1
|
Wang J, Zhang Y, Lv H, Shen W, Fang W, Zhang R, Zhao H, Sheng Q. Effectiveness of Juvenile Eriocheir sinensis in Controlling Pomacea canaliculata and Their Growth and Nutritional Response to Feeding on the Snail. Animals (Basel) 2025; 15:85. [PMID: 39795028 PMCID: PMC11718907 DOI: 10.3390/ani15010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/26/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
In recent years, Pomacea canaliculata has aggressively invaded rice fields in Asia, resulting in significant agricultural losses. Biological control can effectively reduce the damage caused by P. canaliculata. This research evaluates E. sinensis as a biocontrol for P. canaliculata, focusing on its feeding preferences and optimal control density on snails of three sizes, as well as the effects on the nutritional quality of juvenile crabs post consumption. Our findings reveal that juvenile E. sinensis exhibit a strong preference for feeding on small snails, effectively managing populations at densities of 600 snails per tank. Crab feeding significantly reduces the survival and activity of snails. Furthermore, consumption of P. canaliculata meat alters the crabs' physiology. Female crabs show elevated levels of molting hormones, total energy yield (TEY), and condition factor (CF), while males demonstrate increased lipid, moisture, and TEY levels. The amino acid profiles shift, with higher isoleucine and leucine levels in female hepatopancreas and reduced histidine in the muscles. Notably, the total Σn-3 PUFA content in female muscles fed on snail meat exceeds that of those given commodity grain. This study underscores the dual benefits of employing juvenile E. sinensis for managing P. canaliculata while enhancing crab farming practices.
Collapse
Affiliation(s)
- Jie Wang
- Zhejiang Province Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China; (J.W.); (Y.Z.); (H.L.); (R.Z.); (H.Z.)
| | - Yixiang Zhang
- Zhejiang Province Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China; (J.W.); (Y.Z.); (H.L.); (R.Z.); (H.Z.)
| | - He Lv
- Zhejiang Province Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China; (J.W.); (Y.Z.); (H.L.); (R.Z.); (H.Z.)
| | - Weiqi Shen
- Changxing County Aquatic and Agricultural Machinery Center, Huzhou 313100, China; (W.S.); (W.F.)
| | - Weiping Fang
- Changxing County Aquatic and Agricultural Machinery Center, Huzhou 313100, China; (W.S.); (W.F.)
| | - Rongfei Zhang
- Zhejiang Province Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China; (J.W.); (Y.Z.); (H.L.); (R.Z.); (H.Z.)
| | - Hanqu Zhao
- Zhejiang Province Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China; (J.W.); (Y.Z.); (H.L.); (R.Z.); (H.Z.)
| | - Qiang Sheng
- Zhejiang Province Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China; (J.W.); (Y.Z.); (H.L.); (R.Z.); (H.Z.)
| |
Collapse
|
2
|
Li S, Li W, Ding K, Shi X, Kalkhajeh YK, Wei Z, Zhang Z, Ma C. Co-culture of rice and aquatic animals enhances soil organic carbon: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176819. [PMID: 39393693 DOI: 10.1016/j.scitotenv.2024.176819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
Co-culture of rice (Oryza sativa) and aquatic animals (CRAAs) is an efficient eco-agricultural model and has been widely implemented in many Asia countries. However, its impact on soil organic carbon (SOC) content has not been synthesized and the relative effects of different CRAAs practices on SOC have not been assessed. Our meta-analysis aims to synthesize the effect of diverse CRAAs regimes on SOC content based on results from 200 field experiments. Our results showed that overall, CRAAs significantly increased SOC content by 11.6 % (P < 0.05). The highest relative effect on SOC content was found under the rice and amphibian coculture (P < 0.05). Also, CRAAs increased SOC content more significantly in temperate regions (19.1 %) than in subtropical (9.7 %) and tropical (12.1 %) regions (P < 0.05). In addition, CRAAs were more effective in enhancing SOC content in paddy soils with high nitrogen content (total nitrogen [TN] >1.2 g·N kg-1 soil) or alkaline soils. Further, SOC increased more in the CRAAs with japonica than indica rice, increasing 17.8 % and 6.1 % as compared to their respective rice-monoculture controls. Random forest analysis revealed that animal type was the most important factor influencing SOC under CRAAs. Together, these results indicate that CRAAs can significantly enhance SOC, particularly in low-N, alkaline paddy soils. Our findings suggest that CRAAs with appropriate rice and animal varieties can provide unique opportunities for soil C sequestration, while enhancing farmers' profitability.
