1
|
Ye WL, Huang L, Yang XQ, Wan S, Gan WJ, Yang Y, He XS, Liu F, Guo X, Liu YX, Hu G, Li XM, Shi WY, He K, Wu YY, Wu WX, Lu JH, Song Y, Qu CJ, Wu H. TRIM21 induces selective autophagic degradation of c-Myc and sensitizes regorafenib therapy in colorectal cancer. Proc Natl Acad Sci U S A 2024; 121:e2406936121. [PMID: 39388269 PMCID: PMC11494295 DOI: 10.1073/pnas.2406936121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
Kirsten rat sarcoma virus (KRAS) mutation is associated with malignant tumor transformation and drug resistance. However, the development of clinically effective targeted therapies for KRAS-mutant cancer has proven to be a formidable challenge. Here, we report that tripartite motif-containing protein 21 (TRIM21) functions as a target of extracellular signal-regulated kinase 2 (ERK2) in KRAS-mutant colorectal cancer (CRC), contributing to regorafenib therapy resistance. Mechanistically, TRIM21 directly interacts with and ubiquitinates v-myc avian myelocytomatosis viral oncogene homolog (c-Myc) at lysine 148 (K148) via K63-linkage, enabling c-Myc to be targeted to the autophagy machinery for degradation, ultimately resulting in the downregulation of enolase 2 expression and inhibition of glycolysis. However, mutant KRAS (KRAS/MT)-driven mitogen-activated protein kinase (MAPK) signaling leads to the phosphorylation of TRIM21 (p-TRIM21) at Threonine 396 (T396) by ERK2, disrupting the interaction between TRIM21 and c-Myc and thereby preventing c-Myc from targeting autophagy for degradation. This enhances glycolysis and contributes to regorafenib resistance. Clinically, high p-TRIM21 (T396) is associated with an unfavorable prognosis. Targeting TRIM21 to disrupt KRAS/MT-driven phosphorylation using the antidepressant vilazodone shows potential for enhancing the efficacy of regorafenib in treating KRAS-mutant CRC in preclinical models. These findings are instrumental for KRAS-mutant CRC treatment aiming at activating TRIM21-mediated selective autophagic degradation of c-Myc.
Collapse
Affiliation(s)
- Wen-Long Ye
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
- Department of Pathology, The Fourth Affiliated Hospital of Soochow University, Soochow University, Suzhou215000, China
| | - Long Huang
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Soochow University, Suzhou215600, China
| | - Xiao-Qin Yang
- Department of Bioinformatics, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Shan Wan
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Soochow University, Suzhou215600, China
| | - Wen-Juan Gan
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
- Department of Pathology, The Fourth Affiliated Hospital of Soochow University, Soochow University, Suzhou215000, China
| | - Yun Yang
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Xiao-Shun He
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Feng Liu
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Xin Guo
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Yi-Xuan Liu
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Guang Hu
- Department of Bioinformatics, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Xiu-Ming Li
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Wei-Yi Shi
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Kuang He
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
- Department of Pathology, The Fourth Affiliated Hospital of Soochow University, Soochow University, Suzhou215000, China
| | - Yue-Yue Wu
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Wen-Xin Wu
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Jun-Hou Lu
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Yu Song
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Soochow University, Suzhou215600, China
| | - Chen-Jiang Qu
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Soochow University, Suzhou215600, China
| | - Hua Wu
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
- Department of Pathology, The Fourth Affiliated Hospital of Soochow University, Soochow University, Suzhou215000, China
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Soochow University, Suzhou215600, China
- Cancer Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| |
Collapse
|
2
|
Song Y, Wang L, Zheng Y, Jia L, Li C, Chao K, Li L, Sun S, Wei Y, Ge Y, Yang Y, Zhu L, Zhang Y, Zhao J. Deubiquitinating enzyme USP28 inhibitor AZ1 alone and in combination with cisplatin for the treatment of non-small cell lung cancer. Apoptosis 2024; 29:1793-1809. [PMID: 39222275 PMCID: PMC11416398 DOI: 10.1007/s10495-024-02008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
Lung cancer is one of the most common malignant tumors. Despite decades of research, the treatment of lung cancer remains challenging. Non-small cell lung cancer (NSCLC) is the primary type of lung cancer and is a significant focus of research in lung cancer treatment. The deubiquitinase ubiquitin-specific protease 28 (USP28) plays a role in the progression of various tumors and serves as a potential therapeutic target. This study aims to determine the role of USP28 in the progression of NSCLC. We examined the impact of the USP28 inhibitor AZ1 on the cell cycle, apoptosis, DNA damage response, and cellular immunogenicity in non-small cell lung cancer. We observed that AZ1 and siUSP28 induce DNA damage, leading to the activation of Noxa-mediated mitochondrial apoptosis. The dsDNA and mtDNA released from DNA damage and mitochondrial apoptosis activate tumor cell immunogenicity through the cGAS-STING signaling pathway. Simultaneously, targeting USP28 promotes the degradation of c-MYC, resulting in cell cycle arrest and inhibition of DNA repair. This further promotes DNA damage-induced cell apoptosis mediated by the Noxa protein, thereby enhancing tumor cell immunogenicity mediated by dsDNA and mtDNA. Moreover, we found that the combination of AZ1 and cisplatin (DDP) can enhance therapeutic efficacy, thereby providing a new strategy to overcome cisplatin resistance in NSCLC. These findings suggest that targeting USP28 and combining it with cisplatin are feasible strategies for treating NSCLC.
Collapse
Affiliation(s)
- Yiqiong Song
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Longhao Wang
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Oncology, Henan Provincial People's Hospital and Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Yuanyuan Zheng
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Lanqi Jia
- Department of Pharmacy, The First Affiliated Hospital of Henan University of CM, Zhengzhou, 477150, Henan, China
| | - Chunwei Li
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ke Chao
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Lifeng Li
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shilong Sun
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yujie Wei
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yahao Ge
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yaqi Yang
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Lili Zhu
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yixing Zhang
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jie Zhao
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
3
|
Chandler F, Reddy PAN, Bhutda S, Ross RL, Walden M, Walker K, Di Donato S, Cassel JA, Prakesch MA, Aman A, Datti A, Campbell LJ, Foglizzo M, Bell L, Stein DN, Ault JR, Al-Awar RS, Calabrese AN, Sicheri F, Del Galdo F, Salvino JM, Greenberg RA, Zeqiraj E. Molecular glues that inhibit specific Zn 2+-dependent DUB activity and inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.07.611787. [PMID: 39282282 PMCID: PMC11398498 DOI: 10.1101/2024.09.07.611787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Deubiquitylases (DUBs) play a pivotal role in cell signalling and are often regulated by homo- or hetero-interactions within protein complexes. The BRCC36 isopeptidase complex (BRISC) regulates inflammatory signalling by selectively cleaving K63-linked polyubiquitin chains on Type I interferon receptors (IFNAR1). BRCC36 is a Zn2+-dependent JAMM/MPN DUB, a challenging ubiquitin protease class for the design of selective inhibitors. We identified first-in-class DUB inhibitors that act as BRISC molecular glues (BLUEs). BLUEs inhibit DUB activity by stabilising a BRISC dimer consisting of 16 subunits. The BLUE-stabilised BRISC dimer is an autoinhibited conformation, whereby the active sites and interactions with the recruiting subunit SHMT2 are blocked. This unique mode of action leads to highly selective inhibitors for BRISC over related complexes with the same catalytic subunit, splice variants and other JAMM/MPN DUBs. Structure-guided inhibitor resistant mutants confirm BLUEs on-target activity in cells, and BLUE treatment results in reduced interferon-stimulated gene (ISG) expression in human peripheral blood mononuclear cells from Scleroderma patients, a disease linked with aberrant IFNAR1 activation. BLUEs represent a new class of molecules with potential utility in Type I interferon-mediated diseases and a template for designing selective inhibitors of large protein complexes by promoting protein-protein interactions instead of blocking them.
Collapse
Affiliation(s)
- Francesca Chandler
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Poli Adi Narayana Reddy
- The Wistar Cancer Center for Molecular Screening, The Wistar Institute, Philadelphia, PA, USA
| | - Smita Bhutda
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca L Ross
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals, NHS Trust, Chapel Allerton Hospital, Leeds, UK
| | - Miriam Walden
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Kieran Walker
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Stefano Di Donato
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals, NHS Trust, Chapel Allerton Hospital, Leeds, UK
| | - Joel A Cassel
- The Wistar Cancer Center for Molecular Screening, The Wistar Institute, Philadelphia, PA, USA
| | - Michael A Prakesch
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Ahmed Aman
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Alessandro Datti
- Department of Agriculture, Food, and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Lisa J Campbell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Martina Foglizzo
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Lillie Bell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Daniel N Stein
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James R Ault
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Rima S Al-Awar
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Frank Sicheri
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals, NHS Trust, Chapel Allerton Hospital, Leeds, UK
| | - Joseph M Salvino
- The Wistar Cancer Center for Molecular Screening, The Wistar Institute, Philadelphia, PA, USA
| | - Roger A Greenberg
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elton Zeqiraj
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
4
|
Patzke JV, Sauer F, Nair RK, Endres E, Proschak E, Hernandez-Olmos V, Sotriffer C, Kisker C. Structural basis for the bi-specificity of USP25 and USP28 inhibitors. EMBO Rep 2024; 25:2950-2973. [PMID: 38816515 PMCID: PMC11239673 DOI: 10.1038/s44319-024-00167-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024] Open
Abstract
The development of cancer therapeutics is often hindered by the fact that specific oncogenes cannot be directly pharmaceutically addressed. Targeting deubiquitylases that stabilize these oncogenes provides a promising alternative. USP28 and USP25 have been identified as such target deubiquitylases, and several small-molecule inhibitors indiscriminately inhibiting both enzymes have been developed. To obtain insights into their mode of inhibition, we structurally and functionally characterized USP28 in the presence of the three different inhibitors AZ1, Vismodegib and FT206. The compounds bind into a common pocket acting as a molecular sink. Our analysis provides an explanation why the two enzymes are inhibited with similar potency while other deubiquitylases are not affected. Furthermore, a key glutamate residue at position 366/373 in USP28/USP25 plays a central structural role for pocket stability and thereby for inhibition and activity. Obstructing the inhibitor-binding pocket by mutation of this glutamate may provide a tool to accelerate future drug development efforts for selective inhibitors of either USP28 or USP25 targeting distinct binding pockets.
