrosine hydroxylase, TH. This dopaminergic stress response has the potential to cause circuit inactivation, yet safeguards neurons by minimizing the toxic accumulation of cytosolic dopamine and inducing a state of neuronal dormancy. In essence, neurons appear to actively prioritize viability over functionality.
Collapse
Affiliation(s)
- Kielen R Zuurbier
- Department of Molecular Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Rene Solano Fonseca
- Department of Molecular Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sonja L B Arneaud
- Department of Molecular Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jordan M Wall
- Department of Molecular Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Juhee Kim
- Department of Molecular Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lexus Tatge
- Department of Molecular Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Gupse Otuzoglu
- Department of Molecular Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sofia Bali
- O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- Center for Alzheimer's and Neurodegenerative Diseases, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Patrick Metang
- Department of Molecular Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Peter M Douglas
- Department of Molecular Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
- Hamon Center for Regenerative Science and Medicine; UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
2
|
Yassaghi Y, Nazerian Y, Ghasemi M, Nazerian A, Sayehmiri F, Perry G, Gholami Pourbadie H. Microglial modulation as a therapeutic strategy in Alzheimer's disease: Focus on microglial preconditioning approaches. J Cell Mol Med 2024; 28:e18554. [PMID: 39103747 DOI: 10.1111/jcmm.18554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/15/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive disease that causes an impairment of learning and memory. Despite the highly complex pathogenesis of AD, amyloid beta (Aβ) deposition and neurofibrillary tangles (NFTs) formation are the main hallmarks of AD. Neuroinflammation also has a crucial role in the development of AD. As the central nervous system's innate immune cells, microglial cells are activated in AD and induce inflammation by producing pro-inflammatory mediators. However, microglial activation is not always deleterious. M2-activated microglial cells are considered anti-inflammatory cells, which develop neuroprotection. Various approaches are proposed for managing AD, yet no effective therapy is available for this disorder. Considering the potential protective role of M2 microglia in neurodegenerative disorders and the improvement of these disorders by preconditioning approaches, it can be suggested that preconditioning of microglial cells may be beneficial for managing AD progression. Therefore, this study review microglial preconditioning approaches for preventing and improving AD.
Collapse
Affiliation(s)
- Younes Yassaghi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Nazerian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Ghasemi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Sayehmiri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - George Perry
- Department of Neuroscience, Development, and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | | |
Collapse
|
3
|
Liu M, Zhao J, Xue C, Yang J, Ying L. Uncovering the ferroptosis related mechanism of laduviglusib in the cell-type-specific targets of the striatum in Huntington's disease. BMC Genomics 2024; 25:633. [PMID: 38918688 PMCID: PMC11197352 DOI: 10.1186/s12864-024-10534-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder featured by abnormal movements, arising from the extensive neuronal loss and glial dysfunction in the striatum. Although the causes and pathogenetic mechanisms of HD are well established, the development of disease-modifying pharmacological therapies for HD remains a formidable challenge. Laduviglusib has demonstrated neuroprotective effects through the enhancement of mitochondrial function in the striatum of HD animal models. Ferroptosis is a nonapoptotic form of cell death that occurs as a consequence of lethal iron-dependent lipid peroxidation and mitochondrial dysfunction. However, the ferroptosis-related mechanisms underlying the neuroprotective effects of laduviglusib in the striatum of HD patients remain largely uncharted. In this study, we leveraged single-nucleus RNA sequencing data obtained from the striatum of HD patients in stages 2-4 to identify differentially expressed genes within distinct cell-type. We subsequently integrated these differentially expressed genes of HD, laduviglusib target genes and ferroptosis-related genes to predict the ferroptosis-related mechanisms underpinning the neuroprotective effects of laduviglusib in HD patients. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses unveiled that the effects of laduviglusib on direct pathway striatal projection neurons (dSPNs) is mainly associated with Th17 cell differentiation pathways. Conversely, its impact on indirect pathway striatal projection neurons (iSPNs) extends to the Neurotrophin signaling pathway, FoxO signaling pathway, and reactive oxygen species pathway. In microglia, laduviglusib appears to contribute to HD pathology via mechanisms related to Th17 cell differentiation and the FoxO signaling pathway. Further, molecular docking results indicated favorable binding of laduviglusib with PARP1 (associated with dSPNs and iSPNs), SCD (associated with astrocytes), ALOX5 (associated with microglia), and HIF1A (associated with dSPNs, iSPNs, and microglia). In addition, the KEGG results suggest that laduviglusib may enhance mitochondrial function and protect against neuronal loss by targeting ferroptosis-related signaling pathways, particularly mediated by ALOX5 in microglia. These findings provide valuable insights into the potential mechanisms through which laduviglusib exerts its effects on distinct cell-types within the HD striatum.
