1
|
Duan J, Karri SS, Forouzesh K, Mortimer T, Plikus MV, Benitah SA, Takahashi JS, Andersen B. Designing and Evaluating Circadian Experiments on Mouse Skin. J Invest Dermatol 2025; 145:484-493. [PMID: 39891645 DOI: 10.1016/j.jid.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 02/03/2025]
Abstract
All skin layers and cutaneous appendages harbor a robust circadian clock, whose phase is under the influence of light through the central clock in the suprachiasmatic nucleus. The skin clock coordinates fundamental biological processes, including metabolism and stem cell activation. It also prominently modulates activity of skin-resident immune cells and the inflammatory response. Numerous diurnally regulated genes in the skin have been implicated in skin diseases in GWASs. Therefore, the mouse skin is a powerful model for understanding the diverse roles of circadian biology in maintaining tissue health and the initiation and propagation of disease states. When planning experiments to study the circadian biology of mouse skin, multiple technical and biological factors must be carefully considered. In this paper, we provide comprehensive guidance on the general circadian experimental design and associated housing for the mice. We highlight the importance of aligning sample collection with the desired hair cycle stage and animal age. We introduce methods to disrupt the clock in the skin, including altering light and feeding schedules as well as using transgenic mouse models. Finally, we discuss the use of transcriptomic data, both bulk and single cell, for circadian studies.
Collapse
Affiliation(s)
- Junyan Duan
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, USA; The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California, USA
| | - Satya Swaroop Karri
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California, USA; Division of Endocrinology, Department of Medicine, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Kiarash Forouzesh
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California, USA; Division of Endocrinology, Department of Medicine, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Thomas Mortimer
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Maksim V Plikus
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, USA; The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California, USA; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California, USA
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain; Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Joseph S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Bogi Andersen
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, USA; Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California, USA; Division of Endocrinology, Department of Medicine, School of Medicine, University of California, Irvine, Irvine, California, USA.
| |
Collapse
|
2
|
Kondo T, Thaweesapphithak S, Ambo S, Otake K, Ohori-Morita Y, Mori S, Vinaikosol N, Porntaveetus T, Egusa H. Fabrication of Hard Tissue Constructs from Induced Pluripotent Stem Cells for Exploring Mechanisms of Hereditary Tooth/Skeletal Dysplasia. Int J Mol Sci 2025; 26:804. [PMID: 39859513 PMCID: PMC11766037 DOI: 10.3390/ijms26020804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Tooth/skeletal dysplasia, such as hypophosphatasia (HPP), has been extensively studied. However, there are few definitive treatments for these diseases owing to the lack of an in vitro disease model. Cells differentiated from patient-derived induced pluripotent stem cells (iPSCs) demonstrate a pathological phenotype. This study aimed to establish a method for fabricating hard tissue-forming cells derived from human iPSCs (hiPSCs) for the pathological analysis of tooth/skeletal dysplasia. Healthy (HLTH) adult-derived hiPSCs were cultured in a hard tissue induction medium (HM) with or without retinoic acid (RA) under 3D culture conditions, and mineralization and expression of dentinogenesis- and osteogenesis-related markers in 3D hiPSC constructs were evaluated. hiPSCs derived from patients with hypophosphatasia were also cultured in HM with RA. HLTH-derived hiPSCs formed mineralized 3D constructs and showed increased expression of dentinogenesis- and osteogenesis-related markers; addition of RA promoted the expression of these markers in hiPSC constructs. HPP-derived hiPSC constructs showed lower mineralization and expression of dentinogenesis- and osteogenesis-related markers than HLTH-derived hiPSCs, indicating an impaired ability to differentiate into odontoblasts and osteoblasts. This method for fabricating 3D hiPSC constructs allows for simultaneous assessment of dentinogenesis and osteogenesis, with HPP-derived hiPSC constructs recapitulating pathological phenotypes.
Collapse
Affiliation(s)
- Takeru Kondo
- Division of Molecular & Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (S.A.); (K.O.); (Y.O.-M.); (S.M.); (N.V.)