Collapse
Affiliation(s)
- Jonathan Vincent Patzke
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Florian Sauer
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Radhika Karal Nair
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Erik Endres
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe-University, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
| | - Victor Hernandez-Olmos
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
| | - Christoph Sotriffer
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Caroline Kisker
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany.
| |
Collapse
|
5
|
Zhang Y, Shi W, Chen R, Gu Y, Zhao M, Song J, Shi Z, Wu J, Chang H, Liu M. LINC01133 regulates MARCKS expression via sponging miR-30d-5p to promote the development of lung squamous cell carcinoma. Transl Oncol 2024; 44:101931. [PMID: 38599002 PMCID: PMC11015483 DOI: 10.1016/j.tranon.2024.101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 04/12/2024] Open
Abstract
LncRNAs are vital regulators for lung squamous cell carcinoma (LUSC). However, the detailed role that LINC01133 plays in LUSC is unclear. This work sought to explore the potential function of LINC01133.Levels of LINC01133, miR-30d-5p, and MARCKS were separately tested in both tissues and cells using qRT-PCR. Proliferation was assessed through MTT experiment and apoptosis was detected upon flow cytometry. Transwell experiments were implemented to evaluate migratory and invasive abilities. The interaction between two genes was affirmed through luciferase reporter assay and RNA pull-down experiment. Western blotting measured the protein level of MARCKS. Animal models were established and tissues were taken for IHC analysis of MARCKS and Ki67.LINC01133 was elevated in LUSC and its downregulation could suppress proliferation, migration and invasion but induced apoptosis. LINC01133 interacted with and regulated the binding of miR-30d-5p to MARCKS. LINC01133/miR-30d-5p axis mediated proliferation, apoptosis, migration and invasion in LUSC cells, as well as modulated tumor growth in animal models. LINC01133 interacted with miR-30d-5p to modulate MARCKS expression, contributes to promoted cell proliferation, migration, invasion, and inhibited cell apoptosis in vitro, and promoted tumor growth in vivo. These findings could provide possible therapeutic targets in view of LUSC treatment in the future.
Collapse
Affiliation(s)
- Yajun Zhang
- Cardiothoracic Surgery, Affiliated Hospital sixth of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, 224000, China.
| | - Woda Shi
- Cardiothoracic Surgery, Affiliated Hospital sixth of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, 224000, China.
| | - Rongjin Chen
- Medical School of Nantong University, Nantong, 226007, China; Department of Cardiothoracic Surgery, Affiliated Hospital sixth of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, 224000, China
| | - Yan Gu
- Medical School of Nantong University, Nantong, 226007, China; Department of Cardiothoracic Surgery, Affiliated Hospital sixth of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, 224000, China
| | - Mengjie Zhao
- Medical School of Nantong University, Nantong, 226007, China; Department of Cardiothoracic Surgery, Affiliated Hospital sixth of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, 224000, China
| | - Jianxiang Song
- Department of Cardiothoracic Surgery, Affiliated Hospital sixth of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, 224000, China
| | - Zhan Shi
- Department of Cardiothoracic Surgery, Affiliated Hospital sixth of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, 224000, China
| | - Jixiang Wu
- Department of Cardiothoracic Surgery, Affiliated Hospital sixth of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, 224000, China
| | - HuiWen Chang
- Department of Cardiothoracic Surgery, Affiliated Hospital sixth of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, 224000, China
| | - Ming Liu
- Department of Cardiothoracic Surgery, Affiliated Hospital sixth of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, 224000, China
| |
Collapse
|
6
|
Cheng C, Yao H, Li H, Liu J, Liu Z, Wu Y, Zhu L, Hu H, Fang Z, Wu L. Blockade of the deubiquitinating enzyme USP48 degrades oncogenic HMGA2 and inhibits colorectal cancer invasion and metastasis. Acta Pharm Sin B 2024; 14:1624-1643. [PMID: 38572092 PMCID: PMC10985028 DOI: 10.1016/j.apsb.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/14/2023] [Accepted: 01/08/2024] [Indexed: 04/05/2024] Open
Abstract
HMGA2, a pivotal transcription factor, functions as a versatile regulator implicated in the progression of diverse aggressive malignancies. In this study, mass spectrometry was employed to identify ubiquitin-specific proteases that potentially interact with HMGA2, and USP48 was identified as a deubiquitinating enzyme of HMGA2. The enforced expression of USP48 significantly increased HMGA2 protein levels by inhibiting its degradation, while the deprivation of USP48 promoted HMGA2 degradation, thereby suppressing tumor invasion and metastasis. We discovered that USP48 undergoes SUMOylation at lysine 258, which enhances its binding affinity to HMGA2. Through subsequent phenotypic screening of small molecules, we identified DUB-IN-2 as a remarkably potent pharmacological inhibitor of USP48. Interestingly, the small-molecule inhibitor targeting USP48 induces destabilization of HMGA2. Clinically, upregulation of USP48 or HMGA2 in cancerous tissues is indicative of poor prognosis for patients with colorectal cancer (CRC). Collectively, our study not only elucidates the regulatory mechanism of DUBs involved in HMGA2 stability and validates USP48 as a potential therapeutic target for CRC, but also identifies DUB-IN-2 as a potent inhibitor of USP48 and a promising candidate for CRC treatment.
Collapse
Affiliation(s)
- Can Cheng
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Hanhui Yao
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Heng Li
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Department of Comprehensive Surgery, Anhui Provincial Cancer Hospital, West District of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Jingwen Liu
- Anhui Provincial Hospital Health Management Center, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhengyi Liu
- Department of Breast Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou 450003, China
| | - Yang Wu
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Liang Zhu
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Hejie Hu
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhengdong Fang
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Liang Wu
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| |
Collapse
|
7
|
Zheng LL, Wang LT, Pang YW, Sun LP, Shi L. Recent advances in the development of deubiquitinases inhibitors as antitumor agents. Eur J Med Chem 2024; 266:116161. [PMID: 38262120 DOI: 10.1016/j.ejmech.2024.116161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Ubiquitination is a type of post-translational modification that covalently links ubiquitin to a target protein, which plays a critical role in modulating protein activity, stability, and localization. In contrast, this process is reversed by deubiquitinases (DUBs), which remove ubiquitin from ubiquitinated substrates. Dysregulation of DUBs is associated with several human diseases, such as cancer, inflammation, neurodegenerative disorders, and autoimmune diseases. Thus, DUBs have become promising targets for drug development. Although the physiological and pathological effects of DUBs are increasingly well understood, the clinical drug discovery of selective DUB inhibitors has been challenging. Herein, we summarize the structures and functions of main classes of DUBs and discuss the recent progress in developing selective small-molecule DUB inhibitors as antitumor agents.
Collapse
Affiliation(s)
- Li-Li Zheng
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li-Ting Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ye-Wei Pang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li-Ping Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Lei Shi
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
8
|
Abstract
Ubiquitination is an essential regulator of most, if not all, signalling pathways, and defects in cellular signalling are central to cancer initiation, progression and, eventually, metastasis. The attachment of ubiquitin signals by E3 ubiquitin ligases is directly opposed by the action of approximately 100 deubiquitinating enzymes (DUBs) in humans. Together, DUBs and E3 ligases coordinate ubiquitin signalling by providing selectivity for different substrates and/or ubiquitin signals. The balance between ubiquitination and deubiquitination is exquisitely controlled to ensure properly coordinated proteostasis and response to cellular stimuli and stressors. Not surprisingly, then, DUBs have been associated with all hallmarks of cancer. These relationships are often complex and multifaceted, highlighted by the implication of multiple DUBs in certain hallmarks and by the impact of individual DUBs on multiple cancer-associated pathways, sometimes with contrasting cancer-promoting and cancer-inhibiting activities, depending on context and tumour type. Although it is still understudied, the ever-growing knowledge of DUB function in cancer physiology will eventually identify DUBs that warrant specific inhibition or activation, both of which are now feasible. An integrated appreciation of the physiological consequences of DUB modulation in relevant cancer models will eventually lead to the identification of patient populations that will most likely benefit from DUB-targeted therapies.