Collapse
Affiliation(s)
- Mei Liu
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jinlan Zhao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, School of Pharmaceutical Science, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chengcheng Xue
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Yang
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Li Ying
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
4
|
Zuurbier KR, Solano Fonseca R, Arneaud SL, Tatge L, Otuzoglu G, Wall JM, Douglas PM. Cytosolic dopamine determines hypersensitivity to blunt force trauma. iScience 2024; 27:110094. [PMID: 38883817 PMCID: PMC11179581 DOI: 10.1016/j.isci.2024.110094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/07/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
The selective vulnerability of dopaminergic neurons to trauma-induced neurodegeneration is conserved across species, from nematodes to humans. However, the molecular mechanisms underlying this hypersensitivity to blunt force trauma remain elusive. We find that extravesicular dopamine, a key driver of Parkinson's disease, extends its toxic role to the acute challenges associated with injury. Ectopic dopamine synthesis in serotonergic neurons sensitizes this resilient neuronal subtype to trauma-induced degeneration. While dopaminergic neurons normally maintain dopamine in a functional and benign state, trauma-induced subcellular redox imbalances elicit dopamine-dependent cytotoxicity. Cytosolic dopamine accumulation, through perturbations to its synthesis, metabolism, or packaging, is necessary and sufficient to drive neurodegeneration upon injury and during aging. Additionally, degeneration is further exacerbated by rapid upregulation of the rate-limiting enzyme in dopamine synthesis, cat-2, via the FOS-1 transcription factor. Fundamentally, our study in C. elegans unravels the molecular intricacies rendering dopaminergic neurons uniquely prone to physical perturbation across evolutionary lines.
Collapse
Affiliation(s)
- Kielen R. Zuurbier
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- O’Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rene Solano Fonseca
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sonja L.B. Arneaud
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lexus Tatge
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gupse Otuzoglu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jordan M. Wall
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Peter M. Douglas
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- O’Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
5
|
Li Y, Wang Z, Li J, Yu Y, Wang Y, Jin X, Dong Y, Liu Q, Duan X, Yan N. Sodium Butyrate Ameliorates Fluorosis-Induced Neurotoxicity by Regulating Hippocampal Glycolysis In Vivo. Biol Trace Elem Res 2023; 201:5230-5241. [PMID: 36710293 DOI: 10.1007/s12011-023-03583-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/22/2023] [Indexed: 01/31/2023]
Abstract
Fluorosis can induce neurotoxicity. Sodium butyrate (SB), a histone deacetylase inhibitor, has important research potential in correcting glucose metabolism disorders and is widely used in a variety of neurological diseases and metabolic diseases, but it is not yet known whether it plays a role in combating fluoride-induced neurotoxicity. This study aims to evaluate the effect of SB on fluoride neurotoxicity and the possible associated mechanisms. The results of HE staining and Morris water maze showed that, in mice exposed to 100 mg/L fluoride for 3 months, the hippocampal cells arranged in loosely with large cell gaps and diminished in number. One thousand milligram per kilogram per day SB treatment improved fluoride-induced neuronal cell damage and spatial learning memory impairment. Western blot results showed that the abundance of malate dehydrogenase 2 (MDH2) and pyruvate dehydrogenase (PDH) in the hippocampus of fluorosis mice was increased, the abundance of pyruvate kinase M (PKM), lactate dehydrogenase (LDH), hexokinase (HK), phosphatidylinositol 3-kinase (PI3K), phosphorylated Akt (P-AKT), and hypoxia-inducible factor 1α (HIF-1α) was inhibited, and the content of lactate and ATP was decreased. SB treatment reversed the decreased glycolysis in the hippocampus of fluorosis mice. These results suggested that SB could ameliorate fluorosis-induced neurotoxicity, which might be linked with its function in regulating glycolysis as well as inhibition of the PI3K/AKT/HIF-1α pathway. Sodium butyrate ameliorates fluorosis-induced neurotoxicity by regulating hippocampal glycolysis in vivo (created with MedPeer (www.medpeer.cn)).