- Department of Next-Generation Dental Material Engineering, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Sermporn Thaweesapphithak
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Clinical Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (S.T.); (T.P.)
| | - Sara Ambo
- Division of Molecular & Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (S.A.); (K.O.); (Y.O.-M.); (S.M.); (N.V.)
| | - Koki Otake
- Division of Molecular & Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (S.A.); (K.O.); (Y.O.-M.); (S.M.); (N.V.)
| | - Yumi Ohori-Morita
- Division of Molecular & Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (S.A.); (K.O.); (Y.O.-M.); (S.M.); (N.V.)
| | - Satomi Mori
- Division of Molecular & Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (S.A.); (K.O.); (Y.O.-M.); (S.M.); (N.V.)
| | - Naruephorn Vinaikosol
- Division of Molecular & Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (S.A.); (K.O.); (Y.O.-M.); (S.M.); (N.V.)
| | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Clinical Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (S.T.); (T.P.)
| | - Hiroshi Egusa
- Division of Molecular & Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (S.A.); (K.O.); (Y.O.-M.); (S.M.); (N.V.)
- Department of Next-Generation Dental Material Engineering, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| |
Collapse
|
3
|
Tran HT, Kondo T, Ashry A, Fu Y, Okawa H, Sawangmake C, Egusa H. Effect of circadian clock disruption on type 2 diabetes. Front Physiol 2024; 15:1435848. [PMID: 39165284 PMCID: PMC11333352 DOI: 10.3389/fphys.2024.1435848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/08/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction Type 2 diabetes (T2D) is the predominant form of diabetes mellitus and is among the leading causes of death with an increasing prevalence worldwide. However, the pathological mechanism underlying T2D remains complex and unclear. An increasing number of studies have suggested an association between circadian clock disruption and high T2D prevalence. Method This review explores the physiological and genetic evidence underlying T2D symptoms associated with circadian clock disturbances, including insulin secretion and glucose metabolism. Results and Discussion Notably, circadian clock disruption reduces insulin secretion and insulin sensitivity and negatively affects glucose homeostasis. The circadian clock regulates the hypothalamic-pituitary-adrenal axis, an important factor that regulates glucose metabolism and influences T2D progression. Therefore, circadian clock regulation is an attractive, novel therapeutic approach for T2D, and various circadian clock stabilizers play therapeutic roles in T2D. Lastly, this review suggests novel therapeutic and preventive approaches using circadian clock regulators for T2D.
Collapse
Affiliation(s)
- Hong Thuan Tran
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
- Stem Cell Institute, University of Science, Viet Nam National University Ho Chi Minh City, Ho Chi Minh, Vietnam
| | - Takeru Kondo
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Amal Ashry
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yunyu Fu
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Hiroko Okawa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Chenphop Sawangmake
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
4
|
Lin Z, Shibuya Y, Imai Y, Oshima J, Sasaki M, Sasaki K, Aihara Y, Khanh VC, Sekido M. Therapeutic Potential of Adipose-Derived Stem Cell-Conditioned Medium and Extracellular Vesicles in an In Vitro Radiation-Induced Skin Injury Model. Int J Mol Sci 2023; 24:17214. [PMID: 38139042 PMCID: PMC10743562 DOI: 10.3390/ijms242417214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Radiotherapy (RT) is one of three major treatments for malignant tumors, and one of its most common side effects is skin and soft tissue injury. However, the treatment of these remains challenging. Several studies have shown that mesenchymal stem cell (MSC) treatment enhances skin wound healing. In this study, we extracted human dermal fibroblasts (HDFs) and adipose-derived stem cells (ADSCs) from patients and generated an in vitro radiation-induced skin injury model with HDFs to verify the effect of conditioned medium derived from adipose-derived stem cells (ADSC-CM) and extracellular vesicles derived from adipose-derived stem cells (ADSC-EVs) on the healing of radiation-induced skin injury. The results showed that collagen synthesis was significantly increased in wounds treated with ADSC-CM or ADSC-EVs compared with the control group, which promoted the expression of collagen-related genes and suppressed the expression of inflammation-related genes. These findings indicated that treatment with ADSC-CM or ADSC-EVs suppressed inflammation and promoted extracellular matrix deposition; treatment with ADSC-EVs also promoted fibroblast proliferation. In conclusion, these results demonstrate the effectiveness of ADSC-CM and ADSC-EVs in the healing of radiation-induced skin injury.