Collapse
Affiliation(s)
- Grant Dewson
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Pieter J A Eichhorn
- Curtin Medical School, Curtin University, Perth, Western Australia, Australia.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| | - David Komander
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
9
|
Clancy A, Rusilowicz-Jones EV, Wallace I, Swatek KN, Urbé S, Clague MJ. ISGylation-independent protection of cell growth by USP18 following interferon stimulation. Biochem J 2023; 480:1571-1581. [PMID: 37756534 PMCID: PMC10586769 DOI: 10.1042/bcj20230301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 09/29/2023]
Abstract
Type 1 interferon stimulation highly up-regulates all elements of a ubiquitin-like conjugation system that leads to ISGylation of target proteins. An ISG15-specific member of the deubiquitylase family, USP18, is up-regulated in a co-ordinated manner. USP18 can also provide a negative feedback by inhibiting JAK-STAT signalling through protein interactions independently of DUB activity. Here, we provide an acute example of this phenomenon, whereby the early expression of USP18, post-interferon treatment of HCT116 colon cancer cells is sufficient to fully suppress the expression of the ISG15 E1 enzyme, UBA7. Stimulation of lung adenocarcinoma A549 cells with interferon reduces their growth rate but they remain viable. In contrast, A549 USP18 knock-out cells show similar growth characteristics under basal conditions, but upon interferon stimulation, a profound inhibition of cell growth is observed. We show that this contingency on USP18 is independent of ISGylation, suggesting non-catalytic functions are required for viability. We also demonstrate that global deISGylation kinetics are very slow compared with deubiquitylation. This is not influenced by USP18 expression, suggesting that enhanced ISGylation in USP18 KO cells reflects increased conjugating activity.
Collapse
Affiliation(s)
- Anne Clancy
- Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 3BX, U.K
| | - Emma V. Rusilowicz-Jones
- Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 3BX, U.K
| | - Iona Wallace
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Kirby N. Swatek
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Sylvie Urbé
- Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 3BX, U.K
| | - Michael J. Clague
- Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 3BX, U.K
| |
Collapse
|
10
|
Xu Z, Wang H, Meng Q, Ding Y, Zhu M, Zhou H, Zhang N, Shi L. Otilonium Bromide acts as a selective USP28 inhibitor and exhibits cytotoxic activity against multiple human cancer cell lines. Biochem Pharmacol 2023; 215:115746. [PMID: 37579857 DOI: 10.1016/j.bcp.2023.115746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
USP28 contributes to tumorigenesis through modulating the lifespan of oncogenic factors such as c-Myc and ΔNp63, and it has been identified as a potential target for anti-cancer drug development. Currently, although quite a number of USP28 inhibitors have been developed, they all are still in preclinical research stage. Besides, none of them exhibits satisfying inhibition selectivity against USP28 over its closest homologue USP25. Here in this manuscript, a high-throughput screening aiming to discover USP28 inhibitors with novel scaffold and enhanced inhibition selectivity were conducted. After the primary screening and the second round of validation, Otilonium Bromide, an approved drug for treating irritable bowel syndrome, was identified to inhibit USP28's activity with the IC50 value at 6.90 ± 0.90 μM. Besides, the drug exhibits a 3-4 folds inhibition selectivity against USP28 over USP25. According to the enzymatic kinetics analysis data and the hydrogen-deuterium exchange mass spectrometry results, Otilonium Bromide could bind to the allosteric pocket of USP28 and inhibit its activity in a reversible and non-competitive mode. The following performed cell-based assays revealed that the drug could cause cytotoxicity against human colorectal cancer cells and lung squamous carcinoma cells potentially through down-regulating USP28's oncogenic substrates c-Myc and/or ΔNp63. Meanwhile, since Otilonium Bromide has been found to preferentially distribute to gastrointestinal tissues, we then evaluated its potential in the combination treatment of colorectal cancer cells with Regorafenib, which is an approved drug for colorectal cancer therapy. As expected, Otilonium Bromide could significantly enhance the sensitivity of colorectal cancer cells to Regorafenib.
Collapse
Affiliation(s)
- Zhuo Xu
- State Key Laboratory of Chemical Biology, Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Hui Wang
- State Key Laboratory of Chemical Biology, Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Qian Meng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yiluan Ding
- State Key Laboratory of Chemical Biology, Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Mengying Zhu
- State Key Laboratory of Chemical Biology, Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Hu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Naixia Zhang
- State Key Laboratory of Chemical Biology, Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| | - Li Shi
- State Key Laboratory of Chemical Biology, Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.
| |
Collapse
|
11
|
Zhou W, Chen J, Wang J. Comprehensive prognostic and immunological analysis of Ubiquitin Specific Peptidase 28 in pan-cancers and identification of its role in hepatocellular carcinoma cell lines. Aging (Albany NY) 2023; 15:6545-6576. [PMID: 37450415 PMCID: PMC10373984 DOI: 10.18632/aging.204869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Ubiquitin Specific Peptidase 28 (USP28), as a member of the DUBs family, has been reported to regulate the occurrence and development of some tumors, but its oncogenic role in tumor immunity is still unknown. METHODS The comprehensive view of USP28 expression in tumor and normal samples was obtained from public databases, including The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Cancer Cell Line Encyclopedia (CCLE). We analyzed the genomic alterations of USP28 in various cancers using the cBioPortal dataset. Besides, gene set enrichment analysis was used to analyze the associated cancer hallmarks with USP28 expression, and TIMER2.0 was taken to investigate the immune cell infiltrations related to the USP28 level. RESULTS USP28 is highly expressed in most tumors and has prognostic value across various cancer types. Moreover, a significant correlation exists between USP28 and immune regulators, clinical staging, checkpoint inhibitor response, MSI, TMB, CNV, MMR defects, and DNA methylation. Additionally, USP28 expression is strongly associated with the infiltration levels of neutrophils and NK cells in most tumor types. One of the most significant findings of our study was that USP28 could serve as a significant predictor of anti-CTLA4 therapy response in melanoma patients. Additionally, our molecular biology experiments validated that the knockdown of USP28 substantially reduced the proliferative and invasive abilities of the HCC cell lines. CONCLUSIONS Our study suggests that USP28 could potentially serve as a biomarker for cancer immunologic infiltration and poor prognosis, with potential applications in developing novel cancer treatment strategies.
Collapse
Affiliation(s)
- Wuhan Zhou
- Department of Hepatobiliary Surgery, The First Hospital of Putian City, Putian 351100, Fujian, China
| | - Jiafei Chen
- Department of Hepatobiliary Surgery, The First Hospital of Putian City, Putian 351100, Fujian, China
| | - Jingui Wang
- Department of Hepatobiliary Surgery, The First Hospital of Putian City, Putian 351100, Fujian, China
- Department of Clinical Medicine, Fujian Medical University, Fuzhou 350108, Fujian, China
| |
Collapse
|
12
|
Zhou L, Qin B, Yassine DM, Luo M, Liu X, Wang F, Wang Y. Structure and function of the highly homologous deubiquitinases ubiquitin specific peptidase 25 and 28: Insights into their pathophysiological and therapeutic roles. Biochem Pharmacol 2023; 213:115624. [PMID: 37245535 DOI: 10.1016/j.bcp.2023.115624] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Deubiquitination is the reverse process of ubiquitination, an important protein post-translational modification. Deubiquitination is assisted by deubiquitinating enzymes (DUBs), which catalyze the hydrolysis and removal of ubiquitin chains from targeted proteins and play an important role in regulating protein stability, cell signaling transduction, and programmed cell death. Ubiquitin-specific peptidases 25 and 28 (USP25 and USP28), important members of the USP subfamily of DUBs, are highly homologous, strictly regulated, and closely associated with various diseases, such as cancer and neurodegenerative diseases. Recently, the development of inhibitors targeting USP25 and USP28 for disease treatment has garnered extreme attention. Several non-selective and selective inhibitors have shown potential inhibitory effects. However, the specificity, potency, and action mechanism of these inhibitors remain to be further improved and clarified. Herein, we summarize the structure, regulation, emerging physiological roles, and target inhibition of USP25 and USP28 to provide a basis for the development of highly potent and specific inhibitors for the treatment of diseases, such as colorectal cancer, breast cancer and so on.
Collapse
Affiliation(s)
- Lihui Zhou
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Biying Qin
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Demna Mohamed Yassine
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Maoguo Luo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoling Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Feng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yanfeng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
13
|
Maier CR, Hartmann O, Prieto-Garcia C, Al-Shami KM, Schlicker L, Vogel FCE, Haid S, Klann K, Buck V, Münch C, Schmitz W, Einig E, Krenz B, Calzado MA, Eilers M, Popov N, Rosenfeldt MT, Diefenbacher ME, Schulze A. USP28 controls SREBP2 and the mevalonate pathway to drive tumour growth in squamous cancer. Cell Death Differ 2023:10.1038/s41418-023-01173-6. [PMID: 37202505 DOI: 10.1038/s41418-023-01173-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/16/2023] [Accepted: 04/25/2023] [Indexed: 05/20/2023] Open
Abstract
SREBP2 is a master regulator of the mevalonate pathway (MVP), a biosynthetic process that drives the synthesis of dolichol, heme A, ubiquinone and cholesterol and also provides substrates for protein prenylation. Here, we identify SREBP2 as a novel substrate for USP28, a deubiquitinating enzyme that is frequently upregulated in squamous cancers. Our results show that silencing of USP28 reduces expression of MVP enzymes and lowers metabolic flux into this pathway. We also show that USP28 binds to mature SREBP2, leading to its deubiquitination and stabilisation. USP28 depletion rendered cancer cells highly sensitive to MVP inhibition by statins, which was rescued by the addition of geranyl-geranyl pyrophosphate. Analysis of human tissue microarrays revealed elevated expression of USP28, SREBP2 and MVP enzymes in lung squamous cell carcinoma (LSCC) compared to lung adenocarcinoma (LADC). Moreover, CRISPR/Cas-mediated deletion of SREBP2 selectively attenuated tumour growth in a KRas/p53/LKB1 mutant mouse model of lung cancer. Finally, we demonstrate that statins synergise with a dual USP28/25 inhibitor to reduce viability of SCC cells. Our findings suggest that combinatorial targeting of MVP and USP28 could be a therapeutic strategy for the treatment of squamous cell carcinomas.