Collapse
Affiliation(s)
- Yangjie Li
- College of Basic Medicine, Shenyang Medical College, Shenyang, 110034, China
| | - Zhengdong Wang
- College of Basic Medicine, Shenyang Medical College, Shenyang, 110034, China
| | - Jing Li
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, China
| | - Yang Yu
- School of Medical Applied Technology, Shenyang Medical College, Shenyang, 110034, China
| | - Yuan Wang
- Central Hospital Affiliated to Shenyang Medical College, Shenyang, 110034, China
| | - Xiaoxia Jin
- School of Public Health, Shenyang Medical College, Shenyang, 110034, China
| | - Yun Dong
- Central Hospital Affiliated to Shenyang Medical College, Shenyang, 110034, China
| | - Qingsong Liu
- School of Public Health, Shenyang Medical College, Shenyang, 110034, China
| | - Xiaoxu Duan
- School of Public Health, Shenyang Medical College, Shenyang, 110034, China.
| | - Nan Yan
- School of Medical Applied Technology, Shenyang Medical College, Shenyang, 110034, China.
| |
Collapse
|
6
|
Rao J, Sun W, Wang X, Li J, Zhang Z, Zhou F. A novel role for astrocytic fragmented mitochondria in regulating morphine addiction. Brain Behav Immun 2023; 113:328-339. [PMID: 37543246 DOI: 10.1016/j.bbi.2023.07.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023] Open
Abstract
Chronic morphine exposure causes the development of addictive behaviors, accompanied by an increase in neuroinflammation in the central nervous system. While previous researches have shown that astrocytes contribute to brain diseases, the role of astrocyte in morphine addiction through induced neuroinflammation remain unexplored. Here we show that morphine-induced inflammation requires the crosstalk among neuron, astrocyte, and microglia. Specifically, astrocytes respond to morphine-induced neuronal activation by increasing glycolytic metabolism. The dysregulation of glycolysis leads to an increased in the generation of mitochondrial reactive oxygen species and causes excessive mitochondrial fragmentation in astrocytes. These fragmented, dysfunctional mitochondria are consequently released into extracellular environment, leading to activation of microglia and release of inflammatory cytokines. We also found that blocking the nicotinamide adenine dinucleotide salvage pathway with FK866 could inhibit astrocytic glycolysis and restore the mitochondrial homeostasis and effectively attenuate neuroinflammatory responses. Importantly, FK866 reversed morphine-induced addictive behaviors in mice. In summary, our findings illustrate an essential role of astrocytic immunometabolism in morphine induced neural and behavioral plasticity, providing a novel insight into the interactions between neurons, astrocytes, and microglia in the brain affected by chronic morphine exposure.