Collapse
Affiliation(s)
- Zhixiang Lin
- Department of Plastic and Reconstructive Surgery, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan (Y.I.); (M.S.)
| | - Yoichiro Shibuya
- Department of Plastic and Reconstructive Surgery, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan (Y.I.); (M.S.)
| | - Yukiko Imai
- Department of Plastic and Reconstructive Surgery, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan (Y.I.); (M.S.)
| | - Junya Oshima
- Department of Plastic and Reconstructive Surgery, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan (Y.I.); (M.S.)
| | - Masahiro Sasaki
- Department of Plastic and Reconstructive Surgery, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan (Y.I.); (M.S.)
- Department of Plastic and Reconstructive Surgery, Mito Saiseikai General Hospital, Mito 311-4145, Ibaraki, Japan
| | - Kaoru Sasaki
- Department of Plastic and Reconstructive Surgery, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan (Y.I.); (M.S.)
| | - Yukiko Aihara
- Department of Plastic and Reconstructive Surgery, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan (Y.I.); (M.S.)
| | - Vuong Cat Khanh
- Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Mitsuru Sekido
- Department of Plastic and Reconstructive Surgery, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan (Y.I.); (M.S.)
| |
Collapse
|
5
|
Murgo E, Colangelo T, Bellet MM, Malatesta F, Mazzoccoli G. Role of the Circadian Gas-Responsive Hemeprotein NPAS2 in Physiology and Pathology. BIOLOGY 2023; 12:1354. [PMID: 37887064 PMCID: PMC10603908 DOI: 10.3390/biology12101354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
Neuronal PAS domain protein 2 (NPAS2) is a hemeprotein comprising a basic helix-loop-helix domain (bHLH) and two heme-binding sites, the PAS-A and PAS-B domains. This protein acts as a pyridine nucleotide-dependent and gas-responsive CO-dependent transcription factor and is encoded by a gene whose expression fluctuates with circadian rhythmicity. NPAS2 is a core cog of the molecular clockwork and plays a regulatory role on metabolic pathways, is important for the function of the central nervous system in mammals, and is involved in carcinogenesis as well as in normal biological functions and processes, such as cardiovascular function and wound healing. We reviewed the scientific literature addressing the various facets of NPAS2 and framing this gene/protein in several and very different research and clinical fields.
Collapse
Affiliation(s)
- Emanuele Murgo
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| | - Tommaso Colangelo
- Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto 1, 71100 Foggia, Italy;
- Cancer Cell Signaling Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy
| | - Maria Marina Bellet
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy;
| | - Francesco Malatesta
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| |
Collapse
|
6
|
Li J, Yin Y, Zou J, Zhang E, Li Q, Chen L, Li J. The adipose-derived stem cell peptide ADSCP2 alleviates hypertrophic scar fibrosis via binding with pyruvate carboxylase and remodeling the metabolic landscape. Acta Physiol (Oxf) 2023; 238:e14010. [PMID: 37366253 DOI: 10.1111/apha.14010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/29/2023] [Accepted: 06/04/2023] [Indexed: 06/28/2023]
Abstract
AIM The purpose of this study was to investigate the function and mechanism of a novel peptide derived from adipose-derived stem cell-conditioned medium (ADSC-CM). METHODS Mass spectrometry was applied to identify expressed peptides in ADSC-CM obtained at different time points. The cell counting kit-8 assay and quantitative reverse transcription polymerase chain reactions were performed to screen the functional peptides contained within ADSC-CM. RNA-seq, western blot, a back skin excisional model of BALB/c mice, the peptide pull-down assay, rescue experiments, untargeted metabolomics, and mixOmics analysis were performed to thoroughly understand the functional mechanism of selected peptide. RESULTS A total of 93, 827, 1108, and 631 peptides were identified in ADSC-CM at 0, 24, 48, and 72 h of conditioning, respectively. A peptide named ADSCP2 (DENREKVNDQAKL) derived from ADSC-CM inhibited collagen and ACTA2 mRNAs in hypertrophic scar fibroblasts. Moreover, ADSCP2 facilitated wound healing and attenuated collagen deposition in a mouse model. ADSCP2 bound with the pyruvate carboxylase (PC) protein and inhibited PC protein expression. Overexpressing PC rescued the reduction in collagen and ACTA2 mRNAs caused by ADSCP2. Untargeted metabolomics identified 258 and 447 differential metabolites in the negative and positive mode, respectively, in the ADSCP2-treated group. The mixOmics analysis, which integrated RNA-seq and untargeted metabolomics data, provided a more holistic view of the functions of ADSCP2. CONCLUSION Overall, a novel peptide derived from ADSC-CM, named ADSCP2, attenuated hypertrophic scar fibrosis in vitro and in vivo, and the novel peptide ADSCP2 might be a promising drug candidate for clinical scar therapy.