Collapse
Affiliation(s)
- Carina R Maier
- German Cancer Research Center, Division of Tumor Metabolism and Microenvironment, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
- Protein Stability and Cancer Group, Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074, Würzburg, Germany
| | - Oliver Hartmann
- Protein Stability and Cancer Group, Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074, Würzburg, Germany
| | - Cristian Prieto-Garcia
- Protein Stability and Cancer Group, Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074, Würzburg, Germany
- Institute of Biochemistry II, Goethe University Frankfurt, Theodor-Stern-Kai 7, Haus 75, 60590, Frankfurt am Main, Germany
| | - Kamal M Al-Shami
- German Cancer Research Center, Division of Tumor Metabolism and Microenvironment, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Lisa Schlicker
- German Cancer Research Center, Division of Tumor Metabolism and Microenvironment, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Felix C E Vogel
- German Cancer Research Center, Division of Tumor Metabolism and Microenvironment, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Silke Haid
- German Cancer Research Center, Division of Tumor Metabolism and Microenvironment, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Kevin Klann
- Institute of Biochemistry II, Goethe University Frankfurt, Theodor-Stern-Kai 7, Haus 75, 60590, Frankfurt am Main, Germany
| | - Viktoria Buck
- Institute of Pathology, Julius Maximilians University and Comprehensive Cancer Center (CCC) Mainfranken, Josef-Schneider-Strasse 2, 97080, Würzburg, Germany
| | - Christian Münch
- Institute of Biochemistry II, Goethe University Frankfurt, Theodor-Stern-Kai 7, Haus 75, 60590, Frankfurt am Main, Germany
| | - Werner Schmitz
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Elias Einig
- Internal Medicine VIII-Clinical Tumor Biology, University of Tübingen, Otfried-Müller-Straße 14, 72076, Tübingen, Germany
| | - Bastian Krenz
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Marco A Calzado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Martin Eilers
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Nikita Popov
- Internal Medicine VIII-Clinical Tumor Biology, University of Tübingen, Otfried-Müller-Straße 14, 72076, Tübingen, Germany
| | - Mathias T Rosenfeldt
- Institute of Pathology, Julius Maximilians University and Comprehensive Cancer Center (CCC) Mainfranken, Josef-Schneider-Strasse 2, 97080, Würzburg, Germany
| | - Markus E Diefenbacher
- Protein Stability and Cancer Group, Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074, Würzburg, Germany.
| | - Almut Schulze
- German Cancer Research Center, Division of Tumor Metabolism and Microenvironment, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.
| |
Collapse
|
14
|
Wang J, Xiang Y, Fan M, Fang S, Hua Q. The Ubiquitin-Proteasome System in Tumor Metabolism. Cancers (Basel) 2023; 15:cancers15082385. [PMID: 37190313 DOI: 10.3390/cancers15082385] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Metabolic reprogramming, which is considered a hallmark of cancer, can maintain the homeostasis of the tumor environment and promote the proliferation, survival, and metastasis of cancer cells. For instance, increased glucose uptake and high glucose consumption, known as the "Warburg effect," play an essential part in tumor metabolic reprogramming. In addition, fatty acids are harnessed to satisfy the increased requirement for the phospholipid components of biological membranes and energy. Moreover, the anabolism/catabolism of amino acids, such as glutamine, cystine, and serine, provides nitrogen donors for biosynthesis processes, development of the tumor inflammatory environment, and signal transduction. The ubiquitin-proteasome system (UPS) has been widely reported to be involved in various cellular biological activities. A potential role of UPS in the metabolic regulation of tumor cells has also been reported, but the specific regulatory mechanism has not been elucidated. Here, we review the role of ubiquitination and deubiquitination modification on major metabolic enzymes and important signaling pathways in tumor metabolism to inspire new strategies for the clinical treatment of cancer.
Collapse
Affiliation(s)
- Jie Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuandi Xiang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Mengqi Fan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shizhen Fang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
15
|
Zhou D, Xu Z, Huang Y, Wang H, Zhu X, Zhang W, Song W, Gao T, Liu T, Wang M, Shi L, Zhang N, Xiong B. Structure-based discovery of potent USP28 inhibitors derived from Vismodegib. Eur J Med Chem 2023; 254:115369. [PMID: 37075624 DOI: 10.1016/j.ejmech.2023.115369] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 04/21/2023]
Abstract
Ubiquitin-specific proteases (USPs) 28 is overexpressed in multiple types of cancers. The development of potent USP28 inhibitors is still in primitive stage. We previously reported our discovery of Vismodegib as a USP28 inhibitor by screening a commercially available drug library. Herein, we report our efforts to solve the cocrystal structure of Vismodegib bound to USP28 for the first time and subsequent structure-based optimization leading to a series of Vismodegib derivatives as potent USP28 inhibitors. Based on the cocrystal structure, elaborative SARs exploration was carried out to afford much more potent USP28 inhibitors than Vismodegib. The representative compounds 9l, 9o and 9p bearing high potency on USP28 showed high selectivity over USP2, USP7, USP8, USP9x, UCHL3 and UCHL5. The detailed cellular assay suggested that compounds 9l, 9o and 9p could cause cytotoxicity in both human colorectal cancer and lung squamous carcinoma cells and significantly enhance the sensitivity of colorectal cancer cells to Regorafenib. Further immunoblotting analysis indicated that compounds 9l, 9o and 9p could dose-dependently down-regulate the cellular level of c-Myc through ubiquitin-proteasome system and anti-cancer effects could mainly be attributed to their inhibition on USP28 but not involving the Hedgehog-Smoothened pathway. Thus, our work provided a series of novel and potent USP28 inhibitors derived from Vismodegib and may contribute to the development of USP28 inhibitors.
Collapse
Affiliation(s)
- Di Zhou
- Anhui University of Chinese Medicine, 350 Longzihu Road, Xinzhan District, Hefei, Anhui, 230012, PR China; Yangtze Delta Drug Advnced Research Institute, 100 Dongtinghu Road, Nantong, 226133, PR China
| | - Zhuo Xu
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, PR China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China
| | - Yaodong Huang
- Shenyang Pharmaceutical University, 103 Wenhua Rd, Shenyang, Liaoning, 110016, PR China; Yangtze Delta Drug Advnced Research Institute, 100 Dongtinghu Road, Nantong, 226133, PR China
| | - Hui Wang
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, PR China
| | - Xiaoli Zhu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, PR China; Yangtze Delta Drug Advnced Research Institute, 100 Dongtinghu Road, Nantong, 226133, PR China
| | - Wentao Zhang
- Shenyang Pharmaceutical University, 103 Wenhua Rd, Shenyang, Liaoning, 110016, PR China; Yangtze Delta Drug Advnced Research Institute, 100 Dongtinghu Road, Nantong, 226133, PR China
| | - Weiwei Song
- Anhui University of Chinese Medicine, 350 Longzihu Road, Xinzhan District, Hefei, Anhui, 230012, PR China; Yangtze Delta Drug Advnced Research Institute, 100 Dongtinghu Road, Nantong, 226133, PR China
| | - Tong Gao
- Anhui University of Chinese Medicine, 350 Longzihu Road, Xinzhan District, Hefei, Anhui, 230012, PR China; Yangtze Delta Drug Advnced Research Institute, 100 Dongtinghu Road, Nantong, 226133, PR China
| | - Tongchao Liu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, PR China
| | - Meng Wang
- Shanghai Chemvon Biotechnology Company (Limited), Shanghai, 201202, PR China; Yangtze Delta Drug Advnced Research Institute, 100 Dongtinghu Road, Nantong, 226133, PR China.
| | - Li Shi
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, PR China.
| | - Naixia Zhang
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, PR China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China.
| | - Bing Xiong
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, PR China; Yangtze Delta Drug Advnced Research Institute, 100 Dongtinghu Road, Nantong, 226133, PR China.
| |
Collapse
|
16
|
Ni T, Chu Z, Tao L, Zhao Y, Zhu M, Luo Y, Sunagawa M, Wang H, Liu Y. PTBP1 drives c-Myc-dependent gastric cancer progression and stemness. Br J Cancer 2023; 128:1005-1018. [PMID: 36635500 PMCID: PMC10006230 DOI: 10.1038/s41416-022-02118-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/25/2022] [Accepted: 12/08/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) tumorigenesis and treatment failure are caused by cancer stem cells. Polypyrimidine tract binding protein 1 (PTBP1) was shown to be involved in the development of embryonic stem cells and is now being considered as a therapeutic target for tumour progression and stem-cell characteristics. METHODS PTBP1 expression in GC samples was detected using tissue microarrays. Proliferation, colony formation, spheroid formation and stem-cell analysis were used to examine PTBP1's role in tumorigenesis and stem-cell maintenance. In AGS and HGC-27 cells with or without PTBP1 deficiency, ubiquitin-related protein expression and co-precipitation assays were performed. RESULTS We identified that PTBP1 was aberrantly highly expressed and represented a novel prognostic factor in GC patients. PTBP1 maintained the tumorigenic activity and stem-cell characteristics of GC in vitro and in vivo. PTBP1 directly interacts with c-Myc and stabilises its protein levels by preventing its proteasomal degradation. This is mediated by upregulating the ubiquitin-specific proteases USP28 and limiting FBW7-mediated ubiquitination of c-Myc. Moreover, the depletion of PTBP1-caused tumour regression was significantly compromised by exogenous c-Myc expression. CONCLUSIONS By preserving the stability of c-Myc through the ubiquitin-proteasome pathway, the oncogene PTBP1 supports stem-cell-like phenotypes of GC and is involved in GC progression.