Collapse
Affiliation(s)
- Jie Rao
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Weikang Sun
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Xinran Wang
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Jin Li
- Pain Department, Hainan Cancer Hospital, Haikou 570312, China
| | - Zhichun Zhang
- Pain Department, Hainan Cancer Hospital, Haikou 570312, China
| | - Feifan Zhou
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
7
|
Sarparast M, Pourmand E, Hinman J, Vonarx D, Reason T, Zhang F, Paithankar S, Chen B, Borhan B, Watts JL, Alan J, Lee KSS. Dihydroxy-Metabolites of Dihomo-γ-linolenic Acid Drive Ferroptosis-Mediated Neurodegeneration. ACS CENTRAL SCIENCE 2023; 9:870-882. [PMID: 37252355 PMCID: PMC10214511 DOI: 10.1021/acscentsci.3c00052] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Indexed: 05/31/2023]
Abstract
Even after decades of research, the mechanism of neurodegeneration remains understudied, hindering the discovery of effective treatments for neurodegenerative diseases. Recent reports suggest that ferroptosis could be a novel therapeutic target for neurodegenerative diseases. While polyunsaturated fatty acid (PUFA) plays an important role in neurodegeneration and ferroptosis, how PUFAs may trigger these processes remains largely unknown. PUFA metabolites from cytochrome P450 and epoxide hydrolase metabolic pathways may modulate neurodegeneration. Here, we test the hypothesis that specific PUFAs regulate neurodegeneration through the action of their downstream metabolites by affecting ferroptosis. We find that the PUFA dihomo-γ-linolenic acid (DGLA) specifically induces ferroptosis-mediated neurodegeneration in dopaminergic neurons. Using synthetic chemical probes, targeted metabolomics, and genetic mutants, we show that DGLA triggers neurodegeneration upon conversion to dihydroxyeicosadienoic acid through the action of CYP-EH (CYP, cytochrome P450; EH, epoxide hydrolase), representing a new class of lipid metabolites that induce neurodegeneration via ferroptosis.
Collapse
Affiliation(s)
- Morteza Sarparast
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Elham Pourmand
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jennifer Hinman
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Derek Vonarx
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tommy Reason
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Fan Zhang
- Department
of Pharmacology and Toxicology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Shreya Paithankar
- Department
of Pediatrics and Human Development, Michigan
State University, Grand Rapids, Michigan 49503, United States
| | - Bin Chen
- Department
of Pharmacology and Toxicology, Michigan
State University, East Lansing, Michigan 48824, United States
- Department
of Pediatrics and Human Development, Michigan
State University, Grand Rapids, Michigan 49503, United States
| | - Babak Borhan
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jennifer L. Watts
- School
of Molecular Biosciences, Washington State
University, Pullman, Washington 99164, United States
| | - Jamie Alan
- Department
of Pharmacology and Toxicology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Kin Sing Stephen Lee
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Pharmacology and Toxicology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
8
|
Arias C, Sepúlveda P, Castillo RL, Salazar LA. Relationship between Hypoxic and Immune Pathways Activation in the Progression of Neuroinflammation: Role of HIF-1α and Th17 Cells. Int J Mol Sci 2023; 24:ijms24043073. [PMID: 36834484 PMCID: PMC9964721 DOI: 10.3390/ijms24043073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 02/09/2023] Open
Abstract
Neuroinflammation is a common event in degenerative diseases of the central and peripheral nervous system, triggered by alterations in the immune system or inflammatory cascade. The pathophysiology of these disorders is multifactorial, whereby the therapy available has low clinical efficacy. This review propounds the relationship between the deregulation of T helper cells and hypoxia, mainly Th17 and HIF-1α molecular pathways, events that are involved in the occurrence of the neuroinflammation. The clinical expression of neuroinflammation is included in prevalent pathologies such as multiple sclerosis, Guillain-Barré syndrome, and Alzheimer's disease, among others. In addition, therapeutic targets are analyzed in relation to the pathways that induced neuroinflammation.