Collapse
Affiliation(s)
- Jingyun Li
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Yiliang Yin
- Department of Plastic & Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Jijun Zou
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Enyuan Zhang
- Department of Plastic & Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Qian Li
- Department of Plastic & Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Ling Chen
- Department of Plastic & Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Jun Li
- Department of Plastic & Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| |
Collapse
|
7
|
Chen Y, He Z, Zhao B, Zheng R. Downregulation of a potential therapeutic target NPAS2, regulated by p53, alleviates pulmonary fibrosis by inhibiting epithelial-mesenchymal transition via suppressing HES1. Cell Signal 2023:110795. [PMID: 37406788 DOI: 10.1016/j.cellsig.2023.110795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease and a severe form of pulmonary fibrosis. Epithelial-mesenchymal transition (EMT) of alveolar epithelial cells is induced in response to epithelial injury, which leads to the accumulation of extracellular matrix in the lung parenchyma and contributes to pulmonary fibrosis. NPAS2 (neuronal PAS domain protein 2) is significantly increased in the lung tissues of IPF patients according to microarray dataset GSE10667 and NPAS2 is downregulated in differentiated human pulmonary type 2 epithelial cells in vitro based on microarray dataset GSE3306 from Gene Expression Omnibus (GEO). In this study, we demonstrated that NPAS2 was increased in bleomycin (BLM)- induced fibrotic lungs in mice. Knockdown of NPAS2 inhibited EMT in primary mouse lung alveolar type 2 epithelial (pmATII) cells and human lung alveolar type 2 epithelial cell line A549 cells under BLM challenge in vitro. Moreover, the silence of NPAS2 alleviated the BLM-induced pulmonary fibrosis in a murine model. Mechanistically, NPAS2 promotes EMT through positively regulating hairy and enhancer of split 1 (HES1) expression. In this study, we present novel findings that have not been previously reported, emphasizing that p53 transcriptionally activates NPAS2 in ATII cells and overexpression of NPAS2 weakens the effects of TP53 knockdown on EMT of pmATII and A549 cells. Our results suggest NPAS2 is a novel target gene of p53 in regulating BLM-mediated EMT in ATII cells and pulmonary fibrosis.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Zhong He
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Bo Zhao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Rui Zheng
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
8
|
Li S, Liu J, Guo J, Xu Y, Zhou Z, Li Z, Cai H. Progranulin inhibits fibrosis by interacting with and up-regulating DNAJC3 during mouse skin wound healing. Cell Signal 2023:110770. [PMID: 37329998 DOI: 10.1016/j.cellsig.2023.110770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/23/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023]
Abstract
Scars place a heavy burden on both individuals and society. Our previous study found that reduction of progranulin (PGRN) promotes fibrogenesis in mouse skin wound healing. However, the underlying mechanisms have not been elucidated. Here, we report that PGRN overexpression decreases the expression of profibrotic genes alpha-smooth muscle actin (αSMA), serum response factor (SRF), and connective tissue growth factor (CTGF), thereby inhibiting skin fibrosis during wound repair. Bioinformatics analysis suggested that the heat shock protein (Hsp) 40 superfamily C3 (DNAJC3) is a potential downstream molecule of PGRN. Further experiments showed that PGRN interacts with and upregulates DNAJC3. Moreover, this antifibrotic effect was rescued by DNAJC3 knockdown. In summary, our study suggests that PGRN inhibits fibrosis by interacting with and upregulating DNAJC3 during wound healing in mouse skin. Our study provides a mechanistic explanation of the effect of PGRN on fibrogenesis in skin wound healing.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou, Jiangsu, China.