Collapse
Affiliation(s)
- Tengyang Ni
- Institute of Translational Medicine, Medical College, Yangzhou University, 225001, Yangzhou, PR China.,The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, 225001, Yangzhou, PR China
| | - Zewen Chu
- Institute of Translational Medicine, Medical College, Yangzhou University, 225001, Yangzhou, PR China.,The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, 225001, Yangzhou, PR China
| | - Li Tao
- Institute of Translational Medicine, Medical College, Yangzhou University, 225001, Yangzhou, PR China.,Department of Pharmacy, College of Medicine, Yangzhou University, 225001, Yangzhou, Jiangsu, China
| | - Yang Zhao
- Institute of Translational Medicine, Medical College, Yangzhou University, 225001, Yangzhou, PR China.,Department of Pharmacy, College of Medicine, Yangzhou University, 225001, Yangzhou, Jiangsu, China
| | - Miao Zhu
- Institute of Translational Medicine, Medical College, Yangzhou University, 225001, Yangzhou, PR China.,The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, 225001, Yangzhou, PR China
| | - Yuanyuan Luo
- Institute of Translational Medicine, Medical College, Yangzhou University, 225001, Yangzhou, PR China.,The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, 225001, Yangzhou, PR China
| | - Masataka Sunagawa
- Department of Physiology, School of Medicine, Showa University, Tokyo, 142, Japan
| | - Haibo Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, 225001, Yangzhou, PR China. .,The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, 225001, Yangzhou, PR China.
| | - Yanqing Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, 225001, Yangzhou, PR China. .,The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, 225001, Yangzhou, PR China.
| |
Collapse
|
17
|
Yang YC, Zhao CJ, Jin ZF, Zheng J, Ma LT. Targeted therapy based on ubiquitin-specific proteases, signalling pathways and E3 ligases in non-small-cell lung cancer. Front Oncol 2023; 13:1120828. [PMID: 36969062 PMCID: PMC10036052 DOI: 10.3389/fonc.2023.1120828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/01/2023] [Indexed: 03/11/2023] Open
Abstract
Lung cancer is one of the most common malignant tumours worldwide, with the highest mortality rate. Approximately 1.6 million deaths owing to lung cancer are reported annually; of which, 85% of deaths occur owing to non-small-cell lung cancer (NSCLC). At present, the conventional treatment methods for NSCLC include radiotherapy, chemotherapy, targeted therapy and surgery. However, drug resistance and tumour invasion or metastasis often lead to treatment failure. The ubiquitin–proteasome pathway (UPP) plays an important role in the occurrence and development of tumours. Upregulation or inhibition of proteins or enzymes involved in UPP can promote or inhibit the occurrence and development of tumours, respectively. As regulators of UPP, ubiquitin-specific proteases (USPs) primarily inhibit the degradation of target proteins by proteasomes through deubiquitination and hence play a carcinogenic or anticancer role. This review focuses on the role of USPs in the occurrence and development of NSCLC and the potential of corresponding targeted drugs, PROTACs and small-molecule inhibitors in the treatment of NSCLC.
Collapse
Affiliation(s)
- Yu-Chen Yang
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Can-Jun Zhao
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Zhao-Feng Jin
- School of Psychology, Weifang Medical University, Weifang, China
| | - Jin Zheng
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Li-Tian Ma, ; Jin Zheng,
| | - Li-Tian Ma
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Li-Tian Ma, ; Jin Zheng,
| |
Collapse
|
18
|
Ren X, Jiang M, Ding P, Zhang X, Zhou X, Shen J, Liu D, Yan X, Ma Z. Ubiquitin-specific protease 28: the decipherment of its dual roles in cancer development. Exp Hematol Oncol 2023; 12:27. [PMID: 36879346 PMCID: PMC9990303 DOI: 10.1186/s40164-023-00389-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
As significant posttranslational modifications, ubiquitination and deubiquitination, whose balance is modulated by ubiquitin-conjugating enzymes and deubiquitinating enzymes (DUBs), can regulate many biological processes, such as controlling cell cycle progression, signal transduction and transcriptional regulation. Belonging to DUBs, ubiquitin-specific protease 28 (USP28) plays an essential role in turning over ubiquitination and then contributing to the stabilization of quantities of substrates, including several cancer-related proteins. In previous studies, USP28 has been demonstrated to participate in the progression of various cancers. Nevertheless, several reports have recently shown that in addition to promoting cancers, USP28 can also play an oncostatic role in some cancers. In this review, we summarize the correlation between USP28 and tumor behaviors. We initially give a brief introduction of the structure and related biological functions of USP28, and we then introduce some concrete substrates of USP28 and the underlying molecular mechanisms. In addition, the regulation of the actions and expression of USP28 is also discussed. Moreover, we concentrate on the impacts of USP28 on diverse hallmarks of cancer and discuss whether USP28 can accelerate or inhibit tumor progression. Furthermore, clinical relevance, including impacting clinical prognosis, influencing therapy resistance and being the therapy target in some cancers, is depicted systematically. Thus, assistance may be given to future experimental designs by the information provided here, and the potential of targeting USP28 for cancer therapy is emphasized.
Collapse
Affiliation(s)
- Xiaoya Ren
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an, 710038, China.,Department of Medical Oncology, Senior Department of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, 28 Fuxing Road, Beijing, 100853, China
| | - Menglong Jiang
- Department of Thoracic Surgery, 1st Affiliated Hospital of Anhui Medical University, Hefei City, China
| | - Peng Ding
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Xiaoyan Zhang
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Xin Zhou
- Department of Medical Oncology, Senior Department of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, 28 Fuxing Road, Beijing, 100853, China
| | - Jian Shen
- Senior Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital and Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, China
| | - Dong Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, 167 Beilishi Road, Beijing, 100037, China.
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an, 710038, China.
| | - Zhiqiang Ma
- Department of Medical Oncology, Senior Department of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
19
|
Tu X, Li C, Sun W, Tian X, Li Q, Wang S, Ding X, Huang Z. Suppression of Cancer Cell Stemness and Drug Resistance via MYC Destabilization by Deubiquitinase USP45 Inhibition with a Natural Small Molecule. Cancers (Basel) 2023; 15:cancers15030930. [PMID: 36765885 PMCID: PMC9913288 DOI: 10.3390/cancers15030930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Cancer stem cells (CSCs) play significant roles in cancer development, drug resistance and cancer recurrence. In cancer treatments based on the CSC characteristics and inducing factors, MYC is a promising target for therapeutic molecules. Although it has been regarded as an undrugable target, its stability tightly regulated by the ubiquitin-proteasome system offers a new direction for molecule targeting and cancer treatment. Herein we report our discoveries in this research area, and we have found that deubiquitinase USP45 can directly bind with MYC, resulting in its deubiquitination and stabilization. Further, USP45 overexpressing can upregulate MYC, and this overexpressing can significantly enhance cancer development, cancer cell stemness and drug resistance. Interestingly, without enhancing cancer development, MYC silencing with shRNA can only suppress USP45-induced stemness and drug resistance. Moreover, we have identified that USP45 can be specifically bound and inhibited by a natural small molecule (α-mangostin), in turn significantly suppressing USP45-induced stemness and drug resistance. Since USP45 is significantly expressed in cervical tumors, we have discovered that the combination of α-mangostin and doxorubicin can significantly inhibit USP45-induced cervical tumorigenesis in an animal model. In general, on the basis of our USP45 discoveries on its MYC deubiquitination and α-mangostin inhibition, suppressing USP45 has opened a new window for suppressing cancer development, stemness and drug resistance.