Collapse
Affiliation(s)
- Consuelo Arias
- Escuela de Kinesiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago 7500922, Chile
| | - Paulina Sepúlveda
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Rodrigo L. Castillo
- Departamento de Medicina Interna Oriente, Facultad de Medicina, Universidad de Chile, Santiago 7500922, Chile
| | - Luis A. Salazar
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
- Correspondence:
| |
Collapse
|
9
|
Sarparast M, Pourmand E, Hinman J, Vonarx D, Reason T, Zhang F, Paithankar S, Chen B, Borhan B, Watts JL, Alan J, Lee KSS. Dihydroxy-Metabolites of Dihomo-gamma-linolenic Acid Drive Ferroptosis-Mediated Neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522933. [PMID: 36711920 PMCID: PMC9881903 DOI: 10.1101/2023.01.05.522933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Even after decades of research, the mechanism of neurodegeneration remains understudied, hindering the discovery of effective treatments for neurodegenerative diseases. Recent reports suggest that ferroptosis could be a novel therapeutic target for neurodegenerative diseases. While polyunsaturated fatty acid (PUFA) plays an important role in neurodegeneration and ferroptosis, how PUFAs may trigger these processes remains largely unknown. PUFA metabolites from cytochrome P450 and epoxide hydrolase metabolic pathways may modulate neurodegeneration. Here, we test the hypothesis that specific PUFAs regulate neurodegeneration through the action of their downstream metabolites by affecting ferroptosis. We find that the PUFA, dihomo gamma linolenic acid (DGLA), specifically induces ferroptosis-mediated neurodegeneration in dopaminergic neurons. Using synthetic chemical probes, targeted metabolomics, and genetic mutants, we show that DGLA triggers neurodegeneration upon conversion to dihydroxyeicosadienoic acid through the action of CYP-EH, representing a new class of lipid metabolite that induces neurodegeneration via ferroptosis.
Collapse
Affiliation(s)
- Morteza Sarparast
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Elham Pourmand
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Jennifer Hinman
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Derek Vonarx
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Tommy Reason
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Fan Zhang
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Shreya Paithankar
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI, USA
| | - Bin Chen
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA,Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI, USA
| | - Babak Borhan
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Jennifer L. Watts
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Jamie Alan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA,Corresponding Authors
| | - Kin Sing Stephen Lee
- Department of Chemistry, Michigan State University, East Lansing, MI, USA,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA,Corresponding Authors
| |
Collapse
|
10
|
E G, Sun B, Liu B, Xu G, He S, Wang Y, Feng L, Wei H, Zhang J, Chen J, Gao Y, Zhang E. Enhanced BPGM/2,3-DPG pathway activity suppresses glycolysis in hypoxic astrocytes via FIH-1 and TET2. Brain Res Bull 2023; 192:36-46. [PMID: 36334804 DOI: 10.1016/j.brainresbull.2022.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/21/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Bisphosphoglycerate mutase (BPGM) is expressed in human erythrocytes and responsible for the production of 2,3-bisphosphoglycerate (2,3-DPG). However, the expression and role of BPGM in other cells have not been reported. In this work, we found that BPGM was significantly upregulated in astrocytes upon acute hypoxia, and the role of this phenomenon will be clarified in the following report. METHODS The mRNA and protein expression levels of BPGM and the content of 2,3-DPG with hypoxia treatment were determined in vitro and in vivo. Furthermore, glycolysis was evaluated upon in hypoxic astrocytes with BPGM knockdown and in normoxic astrocytes with BPGM overexpression or 2,3-DPG treatment. To investigate the mechanism by which BPGM/2,3-DPG regulated glycolysis in hypoxic astrocytes, we detected the expression of HIF-1α, FIH-1 and TET2 with silencing or overexpression of BPGM and 2,3-DPG treatment. RESULTS The expression of glycolytic genes and the capacity of lactate markedly increased with 6 h, 12 h, 24 h, 36 h and 48 h 1 % O2 hypoxic treatment in astrocytes. The expression of BPGM was upregulated, and the production of 2,3-DPG was accelerated upon hypoxia. Moreover, when BPGM expression was knocked down, glycolysis was promoted in HEB cells. However, overexpression of BPGM and addition of 2,3-DPG to the cellular medium in normoxic cells could downregulate glycolytic genes. Furthermore, HIF-1α and TET2 exhibited higher expression levels and FIH-1 showed a lower expression level upon BPGM silencing, while these changes were reversed under BPGM overexpression and 2,3-DPG treatment. CONCLUSIONS Our study revealed that the BPGM/2,3-DPG pathway presented a suppressive effect on glycolysis in hypoxic astrocytes by negatively regulating HIF-1α and TET2.
