1
|
Chatterjee A, Naskar P, Mishra S, Dutta S. Pore Formation by Pore Forming Proteins in Lipid Membranes: Structural Insights Through Cryo-EM. J Membr Biol 2025:10.1007/s00232-025-00344-5. [PMID: 40155553 DOI: 10.1007/s00232-025-00344-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/09/2025] [Indexed: 04/01/2025]
Abstract
Many pathogenic bacteria utilize their complicated appalling arsenal, bacterial virulence factors, to attack host cells by damaging the host cell membrane and neutralizing host defense mechanisms. Bacterial pore-forming proteins (PFPs) are one of them, they include a distinct class of secreted soluble toxin monomers, which binds to the specific cell surface receptors and /or lipids, oligomerizes as an amphipathic transmembrane pore complex on host cell membranes, and deforms the integrity of the plasma membrane. Researchers have focused on characterizing the structure and function of different Pore Forming Toxins (PFTs) from various organisms, where most of the structural studies employed X-ray crystallography, single-particle cryo-EM, and cryo-electron tomography. However, historically, most of these previous studies focused on using detergent to solubilize and oligomerize the PFTs. Additionally, previous studies have also shown that lipid membranes and lipid components, including cell surface receptors, play a critical role in pore formation and oligomerization. However, there are limited studies available that aim to resolve the structure and function of PFTs in liposomes. In this review article, we majorly focused on structural and functional studies of pore-forming toxins in the presence of detergents, lipid nanodiscs, and liposomes. We will also discuss the challenges and benefits of using liposomes to study pore-forming proteins in more biologically relevant membrane environments.
Collapse
Affiliation(s)
- Arnab Chatterjee
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Prasenjit Naskar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Suman Mishra
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Somnath Dutta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India.
| |
Collapse
|
2
|
Bacterial protein MakA causes suppression of tumour cell proliferation via inhibition of PIP5K1α/Akt signalling. Cell Death Dis 2022; 13:1024. [PMID: 36473840 PMCID: PMC9726977 DOI: 10.1038/s41419-022-05480-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Recently, we demonstrated that a novel bacterial cytotoxin, the protein MakA which is released by Vibrio cholerae, is a virulence factor, causing killing of Caenorhabditis elegans when the worms are grazing on the bacteria. Studies with mammalian cell cultures in vitro indicated that MakA could affect eukaryotic cell signalling pathways involved in lipid biosynthesis. MakA treatment of colon cancer cells in vitro caused inhibition of growth and loss of cell viability. These findings prompted us to investigate possible signalling pathways that could be targets of the MakA-mediated inhibition of tumour cell proliferation. Initial in vivo studies with MakA producing V. cholerae and C. elegans suggested that the MakA protein might target the PIP5K1α phospholipid-signalling pathway in the worms. Intriguingly, MakA was then found to inhibit the PIP5K1α lipid-signalling pathway in cancer cells, resulting in a decrease in PIP5K1α and pAkt expression. Further analyses revealed that MakA inhibited cyclin-dependent kinase 1 (CDK1) and induced p27 expression, resulting in G2/M cell cycle arrest. Moreover, MakA induced downregulation of Ki67 and cyclin D1, which led to inhibition of cell proliferation. This is the first report about a bacterial protein that may target signalling involving the cancer cell lipid modulator PIP5K1α in colon cancer cells, implying an anti-cancer effect.
Collapse
|
3
|
Mondal AK, Lata K, Singh M, Chatterjee S, Chauhan A, Puravankara S, Chattopadhyay K. Cryo-EM elucidates mechanism of action of bacterial pore-forming toxins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184013. [PMID: 35908609 DOI: 10.1016/j.bbamem.2022.184013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Pore-forming toxins (PFTs) rupture plasma membranes and kill target cells. PFTs are secreted as soluble monomers that undergo drastic structural rearrangements upon interacting with the target membrane and generate transmembrane oligomeric pores. A detailed understanding of the molecular mechanisms of the pore-formation process remains unclear due to limited structural insights regarding the transmembrane oligomeric pore states of the PFTs. However, recent advances in the field of cryo-electron microscopy (cryo-EM) have led to the high-resolution structure determination of the oligomeric pore forms of diverse PFTs. Here, we discuss the pore-forming mechanisms of various PFTs, specifically the mechanistic details contributed by the cryo-EM-based structural studies.
Collapse
Affiliation(s)
- Anish Kumar Mondal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India
| | - Kusum Lata
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India
| | - Mahendra Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India
| | - Shamaita Chatterjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India
| | - Aakanksha Chauhan
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India
| | - Sindhoora Puravankara
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India.
| |
Collapse
|
4
|
Jia X, Knyazeva A, Zhang Y, Castro-Gonzalez S, Nakamura S, Carlson LA, Yoshimori T, Corkery DP, Wu YW. V. cholerae MakA is a cholesterol-binding pore-forming toxin that induces non-canonical autophagy. J Cell Biol 2022; 221:213518. [PMID: 36194176 PMCID: PMC9536202 DOI: 10.1083/jcb.202206040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/16/2022] [Accepted: 09/16/2022] [Indexed: 01/18/2023] Open
Abstract
Pore-forming toxins (PFTs) are important virulence factors produced by many pathogenic bacteria. Here, we show that the Vibrio cholerae toxin MakA is a novel cholesterol-binding PFT that induces non-canonical autophagy in a pH-dependent manner. MakA specifically binds to cholesterol on the membrane at pH < 7. Cholesterol-binding leads to oligomerization of MakA on the membrane and pore formation at pH 5.5. Unlike other cholesterol-dependent cytolysins (CDCs) which bind cholesterol through a conserved cholesterol-binding motif (Thr-Leu pair), MakA contains an Ile-Ile pair that is essential for MakA-cholesterol interaction. Following internalization, endosomal acidification triggers MakA pore-assembly followed by ESCRT-mediated membrane repair and V-ATPase-dependent unconventional LC3 lipidation on the damaged endolysosomal membranes. These findings characterize a new cholesterol-binding toxin that forms pores in a pH-dependent manner and reveals the molecular mechanism of host autophagy manipulation.