| | - Jialin Liu
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou, Jiangsu, China
| | - Jiamei Guo
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou, Jiangsu, China
| | - Yong Xu
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou, Jiangsu, China
| | - Zhong Zhou
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou, Jiangsu, China
| | - Zhouru Li
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou, Jiangsu, China
| | - Hongxing Cai
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou, Jiangsu, China.
| |
Collapse
|
9
|
Zhang Z, Wang L, Zhang Q, Li H, Xiang Y, Wang X, Hu X. Effective Electrical Stimulation by a Poly(l-lactic acid)/Vitamin B2-Based Piezoelectric Generator Promotes Wound Healing. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
10
|
Clements A, Shibuya Y, Hokugo A, Brooks Z, Roca Y, Kondo T, Nishimura I, Jarrahy R. In vitro assessment of Neuronal PAS domain 2 mitigating compounds for scarless wound healing. Front Med (Lausanne) 2023; 9:1014763. [PMID: 36816724 PMCID: PMC9928850 DOI: 10.3389/fmed.2022.1014763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/09/2022] [Indexed: 02/04/2023] Open
Abstract
Background The core circadian gene Neuronal PAS domain 2 (NPAS2) is expressed in dermal fibroblasts and has been shown to play a critical role in regulating collagen synthesis during wound healing. We have performed high throughput drug screening to identify genes responsible for downregulation of Npas2 while maintaining cell viability. From this, five FDA-approved hit compounds were shown to suppress Npas2 expression in fibroblasts. In this study, we hypothesize that the therapeutic suppression of Npas2 by hit compounds will have two effects: (1) attenuated excessive collagen deposition and (2) accelerated dermal wound healing without hypertrophic scarring. Materials and methods To test the effects of each hit compound (named Dwn1, 2, 3, 4, and 5), primary adult human dermal fibroblasts (HDFa) were treated with either 0, 0.1, 1, or 10 μM of a single hit compound. HDFa behaviors were assessed by picrosirius red staining and quantitative RT-PCR for in vitro collagen synthesis, cell viability assay, in vitro fibroblast-to-myofibroblast differentiation test, and cell migration assays. Results Dwn1 and Dwn2 were found to significantly affect collagen synthesis and cell migration without any cytotoxicity. Dwn3, Dwn4, and Dwn5 did not affect collagen synthesis and were thereby eliminated from further consideration for their role in mitigation of gene expression or myofibroblast differentiation. Dwn1 also attenuated myofibroblast differentiation on HDFa. Conclusion Dwn1 and Dwn2 may serve as possible therapeutic agents for future studies related to skin wound healing.