Collapse
Affiliation(s)
- Guoji E
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Binda Sun
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Bao Liu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Gang Xu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Shu He
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Yu Wang
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Lan Feng
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Hannan Wei
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Jianyang Zhang
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Jian Chen
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Yuqi Gao
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Erlong Zhang
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| |
Collapse
|
11
|
Nozari A, Sharma A, Wang Z, Feng L, Muresanu DF, Tian ZR, Lafuente JV, Buzoianu AD, Wiklund L, Sharma HS. Co-administration of Nanowired Oxiracetam and Neprilysin with Monoclonal Antibodies to Amyloid Beta Peptide and p-Tau Thwarted Exacerbation of Brain Pathology in Concussive Head Injury at Hot Environment. ADVANCES IN NEUROBIOLOGY 2023; 32:271-313. [PMID: 37480464 DOI: 10.1007/978-3-031-32997-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Environmental temperature adversely affects the outcome of concussive head injury (CHI)-induced brain pathology. Studies from our laboratory showed that animals reared at either cold environment or at hot environment exacerbate brain pathology following CHI. Our previous experiments showed that nanowired delivery of oxiracetam significantly attenuated CHI-induced brain pathology and associated neurovascular changes. Military personnel are the most susceptible to CHI caused by explosion, blasts, missile or blunt head trauma leading to lifetime functional and cognitive impairments affecting the quality of life. Severe CHI leads to instant death and/or lifetime paralysis. Military personnel engaged in combat operations are often subjected to extreme high or low environmental temperature zones across the globe. Thus, further exploration of novel therapeutic agents at cold or hot ambient temperatures following CHI are the need of the hour. CHI is also a major risk factor for developing Alzheimer's disease by enhancing amyloid beta peptide deposits in the brain. In this review, effect of hot environment on CHI-induced brain pathology is discussed. In addition, whether nanodelivery of oxiracetam together with neprilysin and monoclonal antibodies (mAb) to amyloid beta peptide and p-tau could lead to superior neuroprotection in CHI is explored. Our results show that co-administration of oxiracetam with neprilysin and mAb to AβP and p-tau significantly induced superior neuroprotection following CHI in hot environment, not reported earlier.
Collapse
Affiliation(s)
- Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Zhenguo Wang
- Shijiazhuang Pharma Group NBP Pharmaceutical Co., Ltd., Shijiazhuang, Hebei Province, China
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan, Hebei Province, China
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| |
Collapse
|
12
|
Zhang C, Liu C, Li F, Zheng M, Liu Y, Li L, Yang H, Zhang S, Wang C, Rong H, Guo H, Li Y, Li Y, Fu Y, Zhao Z, Zhang J. Extracellular Mitochondria Activate Microglia and Contribute to Neuroinflammation in Traumatic Brain Injury. Neurotox Res 2022; 40:2264-2277. [PMID: 36087194 DOI: 10.1007/s12640-022-00566-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/03/2022] [Accepted: 08/19/2022] [Indexed: 12/31/2022]
Abstract
Traumatic brain injury (TBI)-induced neuroinflammation is closely associated with poor outcomes and high mortality in affected patients, with unmet needs for effective clinical interventions. A series of causal and disseminating factors have been identified to cause TBI-induced neuroinflammation. Among these are cellular microvesicles released from injured cerebral cells, endothelial cells, and platelets. In previous studies, we have put forward that cellular microvesicles can be released from injured brains that induce consumptive coagulopathy. Extracellular mitochondria accounted for 55.2% of these microvesicles and induced a redox-dependent platelet procoagulant activity that contributes to traumatic brain injury-induced coagulopathy and inflammation. These lead to the hypothesis that metabolically active extracellular mitochondria contribute to the neuroinflammation in traumatic brain injury, independent of their procoagulant activity. Here, we found that these extracellular mitochondria induced polarization of microglial M1-type pro-inflammatory phenotype, aggravating neuroinflammation, and mediated cerebral edema in a ROS-dependent manner. In addition, the effect of ROS can be alleviated by ROS inhibitor N-ethylmaleimide (NEM) in vitro experiments. These results revealed a novel pro-inflammatory activity of extracellular mitochondria that may contribute to traumatic brain injury-associated neuroinflammation.