Collapse
Affiliation(s)
- Sixian Li
- Anhui Province Key Lab of Farmland Ecological Conservation and Nutrient Utilization, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Wenbo Li
- Anhui Province Key Lab of Farmland Ecological Conservation and Nutrient Utilization, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kexin Ding
- Anhui Province Key Lab of Farmland Ecological Conservation and Nutrient Utilization, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xinyi Shi
- Anhui Province Key Lab of Farmland Ecological Conservation and Nutrient Utilization, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yusef Kianpoor Kalkhajeh
- Department of Environmental Science, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, 325060, Ouhai, Wenzhou, Zhejiang Province, China
| | - Zhengyu Wei
- Anhui Province Key Lab of Farmland Ecological Conservation and Nutrient Utilization, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Zhen Zhang
- Anhui Province Key Lab of Farmland Ecological Conservation and Nutrient Utilization, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Chao Ma
- Anhui Province Key Lab of Farmland Ecological Conservation and Nutrient Utilization, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
3
|
Zhang W, Song Y, Ma S, Lu J, Zhu J, Wang J, Li X. Rice-crayfish farming system promote subsoil microbial residual carbon accumulation and stabilization by mediating microbial metabolism process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174188. [PMID: 38925393 DOI: 10.1016/j.scitotenv.2024.174188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Rice-crayfish farming systems (RCs) can help mitigate climate change by enhancing soil organic carbon (SOC) sequestration. However, the mechanisms that govern the responses of microbial residues carbon (MRC), a key component of SOC, in RCs are not fully understood. We conducted a 6-year field experiment comparing RCs and rice monoculture systems (RMs). Specifically, we explored how MRC formation and stabilization differ between the two systems and how those differences are linked to changes in the metabolic processes of microbes. Results showed that MRC levels in RCs were 5.2 % and 40.0 % higher in the topsoil and subsoil, respectively, compared to RMs, indicating depth-dependent effects. Notably, MRC accumulation and stabilization in RCs were promoted through a cascade of processes of dissolved organic carbon (DOC) accessibility-microbial metabolism-mineral protection. In addition, the mechanism of MRC accumulation in subsoil differed between the two systems. Specifically, RMs improved accessibility of DOC by reducing humification and aromaticity of subsoil DOC, which helped microbes access to resources at lower cost. This decreased the respiration rate of microbes, thereby increasing microbial carbon pump (MCP) efficiency and thus promoting MRC accumulation. By contrast, the crayfish in RCs facilitated carbon exchange between topsoil and subsoil through their burrowing behaviors. This increased carbon allocation for microbial metabolism in the subsoil, supporting a larger microbial population and thus enhancing the MCP capacity, while reducing MRC re-decomposition via enhanced mineral protection, further increasing subsoil MRC accumulation. That is, MRC accumulation in the subsoil of RCs was predominantly driven by microbial population numbers (MCP capacity) whereas that of RMs was mostly driven by microbial anabolic efficacy (MCP efficiency). Our findings reveal a key mechanism by which RCs promoted soil MRC accumulation and stabilization, highlighting the potential role of DOC accessibility-microbial metabolism-mineral protection pathway in regulating MRC accumulation and stabilization.