Collapse
Affiliation(s)
- Xiaotong Jia
- Department of Chemistry, Umeå University, Umeå, Sweden,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Anastasia Knyazeva
- Department of Chemistry, Umeå University, Umeå, Sweden,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Yu Zhang
- Department of Chemistry, Umeå University, Umeå, Sweden,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Sergio Castro-Gonzalez
- Department of Chemistry, Umeå University, Umeå, Sweden,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Shuhei Nakamura
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Lars-Anders Carlson
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden,Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden,Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Dale P. Corkery
- Department of Chemistry, Umeå University, Umeå, Sweden,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden,Dale P. Corkery:
| | - Yao-Wen Wu
- Department of Chemistry, Umeå University, Umeå, Sweden,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden,Correspondence to Yao-Wen Wu:
| |
Collapse
|
5
|
Herrera A, Kim Y, Chen J, Jedrzejczak R, Shukla S, Maltseva N, Joachimiak G, Welk L, Wiersum G, Jaroszewski L, Godzik A, Joachimiak A, Satchell KJF. A Genomic Island of Vibrio cholerae Encodes a Three-Component Cytotoxin with Monomer and Protomer Forms Structurally Similar to Alpha-Pore-Forming Toxins. J Bacteriol 2022; 204:e0055521. [PMID: 35435721 PMCID: PMC9112891 DOI: 10.1128/jb.00555-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/11/2022] [Indexed: 12/13/2022] Open
Abstract
Alpha-pore-forming toxins (α-PFTs) are secreted by many species of bacteria, including Escherichia coli, Aeromonas hydrophila, and Bacillus thuringiensis, as part of their arsenal of virulence factors, and are often cytotoxic. In particular, for α-PFTs, the membrane-spanning channel they form is composed of hydrophobic α-helices. These toxins oligomerize at the surface of target cells and transition from a soluble to a protomer state in which they expose their hydrophobic regions and insert into the membrane to form a pore. The pores may be composed of homooligomers of one component or heterooligomers with two or three components, resulting in bi- or tripartite toxins. The multicomponent α-PFTs are often expressed from a single operon. Recently, motility-associated killing factor A (MakA), an α-PFT, was discovered in Vibrio cholerae. We report that makA is found on the V. cholerae GI-10 genomic island within an operon containing genes for two other potential α-PFTs, MakB and MakE. We determined the X-ray crystal structures for MakA, MakB, and MakE and demonstrated that all three are structurally related to the α-PFT family in the soluble state, and we modeled their protomer state based on the α-PFT AhlB from A. hydrophila. We found that MakA alone is cytotoxic at micromolar concentrations. However, combining MakA with MakB and MakE is cytotoxic at nanomolar concentrations, with specificity for J774 macrophage cells. Our data suggest that MakA, -B, and -E are α-PFTs that potentially act as a tripartite pore-forming toxin with specificity for phagocytic cells. IMPORTANCE The bacterium Vibrio cholerae causes gastrointestinal, wound, and skin infections. The motility-associated killing factor A (MakA) was recently shown to be cytotoxic against colon, prostate, and other cancer cells. However, at the outset of this study, the capacity of MakA to damage cells in combination with other Mak proteins encoded in the same operon had not been elucidated. We determined the structures of three Mak proteins and established that they are structurally related to the α-PFTs. Compared to MakA alone, the combination of all three toxins was more potent specifically in mouse macrophages. This study highlights the idea that the Mak toxins are selectively cytotoxic and thus may function as a tripartite toxin with cell type specificity.
Collapse
Affiliation(s)
- Alfa Herrera
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Center for Structural Genomics of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Youngchang Kim
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois, USA
- Structural Biology Center, X-Ray Science Division, Argonne National Laboratory, Lemont, Illinois, USA
| | - Jiexi Chen
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Robert Jedrzejczak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois, USA
- Structural Biology Center, X-Ray Science Division, Argonne National Laboratory, Lemont, Illinois, USA
| | - Shantanu Shukla
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Natalia Maltseva
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois, USA
- Structural Biology Center, X-Ray Science Division, Argonne National Laboratory, Lemont, Illinois, USA
| | - Grazyna Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois, USA
- Structural Biology Center, X-Ray Science Division, Argonne National Laboratory, Lemont, Illinois, USA
| | - Lukas Welk
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois, USA
- Structural Biology Center, X-Ray Science Division, Argonne National Laboratory, Lemont, Illinois, USA
| | - Grant Wiersum
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Lukasz Jaroszewski
- Department of Biomedical Sciences, University of California, Riverside School of Medicine, Riverside, California, USA
- Center for Structural Genomics of Infectious Diseases, University of California, Riverside School of Medicine, Riverside, California, USA
| | - Adam Godzik
- Department of Biomedical Sciences, University of California, Riverside School of Medicine, Riverside, California, USA
- Center for Structural Genomics of Infectious Diseases, University of California, Riverside School of Medicine, Riverside, California, USA
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois, USA
- Structural Biology Center, X-Ray Science Division, Argonne National Laboratory, Lemont, Illinois, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | - Karla J. F. Satchell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Center for Structural Genomics of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|