Collapse
Affiliation(s)
- Chaonan Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Chuan Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Fanjian Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Mutian Zheng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Yafan Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Lei Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Huaijin Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Shu Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Chongjin Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Hongtao Rong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Hui Guo
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Ying Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Ying Fu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China.
| | - Zilong Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China. .,Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China. .,Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.
| |
Collapse
|
13
|
Holcombe J, Weavers H. The role of preconditioning in the development of resilience: mechanistic insights. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Pardo B, Herrada-Soler E, Satrústegui J, Contreras L, del Arco A. AGC1 Deficiency: Pathology and Molecular and Cellular Mechanisms of the Disease. Int J Mol Sci 2022; 23:528. [PMID: 35008954 PMCID: PMC8745132 DOI: 10.3390/ijms23010528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 02/01/2023] Open
Abstract
AGC1/Aralar/Slc25a12 is the mitochondrial carrier of aspartate-glutamate, the regulatory component of the NADH malate-aspartate shuttle (MAS) that transfers cytosolic redox power to neuronal mitochondria. The deficiency in AGC1/Aralar leads to the human rare disease named "early infantile epileptic encephalopathy 39" (EIEE 39, OMIM # 612949) characterized by epilepsy, hypotonia, arrested psychomotor neurodevelopment, hypo myelination and a drastic drop in brain aspartate (Asp) and N-acetylaspartate (NAA). Current evidence suggest that neurons are the main brain cell type expressing Aralar. However, paradoxically, glial functions such as myelin and Glutamine (Gln) synthesis are markedly impaired in AGC1 deficiency. Herein, we discuss the role of the AGC1/Aralar-MAS pathway in neuronal functions such as Asp and NAA synthesis, lactate use, respiration on glucose, glutamate (Glu) oxidation and other neurometabolic aspects. The possible mechanism triggering the pathophysiological findings in AGC1 deficiency, such as epilepsy and postnatal hypomyelination observed in humans and mice, are also included. Many of these mechanisms arise from findings in the aralar-KO mice model that extensively recapitulate the human disease including the astroglial failure to synthesize Gln and the dopamine (DA) mishandling in the nigrostriatal system. Epilepsy and DA mishandling are a direct consequence of the metabolic defect in neurons due to AGC1/Aralar deficiency. However, the deficits in myelin and Gln synthesis may be a consequence of neuronal affectation or a direct effect of AGC1/Aralar deficiency in glial cells. Further research is needed to clarify this question and delineate the transcellular metabolic fluxes that control brain functions. Finally, we discuss therapeutic approaches successfully used in AGC1-deficient patients and mice.