Collapse
Affiliation(s)
- Adam Clements
- Regenerative Bioengineering and Repair Laboratory, Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yoichiro Shibuya
- Regenerative Bioengineering and Repair Laboratory, Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Akishige Hokugo
- Regenerative Bioengineering and Repair Laboratory, Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States,*Correspondence: Akishige Hokugo,
| | - Zachary Brooks
- Regenerative Bioengineering and Repair Laboratory, Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yvonne Roca
- Regenerative Bioengineering and Repair Laboratory, Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Takeru Kondo
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ichiro Nishimura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States,Ichiro Nishimura,
| | - Reza Jarrahy
- Regenerative Bioengineering and Repair Laboratory, Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States,Reza Jarrahy,
| |
Collapse
|
11
|
Imai Y, Mori N, Nihashi Y, Kumagai Y, Shibuya Y, Oshima J, Sasaki M, Sasaki K, Aihara Y, Sekido M, Kida YS. Therapeutic Potential of Adipose Stem Cell-Derived Conditioned Medium on Scar Contraction Model. Biomedicines 2022; 10:biomedicines10102388. [PMID: 36289649 PMCID: PMC9598573 DOI: 10.3390/biomedicines10102388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Scars are composed of stiff collagen fibers, which contract strongly owing to the action of myofibroblasts. To explore the substances that modulate scar contracture, the fibroblast-populated collagen lattice (FPCL) model has been used. However, the molecular signature of the patient-derived FPCL model has not been verified. Here, we examined whether the patient-derived keloid FPCL model reflects scar contraction, analyzing detailed gene expression changes using comprehensive RNA sequencing and histological morphology, and revealed that these models are consistent with the changes during human scar contracture. Moreover, we examined whether conditioned media derived from adipose stem cells (ASC-CM) suppress the scar contracture of the collagen disc. Detailed time-series measurements of changes in disc area showed that the addition of ASC-CM significantly inhibited the shrinkage of collagen discs. In addition, a deep sequencing data analysis revealed that ASC-CM suppressed inflammation-related gene expression in the early phase of contraction; in the later phase, this suppression was gradually replaced by extracellular matrix (ECM)-related gene expression. These lines of data suggested the effectiveness of ASC-CM in suppressing scar contractures. Therefore, the molecular analysis of the ASC-CM actions found in this study will contribute to solving medical problems regarding pathological scarring in wound prognosis.
Collapse
Affiliation(s)
- Yukiko Imai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Ibaraki, Japan
- Department of Plastic and Reconstructive surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Nobuhito Mori
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Ibaraki, Japan
| | - Yuma Nihashi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Ibaraki, Japan
| | - Yutaro Kumagai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Ibaraki, Japan
| | - Yoichiro Shibuya
- Department of Plastic and Reconstructive surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Junya Oshima
- Department of Plastic and Reconstructive surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Masahiro Sasaki
- Department of Plastic and Reconstructive surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Kaoru Sasaki
- Department of Plastic and Reconstructive surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Yukiko Aihara
- Department of Plastic and Reconstructive surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Mitsuru Sekido
- Department of Plastic and Reconstructive surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Yasuyuki S. Kida
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Ibaraki, Japan
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
- Correspondence: ; Tel.: +81-29-861-3000
| |
Collapse
|
12
|
A Novel lncRNA FPASL regulates fibroblasts proliferation via PI3K/AKT and MAPK signaling pathways in Hypertrophic scar. Acta Biochim Biophys Sin (Shanghai) 2022; 55:274-284. [PMID: 36082934 PMCID: PMC10157618 DOI: 10.3724/abbs.2022122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Hypertrophic scar is a problem for numerous patients, especially after burns, and is characterized by increased fibroblast proliferation and collagen deposition. Increasing evidence demonstrates that lncRNAs contribute to the development and progression of various diseases. However, the function of lncRNAs in hypertrophic scar formation remains poorly characterized. In this study, a novel fibroblast proliferation-associated lncRNA, named lncRNA FPASL (MSTRG.389905.1), which is mainly localized in the cytoplasm, is found to be downregulated in hypertrophic scar, as detected by lncRNA microarray and qRT-PCR. The full-length FPASL is characterized and further investigation confirms that it has no protein-coding potential. FPASL knockdown in fibroblasts triggers fibroblast proliferation, whereas overexpression of FPASL directly attenuates the proliferation of fibroblasts. Furthermore, target genes of the differentially expressed lncRNAs in hypertrophic scars and the matched adjacent normal tissues are enriched in fibroblast proliferation signaling pathways, including the PI3K/AKT and MAPK signaling pathways, as determined by GO annotation and KEGG enrichment analysis. We also demonstrate that knockdown of FPASL activates the PI3K/AKT and MAPK signaling pathways, and specific inhibitors of the PI3K/AKT and MAPK signaling pathways can reverse the proliferation of fibroblasts promoted by FPASL knockdown. Our findings contribute to a better understanding of the role of lncRNAs in hypertrophic scar and suggest that FPASL may act as a potential novel therapeutic target for hypertrophic scar.
Collapse
|