Collapse
Affiliation(s)
- Xiao Tu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, China
| | - Chuncheng Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, China
| | - Wen Sun
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, China
| | - Xi Tian
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, China
| | - Qiufu Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, China
| | - Shaoxin Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, China
| | - Xiaoling Ding
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, China
| | - Zhen Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
- SeNA Research Institute and Szostak-CDHT Large Nucleic Acids Institute, Chengdu 610000, China
- Correspondence: ; Fax: +86-028-8550-2629
| |
Collapse
|
20
|
Ming H, Li B, Jiang J, Qin S, Nice EC, He W, Lang T, Huang C. Protein degradation: expanding the toolbox to restrain cancer drug resistance. J Hematol Oncol 2023; 16:6. [PMID: 36694209 PMCID: PMC9872387 DOI: 10.1186/s13045-023-01398-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/01/2023] [Indexed: 01/25/2023] Open
Abstract
Despite significant progress in clinical management, drug resistance remains a major obstacle. Recent research based on protein degradation to restrain drug resistance has attracted wide attention, and several therapeutic strategies such as inhibition of proteasome with bortezomib and proteolysis-targeting chimeric have been developed. Compared with intervention at the transcriptional level, targeting the degradation process seems to be a more rapid and direct strategy. Proteasomal proteolysis and lysosomal proteolysis are the most critical quality control systems responsible for the degradation of proteins or organelles. Although proteasomal and lysosomal inhibitors (e.g., bortezomib and chloroquine) have achieved certain improvements in some clinical application scenarios, their routine application in practice is still a long way off, which is due to the lack of precise targeting capabilities and inevitable side effects. In-depth studies on the regulatory mechanism of critical protein degradation regulators, including E3 ubiquitin ligases, deubiquitylating enzymes (DUBs), and chaperones, are expected to provide precise clues for developing targeting strategies and reducing side effects. Here, we discuss the underlying mechanisms of protein degradation in regulating drug efflux, drug metabolism, DNA repair, drug target alteration, downstream bypass signaling, sustaining of stemness, and tumor microenvironment remodeling to delineate the functional roles of protein degradation in drug resistance. We also highlight specific E3 ligases, DUBs, and chaperones, discussing possible strategies modulating protein degradation to target cancer drug resistance. A systematic summary of the molecular basis by which protein degradation regulates tumor drug resistance will help facilitate the development of appropriate clinical strategies.
Collapse
Affiliation(s)
- Hui Ming
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Jingwen Jiang
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Siyuan Qin
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Weifeng He
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Military Medical University, Chongqing, 400038, China.
| | - Tingyuan Lang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030, People's Republic of China. .,Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, People's Republic of China.
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
21
|
Signaling pathways and targeted therapies in lung squamous cell carcinoma: mechanisms and clinical trials. Signal Transduct Target Ther 2022; 7:353. [PMID: 36198685 PMCID: PMC9535022 DOI: 10.1038/s41392-022-01200-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/03/2022] [Accepted: 09/18/2022] [Indexed: 11/08/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death across the world. Unlike lung adenocarcinoma, patients with lung squamous cell carcinoma (LSCC) have not benefitted from targeted therapies. Although immunotherapy has significantly improved cancer patients' outcomes, the relatively low response rate and severe adverse events hinder the clinical application of this promising treatment in LSCC. Therefore, it is of vital importance to have a better understanding of the mechanisms underlying the pathogenesis of LSCC as well as the inner connection among different signaling pathways, which will surely provide opportunities for more effective therapeutic interventions for LSCC. In this review, new insights were given about classical signaling pathways which have been proved in other cancer types but not in LSCC, including PI3K signaling pathway, VEGF/VEGFR signaling, and CDK4/6 pathway. Other signaling pathways which may have therapeutic potentials in LSCC were also discussed, including the FGFR1 pathway, EGFR pathway, and KEAP1/NRF2 pathway. Next, chromosome 3q, which harbors two key squamous differentiation markers SOX2 and TP63 is discussed as well as its related potential therapeutic targets. We also provided some progress of LSCC in epigenetic therapies and immune checkpoints blockade (ICB) therapies. Subsequently, we outlined some combination strategies of ICB therapies and other targeted therapies. Finally, prospects and challenges were given related to the exploration and application of novel therapeutic strategies for LSCC.
Collapse
|
22
|
Sun X, Cai M, Wu L, Zhen X, Chen Y, Peng J, Han S, Zhang P. USP28 Deubiquitinates TCF7L2 to Govern the Action of Wnt Signaling Pathway in Hepatic Carcinoma. Cancer Sci 2022; 113:3463-3475. [PMID: 35880246 PMCID: PMC9530868 DOI: 10.1111/cas.15509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
Overexpression of ubiquitin‐specific protease 28 (USP28) is found in hepatic carcinoma. It is unclear whether the deubiquitinase plays a role in hepatocarcinogenesis. Deregulation of the Wnt signaling pathway is frequently associated with liver cancer. Transcription factor 7‐like 2 (TCF7L2) is an important downstream transcription factor of the Wnt/β‐catenin signaling pathway, but the mechanisms by which TCF7L2 itself is regulated have not yet been revealed. Here, we report that USP28 promotes the activity of the Wnt signaling pathway through maintaining the stability of TCF7L2. We further show that FBXW7 is the E3 ubiquitin ligase for TCF7L2. By regulating the levels of TCF7L2, USP28 modulates the Wnt/β‐catenin signaling in liver cancer and USP28 depletion or inhibition by a small molecule inhibitor leads to a halt of growth in liver cancer cells. These results suggest that USP28 could be a potential therapeutic target for liver cancer.
Collapse
Affiliation(s)
- Xiao Sun
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University Medical College, Xi'an, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Mengjiao Cai
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University Medical College, Xi'an, China
| | - Lingzhi Wu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinghua Zhen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuetong Chen
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University Medical College, Xi'an, China
| | - Jin Peng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Suxia Han
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University Medical College, Xi'an, China
| | - Pumin Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China.,Institute of Translational Medicine, Zhejiang University Medical School, Hangzhou, Zhejiang, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Aziz D, Lee C, Chin V, Fernandez KJ, Phan Z, Waring P, Caldon CE. High cyclin E1 protein, but not gene amplification, is prognostic for basal-like breast cancer. J Pathol Clin Res 2022; 8:355-370. [PMID: 35384378 PMCID: PMC9161326 DOI: 10.1002/cjp2.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/15/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022]
Abstract
Basal-like breast cancer (BLBC) has a greater overlap in molecular features with high-grade serous ovarian cancer (HGSOC) than with other breast cancer subtypes. Similarities include BRCA1 mutation, high frequency of TP53 mutation, and amplification of CCNE1 (encoding the cyclin E1 protein) in 6-34% of cases, and these features can be used to group patients for targeted therapies in clinical trials. In HGSOC, we previously reported two subsets with high levels of cyclin E1: those in which CCNE1 is amplified, have intact homologous recombination (HR), and very poor prognosis; and a CCNE1 non-amplified subset, with more prevalent HR defects. Here, we investigate whether similar subsets are identifiable in BLBC that may allow alignment of patient grouping in clinical trials of agents targeting cyclin E1 overexpression. We examined cyclin E1 protein and CCNE1 amplification in a cohort of 76 BLBCs and validated the findings in additional breast cancer datasets. Compared to HGSOC, CCNE1 amplified BLBC had a lower level of amplification (3.5 versus 5.2 copies) and lower relative cyclin E1 protein, a lack of correlation of amplification with expression, and no association with polyploidy. BLBC with elevated cyclin E1 protein also had prevalent HR defects, and high-level expression of the cyclin E1 deubiquitinase ubiquitin-specific protease 28 (USP28). Using a meta-analysis across multiple studies, we determined that cyclin E1 protein overexpression but not amplification is prognostic in BLBC, while both cyclin E1 overexpression and amplification are prognostic in HGSOC. Overall CCNE1 gene amplification is not equivalent between BLBC and HGSOC. However, high cyclin E1 protein expression can co-occur with HR defects in both BLBC and HGSOC, and is associated with poor prognosis in BLBC.
Collapse
Affiliation(s)
- Diar Aziz
- Centre for Translational Pathology, Department of PathologyUniversity of MelbourneParkvilleVICAustralia
- Department of SurgeryUniversity of MelbourneParkvilleVICAustralia
- Peter MacCallum Cancer CentreVictorian Comprehensive Cancer CentreParkvilleVICAustralia
- Pathology Department, College of MedicineUniversity of MosulMosulIraq
| | - Christine Lee
- Cancer ThemeGarvan Institute of Medical ResearchSydneyNSWAustralia
| | - Venessa Chin
- Cancer ThemeGarvan Institute of Medical ResearchSydneyNSWAustralia
- St. Vincent's Clinical School, Faculty of MedicineUNSW SydneySydneyNSWAustralia
- St. Vincent's HospitalSydneyNSWAustralia
| | | | - Zoe Phan
- Cancer ThemeGarvan Institute of Medical ResearchSydneyNSWAustralia
| | - kConFab Investigators
- Peter MacCallum Cancer CentreVictorian Comprehensive Cancer CentreParkvilleVICAustralia
- Sir Peter MacCallum Cancer Centre, Department of OncologyThe University of MelbourneParkvilleVICAustralia
| | - AOCS Study Group
- Peter MacCallum Cancer CentreVictorian Comprehensive Cancer CentreParkvilleVICAustralia
| | - Paul Waring
- Centre for Translational Pathology, Department of PathologyUniversity of MelbourneParkvilleVICAustralia
- Department of SurgeryUniversity of MelbourneParkvilleVICAustralia
- Translational PathologyAstraZenecaCambridgeUK
| | - C Elizabeth Caldon
- Cancer ThemeGarvan Institute of Medical ResearchSydneyNSWAustralia
- St. Vincent's Clinical School, Faculty of MedicineUNSW SydneySydneyNSWAustralia
| |
Collapse
|
24
|
Zhu M, Wang H, Ding Y, Yang Y, Xu Z, Shi L, Zhang N. Ribonucleotide reductase holoenzyme inhibitor COH29 interacts with deubiquitinase ubiquitin-specific protease 2 and downregulates its substrate protein cyclin D1. FASEB J 2022; 36:e22329. [PMID: 35476303 DOI: 10.1096/fj.202101914rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/02/2022] [Accepted: 04/15/2022] [Indexed: 11/11/2022]
Abstract
USP2 contributes to the quality control of multiple oncogenic proteins including cyclin D1, Mdm2, Aurora-A, etc., and it is a potential target for anti-cancer drug development. However, currently only a few inhibitors with moderate inhibition activities against USP2 have been discovered. USP2-targeted active compounds with either new scaffolds or enhanced activities are in need. Here in this study, Ub-AMC hydrolysis assay-based screening against ~4000 commercially available drugs and drug candidates was performed to identify USP2-targeted inhibitors. COH29, which was originally developed as an anti-cancer agent by blocking the function of human ribonucleotide reductase (RNR, IC50 = 16 µM), was found to exhibit an inhibition activity against USP2 with the IC50 value at 2.02 ± 0.16 µM. The following conducted biophysical and biochemical experiments demonstrated that COH29 could specifically interact with USP2 and inhibit its enzymatic activity in a noncompetitive inhibition mode (Ki = 1.73 ± 0.14 µM). Since COH29 shows similar inhibitory potencies against RNR (RRM2) and USP2, USP2 inhibition-dependent cellular consequences of COH29 are expected. The results of cellular assays confirmed that the application of COH29 could downregulate the level of cyclin D1 by enhancing its degradation via ubiquitin-proteasome system (UPS), and the modulation effect of COH29 on cyclin D1 is independent of RRM2. Since cyclin D1 acts as an oncogenic driver in human cancer, our findings suggest that USP2 might be a promising therapeutic target for cyclin D1-addicted cancers, and COH29 could serve as a starting compound for high selectivity inhibitor development against USP2.