Collapse
Affiliation(s)
- Wanyang Zhang
- College of Resources and Environment, Huazhong Agricultural University/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi Song
- College of Resources and Environment, Huazhong Agricultural University/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Shihao Ma
- College of Resources and Environment, Huazhong Agricultural University/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianwei Lu
- College of Resources and Environment, Huazhong Agricultural University/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Zhu
- College of Resources and Environment, Huazhong Agricultural University/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinping Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shuangshui Shuanglv Institute, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaokun Li
- College of Resources and Environment, Huazhong Agricultural University/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; Shuangshui Shuanglv Institute, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Zhang Y, Chen L, Wang M, Lu J, Zhang H, Héroux P, Wang G, Tang L, Liu Y. Evaluating micro-nano bubbles coupled with rice-crayfish co-culture systems: A field study promoting sustainable rice production intensification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173162. [PMID: 38735311 DOI: 10.1016/j.scitotenv.2024.173162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Traditional rice-fish symbiosis systems efficiently use soil and water resources but the adverse effects of prolonged flooding on the stability of rice growth can be mitigated. The feasibility and efficacy of injecting micro-nano bubbles (MNBs) in rice-crayfish co-cultures was investigated in a 22-hectare field experiment conducted over five months. This injection significantly enhanced the growth of both rice and crayfish, and increased total nitrogen and phosphorus levels in the soil, thereby augmenting fertility. Analysis of dissolved oxygen (DO), water temperature and gene expression (rice and crayfish) clarified that micro-nano bubbles (MNBs) foster an optimal environment for rice root respiration, whereas rice establishes an optimal temperature for crayfish, thereby enhancing their activity and growth. Comparative analyses of gene expression profiles and metabolic pathway enrichment revealed that the injection of MNBs diversifies soil microbial communities and intensifies biological processes, such as plant hormone signal transduction. This was in marked contrast to the situation in our controls, rice monoculture (R) and micro-nano bubbles rice monoculture (MNB-R). The combination of rice-fish symbiosis with MNBs led to a 26.8 % increase in rice production and to an estimated 35 % improvement in economic efficiency. Overall, this research introduces an innovative and environmentally sustainable method to boost rice yields, thereby enhancing food security and providing additional income for farmers.
Collapse
Affiliation(s)
- Yinyin Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Luhai Chen
- Nanobubble Technology (Shanghai) Co., Ltd, Shanghai 201709, China
| | - Meilin Wang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Jizhe Lu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Han Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Paul Héroux
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Guoxiang Wang
- Nanobubble Technology (Shanghai) Co., Ltd, Shanghai 201709, China
| | - Li Tang
- Shanghai Garden (Group) Co., Ltd, Shanghai 200335, China
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
5
|
Wu D, Chen L, Zong X, Jiang F, Wang X, Xu M, Ai F, Du W, Yin Y, Guo H. Elevated CO 2 exacerbates the risk of methylmercury exposure in consuming aquatic products: Evidence from a complex paddy wetland ecosystem. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124095. [PMID: 38703984 DOI: 10.1016/j.envpol.2024.124095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/08/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Elevated CO2 levels and methylmercury (MeHg) pollution are important environmental issues faced across the globe. However, the impact of elevated CO2 on MeHg production and its biological utilization remains to be fully understood, particularly in realistic complex systems with biotic interactions. Here, a complete paddy wetland microcosm, namely, the rice-fish-snail co-culture system, was constructed to investigate the impacts of elevated CO2 (600 ppm) on MeHg formation, bioaccumulation, and possible health risks, in multiple environmental and biological media. The results revealed that elevated CO2 significantly increased MeHg concentrations in the overlying water, periphyton, snails and fish, by 135.5%, 66.9%, 45.5%, and 52.1%, respectively. A high MeHg concentration in periphyton, the main diet of snails and fish, was the key factor influencing the enhanced MeHg in aquatic products. Furthermore, elevated CO2 alleviated the carbon limitation in the overlying water and proliferated green algae, with subsequent changes in physico-chemical properties and nutrient concentrations in the overlying water. More algal-derived organic matter promoted an enriched abundance of Archaea-hgcA and Deltaproteobacteria-hgcA genes. This consequently increased the MeHg in the overlying water and food chain. However, MeHg concentrations in rice and soil did not increase under elevated CO2, nor did hgcA gene abundance in soil. The results reveal that elevated CO2 exacerbated the risk of MeHg intake from aquatic products in paddy wetland, indicating an intensified MeHg threat under future elevated CO2 levels.