Collapse
Affiliation(s)
- Beatriz Pardo
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.H.-S.); (J.S.); (L.C.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Eduardo Herrada-Soler
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.H.-S.); (J.S.); (L.C.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jorgina Satrústegui
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.H.-S.); (J.S.); (L.C.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Laura Contreras
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.H.-S.); (J.S.); (L.C.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Araceli del Arco
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro Regional de Investigaciones Biomédicas, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla La Mancha, 45071 Toledo, Spain
| |
Collapse
|
15
|
Solano Fonseca R, Metang P, Egge N, Liu Y, Zuurbier KR, Sivaprakasam K, Shirazi S, Chuah A, Arneaud SL, Konopka G, Qian D, Douglas PM. Glycolytic preconditioning in astrocytes mitigates trauma-induced neurodegeneration. eLife 2021; 10:69438. [PMID: 34473622 PMCID: PMC8448530 DOI: 10.7554/elife.69438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/24/2021] [Indexed: 01/02/2023] Open
Abstract
Concussion is associated with a myriad of deleterious immediate and long-term consequences. Yet the molecular mechanisms and genetic targets promoting the selective vulnerability of different neural subtypes to dysfunction and degeneration remain unclear. Translating experimental models of blunt force trauma in C. elegans to concussion in mice, we identify a conserved neuroprotective mechanism in which reduction of mitochondrial electron flux through complex IV suppresses trauma-induced degeneration of the highly vulnerable dopaminergic neurons. Reducing cytochrome C oxidase function elevates mitochondrial-derived reactive oxygen species, which signal through the cytosolic hypoxia inducing transcription factor, Hif1a, to promote hyperphosphorylation and inactivation of the pyruvate dehydrogenase, PDHE1α. This critical enzyme initiates the Warburg shunt, which drives energetic reallocation from mitochondrial respiration to astrocyte-mediated glycolysis in a neuroprotective manner. These studies demonstrate a conserved process in which glycolytic preconditioning suppresses Parkinson-like hypersensitivity of dopaminergic neurons to trauma-induced degeneration via redox signaling and the Warburg effect. Concussion is a type of traumatic brain injury that results from a sudden blow or jolt to the head. Symptoms can include a passing headache, dizziness, confusion or sensitivity to light, but experiencing multiple concussions can have drastic repercussions in later life. Studies of professional athletes have shown that those who experience one or more concussions are prone to developing Alzheimer’s and Parkinson’s disease, two well-known neurodegenerative diseases. Both conditions involve the progressive loss or breakdown of nerve cells, called neurons. But exactly how this so-called neurodegeneration of brain cells stems from the original, physical injury remains unclear. Head trauma may cause damage to the structural support of a cell or disrupt the flow of electrical impulses through neurons. Energy use and production in damaged cells could shift into overdrive to repair the damage. The chemical properties of different types of brain cells could also make some more vulnerable to trauma than others. Besides neurons, star-shaped support cells in the brain called astrocytes, which may have some protective ability, could also be affected. To investigate which cells may be more susceptible to traumatic injuries, Solano Fonseca et al. modelled the impacts of concussion-like head trauma in roundworms (C. elegans) and mice. In both animals, one type of neuron was extremely vulnerable to cell death after trauma. Neurons that release dopamine, a chemical involved in cell-to-cell communication and the brain’s reward system, showed signs of cell damage and deteriorated after injury. Dopaminergic cells, as these cells are called, are involved in motor coordination, and the loss of dopaminergic cells has been linked to both Alzheimer’s and Parkinson’s disease. Astrocytes, however, had a role in reducing the death of dopaminergic neurons after trauma. In experiments, astrocytes appeared to restore the balance of energy production to meet the increased energy demands of impacted neurons. Single-cell analyses showed that genes involved in metabolism were switched on in astrocytes to produce energy via an alternative pathway. This energetic shift facilitated via astrocytes may help mitigate against some damage to dopamine-producing neurons after trauma, reducing cell death. This work furthers our understanding of cellular changes in the concussed brain. More research will be required to better characterise how this immediate trauma to cells, and the subsequent loss of dopaminergic neurons, impacts brain health long-term. Efforts to design effective therapies to slow or reverse these changes could then follow.
Collapse
Affiliation(s)
- Rene Solano Fonseca
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Patrick Metang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Nathan Egge
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Yingjian Liu
- Department of Mechanical Engineering, University of Texas at Dallas, Dallas, United States
| | - Kielen R Zuurbier
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States.,O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Karthigayini Sivaprakasam
- O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Shawn Shirazi
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
| | - Ashleigh Chuah
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sonja Lb Arneaud
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Genevieve Konopka
- O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Dong Qian
- Department of Mechanical Engineering, University of Texas at Dallas, Dallas, United States
| | - Peter M Douglas
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|