Collapse
Affiliation(s)
- Mengying Zhu
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hui Wang
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yiluan Ding
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yuanyuan Yang
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhuo Xu
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li Shi
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Naixia Zhang
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Nelson JK, Thin MZ, Evan T, Howell S, Wu M, Almeida B, Legrave N, Koenis DS, Koifman G, Sugimoto Y, Llorian Sopena M, MacRae J, Nye E, Howell M, Snijders AP, Prachalias A, Zen Y, Sarker D, Behrens A. USP25 promotes pathological HIF-1-driven metabolic reprogramming and is a potential therapeutic target in pancreatic cancer. Nat Commun 2022; 13:2070. [PMID: 35440539 PMCID: PMC9018856 DOI: 10.1038/s41467-022-29684-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 03/29/2022] [Indexed: 12/12/2022] Open
Abstract
Deubiquitylating enzymes (DUBs) play an essential role in targeted protein degradation and represent an emerging therapeutic paradigm in cancer. However, their therapeutic potential in pancreatic ductal adenocarcinoma (PDAC) has not been explored. Here, we develop a DUB discovery pipeline, combining activity-based proteomics with a loss-of-function genetic screen in patient-derived PDAC organoids and murine genetic models. This approach identifies USP25 as a master regulator of PDAC growth and maintenance. Genetic and pharmacological USP25 inhibition results in potent growth impairment in PDAC organoids, while normal pancreatic organoids are insensitive, and causes dramatic regression of patient-derived xenografts. Mechanistically, USP25 deubiquitinates and stabilizes the HIF-1α transcription factor. PDAC is characterized by a severely hypoxic microenvironment, and USP25 depletion abrogates HIF-1α transcriptional activity and impairs glycolysis, inducing PDAC cell death in the tumor hypoxic core. Thus, the USP25/HIF-1α axis is an essential mechanism of metabolic reprogramming and survival in PDAC, which can be therapeutically exploited.
Collapse
Affiliation(s)
- Jessica K Nelson
- Adult Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - May Zaw Thin
- Adult Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Theodore Evan
- Adult Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Steven Howell
- Proteomics, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Mary Wu
- High Throughput Screening, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Bruna Almeida
- Experimental Histopathology, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Nathalie Legrave
- Metabolomics, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Duco S Koenis
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Gabriela Koifman
- Adult Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Yoichiro Sugimoto
- Hypoxia Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Miriam Llorian Sopena
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - James MacRae
- Metabolomics, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Emma Nye
- Experimental Histopathology, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Michael Howell
- High Throughput Screening, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | | | - Andreas Prachalias
- Hepatobiliary and Pancreatic Surgery, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| | - Yoh Zen
- Institute of Liver Studies, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| | - Debashis Sarker
- School of Cancer and Pharmaceutical Sciences, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| | - Axel Behrens
- Adult Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK.
- Imperial College, Division of Cancer, Department of Surgery and Cancer, Imperial College, Exhibition Road, London, SW7 2AZ, UK.
- Convergence Science Centre, Imperial College, Exhibition Road, London, SW7 2BU, UK.
| |
Collapse
|
26
|
Prieto-Garcia C, Hartmann O, Reissland M, Braun F, Bozkurt S, Pahor N, Fuss C, Schirbel A, Schülein-Völk C, Buchberger A, Calzado Canale MA, Rosenfeldt M, Dikic I, Münch C, Diefenbacher ME. USP28 enables oncogenic transformation of respiratory cells and its inhibition potentiates molecular therapy targeting mutant EGFR, BRAF and PI3K. Mol Oncol 2022; 16:3082-3106. [PMID: 35364627 PMCID: PMC9441007 DOI: 10.1002/1878-0261.13217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/04/2022] [Accepted: 03/29/2022] [Indexed: 11/23/2022] Open
Abstract
Oncogenic transformation of lung epithelial cells is a multistep process, frequently starting with the inactivation of tumour suppressors and subsequent development of activating mutations in proto‐oncogenes, such as members of the PI3K or MAPK families. Cells undergoing transformation have to adjust to changes, including altered metabolic requirements. This is achieved, in part, by modulating the protein abundance of transcription factors. Here, we report that the ubiquitin carboxyl‐terminal hydrolase 28 (USP28) enables oncogenic reprogramming by regulating the protein abundance of proto‐oncogenes such as c‐JUN, c‐MYC, NOTCH and ∆NP63 at early stages of malignant transformation. USP28 levels are increased in cancer compared with in normal cells due to a feed‐forward loop, driven by increased amounts of oncogenic transcription factors such as c‐MYC and c‐JUN. Irrespective of oncogenic driver, interference with USP28 abundance or activity suppresses growth and survival of transformed lung cells. Furthermore, inhibition of USP28 via a small‐molecule inhibitor resets the proteome of transformed cells towards a ‘premalignant’ state, and its inhibition synergizes with clinically established compounds used to target EGFRL858R‐, BRAFV600E‐ or PI3KH1047R‐driven tumour cells. Targeting USP28 protein abundance at an early stage via inhibition of its activity is therefore a feasible strategy for the treatment of early‐stage lung tumours, and the observed synergism with current standard‐of‐care inhibitors holds the potential for improved targeting of established tumours.
Collapse
Affiliation(s)
- Cristian Prieto-Garcia
- Protein Stability and Cancer Group, University of Wuerzburg, Department of Biochemistry and Molecular Biology, Wuerzburg, Germany.,Mildred Scheel Early Career Center, Wuerzburg, Germany.,Molecular Signaling Group, Institute of Biochemistry II, Goethe University, Frankfurt, Germany
| | - Oliver Hartmann
- Protein Stability and Cancer Group, University of Wuerzburg, Department of Biochemistry and Molecular Biology, Wuerzburg, Germany.,Mildred Scheel Early Career Center, Wuerzburg, Germany
| | - Michaela Reissland
- Protein Stability and Cancer Group, University of Wuerzburg, Department of Biochemistry and Molecular Biology, Wuerzburg, Germany.,Mildred Scheel Early Career Center, Wuerzburg, Germany
| | - Fabian Braun
- Protein Stability and Cancer Group, University of Wuerzburg, Department of Biochemistry and Molecular Biology, Wuerzburg, Germany.,Mildred Scheel Early Career Center, Wuerzburg, Germany
| | - Süleyman Bozkurt
- Protein quality control, Institute of Biochemistry II, Goethe University, Frankfurt, Germany
| | - Nikolett Pahor
- Protein Stability and Cancer Group, University of Wuerzburg, Department of Biochemistry and Molecular Biology, Wuerzburg, Germany.,Mildred Scheel Early Career Center, Wuerzburg, Germany
| | - Carmina Fuss
- Protein Stability and Cancer Group, University of Wuerzburg, Department of Biochemistry and Molecular Biology, Wuerzburg, Germany.,Mildred Scheel Early Career Center, Wuerzburg, Germany.,Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Wuerzburg, Wuerzburg, Germany
| | - Andreas Schirbel
- Department of Nuclear Medicine, University Hospital, University of Wuerzburg, Wuerzburg, Germany
| | | | | | - Marco A Calzado Canale
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Mathias Rosenfeldt
- Mildred Scheel Early Career Center, Wuerzburg, Germany.,Institut für Pathologie, Universitaetsklinikum Wuerzburg
| | - Ivan Dikic
- Molecular Signaling Group, Institute of Biochemistry II, Goethe University, Frankfurt, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Germany
| | - Christian Münch
- Protein quality control, Institute of Biochemistry II, Goethe University, Frankfurt, Germany
| | - Markus E Diefenbacher
- Protein Stability and Cancer Group, University of Wuerzburg, Department of Biochemistry and Molecular Biology, Wuerzburg, Germany.,Mildred Scheel Early Career Center, Wuerzburg, Germany
| |
Collapse
|
27
|
Jones HBL, Heilig R, Davis S, Fischer R, Kessler BM, Pinto-Fernández A. ABPP-HT*-Deep Meets Fast for Activity-Based Profiling of Deubiquitylating Enzymes Using Advanced DIA Mass Spectrometry Methods. Int J Mol Sci 2022; 23:ijms23063263. [PMID: 35328685 PMCID: PMC8955990 DOI: 10.3390/ijms23063263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
Activity-based protein profiling (ABPP) uses a combination of activity-based chemical probes with mass spectrometry (MS) to selectively characterise a particular enzyme or enzyme class. ABPP has proven invaluable for profiling enzymatic inhibitors in drug discovery. When applied to cell extracts and cells, challenging the ABP-enzyme complex formation with a small molecule can simultaneously inform on potency, selectivity, reversibility/binding affinity, permeability, and stability. ABPP can also be applied to pharmacodynamic studies to inform on cellular target engagement within specific organs when applied to in vivo models. Recently, we established separate high depth and high throughput ABPP (ABPP-HT) protocols for the profiling of deubiquitylating enzymes (DUBs). However, the combination of the two, deep and fast, in one method has been elusive. To further increase the sensitivity of the current ABPP-HT workflow, we implemented state-of-the-art data-independent acquisition (DIA) and data-dependent acquisition (DDA) MS analysis tools. Hereby, we describe an improved methodology, ABPP-HT* (enhanced high-throughput-compatible activity-based protein profiling) that in combination with DIA MS methods, allowed for the consistent profiling of 35-40 DUBs and provided a reduced number of missing values, whilst maintaining a throughput of 100 samples per day.
Collapse
Affiliation(s)
- Hannah B. L. Jones
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; (H.B.L.J.); (R.H.); (S.D.); (R.F.)
| | - Raphael Heilig
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; (H.B.L.J.); (R.H.); (S.D.); (R.F.)
| | - Simon Davis
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; (H.B.L.J.); (R.H.); (S.D.); (R.F.)
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Roman Fischer
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; (H.B.L.J.); (R.H.); (S.D.); (R.F.)
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Benedikt M. Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; (H.B.L.J.); (R.H.); (S.D.); (R.F.)
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
- Correspondence: (B.M.K.); (A.P.-F.)
| | - Adán Pinto-Fernández
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; (H.B.L.J.); (R.H.); (S.D.); (R.F.)
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
- Correspondence: (B.M.K.); (A.P.-F.)
| |
Collapse
|
28
|
Ruiz EJ, Pinto-Fernandez A, Turnbull AP, Lan L, Charlton TM, Scott HC, Damianou A, Vere G, Riising EM, Da Costa C, Krajewski WW, Guerin D, Kearns JD, Ioannidis S, Katz M, McKinnon C, O'Connell J, Moncaut N, Rosewell I, Nye E, Jones N, Heride C, Gersch M, Wu M, Dinsmore CJ, Hammonds TR, Kim S, Komander D, Urbe S, Clague MJ, Kessler BM, Behrens A. USP28 deletion and small-molecule inhibition destabilizes c-MYC and elicits regression of squamous cell lung carcinoma. eLife 2021; 10:71596. [PMID: 34636321 PMCID: PMC8553340 DOI: 10.7554/elife.71596] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/10/2021] [Indexed: 12/19/2022] Open
Abstract
Lung squamous cell carcinoma (LSCC) is a considerable global health burden, with an incidence of over 600,000 cases per year. Treatment options are limited, and patient’s 5-year survival rate is less than 5%. The ubiquitin-specific protease 28 (USP28) has been implicated in tumourigenesis through its stabilization of the oncoproteins c-MYC, c-JUN, and Δp63. Here, we show that genetic inactivation of Usp28-induced regression of established murine LSCC lung tumours. We developed a small molecule that inhibits USP28 activity in the low nanomole range. While displaying cross-reactivity against the closest homologue USP25, this inhibitor showed a high degree of selectivity over other deubiquitinases. USP28 inhibitor treatment resulted in a dramatic decrease in c-MYC, c-JUN, and Δp63 proteins levels and consequently induced substantial regression of autochthonous murine LSCC tumours and human LSCC xenografts, thereby phenocopying the effect observed by genetic deletion. Thus, USP28 may represent a promising therapeutic target for the treatment of squamous cell lung carcinoma.
Collapse
Affiliation(s)
- E Josue Ruiz
- Adult stem cell laboratory, The Francis Crick Institute, London, United Kingdom
| | - Adan Pinto-Fernandez
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew P Turnbull
- London Bioscience Innovation Centre, CRUK Therapeutic Discovery Laboratories, London, United Kingdom
| | - Linxiang Lan
- Adult stem cell laboratory, The Francis Crick Institute, London, United Kingdom
| | - Thomas M Charlton
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Hannah C Scott
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Andreas Damianou
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - George Vere
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Eva M Riising
- Adult stem cell laboratory, The Francis Crick Institute, London, United Kingdom
| | - Clive Da Costa
- Adult stem cell laboratory, The Francis Crick Institute, London, United Kingdom
| | - Wojciech W Krajewski
- London Bioscience Innovation Centre, CRUK Therapeutic Discovery Laboratories, London, United Kingdom
| | | | | | | | - Marie Katz
- FORMA Therapeutics, Watertown, United Kingdom
| | | | | | - Natalia Moncaut
- Genetic Manipulation Service, The Francis Crick Institute, London, United States
| | - Ian Rosewell
- Genetic Manipulation Service, The Francis Crick Institute, London, United States
| | - Emma Nye
- Adult stem cell laboratory, The Francis Crick Institute, London, United Kingdom
| | - Neil Jones
- London Bioscience Innovation Centre, CRUK Therapeutic Discovery Laboratories, London, United Kingdom
| | - Claire Heride
- London Bioscience Innovation Centre, CRUK Therapeutic Discovery Laboratories, London, United Kingdom
| | - Malte Gersch
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Min Wu
- FORMA Therapeutics, Watertown, United Kingdom
| | | | - Tim R Hammonds
- London Bioscience Innovation Centre, CRUK Therapeutic Discovery Laboratories, London, United Kingdom
| | | | - David Komander
- Ubiquitin Signalling Division, Walter and Eliza Hall Institute of Medical Research, Royal Parade, and Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Sylvie Urbe
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Michael J Clague
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Axel Behrens
- Adult stem cell laboratory, The Francis Crick Institute, London, United Kingdom.,Cancer Stem Cell Laboratory, Institute of Cancer Research, London, United Kingdom.,Imperial College, Division of Cancer, Department of Surgery and Cancer, London, United Kingdom.,Convergence Science Centre, Imperial College, London, United Kingdom
| |
Collapse
|
29
|
Prieto-Garcia C, Tomašković I, Shah VJ, Dikic I, Diefenbacher M. USP28: Oncogene or Tumor Suppressor? A Unifying Paradigm for Squamous Cell Carcinoma. Cells 2021; 10:2652. [PMID: 34685632 PMCID: PMC8534253 DOI: 10.3390/cells10102652] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 01/03/2023] Open
Abstract
Squamous cell carcinomas are therapeutically challenging tumor entities. Low response rates to radiotherapy and chemotherapy are commonly observed in squamous patients and, accordingly, the mortality rate is relatively high compared to other tumor entities. Recently, targeting USP28 has been emerged as a potential alternative to improve the therapeutic response and clinical outcomes of squamous patients. USP28 is a catalytically active deubiquitinase that governs a plethora of biological processes, including cellular proliferation, DNA damage repair, apoptosis and oncogenesis. In squamous cell carcinoma, USP28 is strongly expressed and stabilizes the essential squamous transcription factor ΔNp63, together with important oncogenic factors, such as NOTCH1, c-MYC and c-JUN. It is presumed that USP28 is an oncoprotein; however, recent data suggest that the deubiquitinase also has an antineoplastic effect regulating important tumor suppressor proteins, such as p53 and CHK2. In this review, we discuss: (1) The emerging role of USP28 in cancer. (2) The complexity and mutational landscape of squamous tumors. (3) The genetic alterations and cellular pathways that determine the function of USP28 in squamous cancer. (4) The development and current state of novel USP28 inhibitors.
Collapse
Affiliation(s)
- Cristian Prieto-Garcia
- Protein Stability and Cancer Group, Department of Biochemistry and Molecular Biology, University of Würzburg, 97074 Würzburg, Germany
- Comprehensive Cancer Centre Mainfranken, 97074 Würzburg, Germany
- Molecular Signaling Group, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (I.T.); (V.J.S.); (I.D.)
| | - Ines Tomašković
- Molecular Signaling Group, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (I.T.); (V.J.S.); (I.D.)
| | - Varun Jayeshkumar Shah
- Molecular Signaling Group, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (I.T.); (V.J.S.); (I.D.)
| | - Ivan Dikic
- Molecular Signaling Group, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (I.T.); (V.J.S.); (I.D.)
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Markus Diefenbacher
- Protein Stability and Cancer Group, Department of Biochemistry and Molecular Biology, University of Würzburg, 97074 Würzburg, Germany
- Comprehensive Cancer Centre Mainfranken, 97074 Würzburg, Germany
- Mildred Scheel Early Career Center, 97074 Würzburg, Germany
| |
Collapse
|