Collapse
Affiliation(s)
- Danni Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Lei Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Xueying Zong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Fan Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xiaojie Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Meiling Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Fuxun Ai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing, 210023, China; Quanzhou Institute for Environmental Protection Industry, Nanjing University, Quanzhou, 362046, China.
| |
Collapse
|
6
|
Liu X, Sun D, Huang H, Zhang J, Zheng H, Jia Q, Zhao M. Rice-fish coculture without phosphorus addition improves paddy soil nitrogen availability by shaping ammonia-oxidizing archaea and bacteria in subtropical regions of South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171642. [PMID: 38479518 DOI: 10.1016/j.scitotenv.2024.171642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 04/16/2024]
Abstract
Rice-fish coculture (RFC), as a traditional agricultural strategy in China, can optimally utilize the scarce resource, especially in subtropical regions where phosphorus (P) deficiency limits agricultural production. However, ammonia-oxidizing archaea (AOA) and bacteria (AOB) are involved in the ammonia oxidation, but it remains uncertain whether their community compositions are related to the RFC combined with and without P addition that improves soil nitrogen (N) use efficiency. Here, a microcosm experiment was conducted to assess the impacts of RFC combined with and without inorganic P (0 and 50 mg P kg-1 as KH2PO4) addition on AOA and AOB community diversities, enzyme activities and N availability. The results showed that RFC significantly increased available N content without P addition compared with P addition. Moreover, RFC significantly increased urease activity and AOA shannon diversity, and reduced NAG activity and AOB shannon diversity without P addition, respectively. Higher diversity of AOA compared with that of AOB causes greater competition for resources and energy within their habitats, thereby resulting in lower network complexity. Our findings indicated that the abundances of AOA and AOB are influenced through the introduction of fish and/or P availability, of which AOB is linked to N availability. Overall, RFC could improve paddy soil N availability without P addition in subtropical region, which provides a scientific reference for promoting the practices that reduce N fertilizer application in RFC.
Collapse
Affiliation(s)
- Xing Liu
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Daolin Sun
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Huaqiao Huang
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jiaen Zhang
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Hongjun Zheng
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Qi Jia
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Min Zhao
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
7
|
Ma Y, Yu A, Zhang L, Zheng R. Effects of Rice-Frog Co-Cropping on the Soil Microbial Community Structure in Reclaimed Paddy Fields. BIOLOGY 2024; 13:396. [PMID: 38927276 PMCID: PMC11200385 DOI: 10.3390/biology13060396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Utilizing and improving the productivity of reclaimed land are highly significant for alleviating the problem of food production shortage in China, and the integrated rice-frog farming model can improve soil fertility. However, there are few studies on the use of integrated rice-frog farming technology to improve the fertility of reclaimed land and increase its efficiency in food production. Therefore, this study was conducted to evaluate the effects of the rice-frog co-cropping mode on the soil fertility and microbial diversity of reclaimed land. A rice monoculture group (SF), low-density rice-frog co-cropping group (SD, 5000 frogs/mu, corresponds to 8 frogs/m2), and high-density rice-frog co-cropping group (SG, 10,000 frogs/mu, corresponds to 15 frogs/m2) were established and tested. The contents of total nitrogen, soil organic matter, available potassium, and available phosphorus of the soil in the SG group were significantly higher than those in the SF group (p < 0.05) in the mature stage of rice. Compared with the SF group, the SD and SG groups improved the soil microbial diversity and changed the structure of the microbial community. This study indicates that compared with the rice monoculture mode, the rice-frog co-cropping pattern can improve the soil fertility, as well as microbial diversity, of reclaimed land.
Collapse
Affiliation(s)
- Yunshuang Ma
- Provincial Key Laboratory of Wildlife Biotechnology and Conservation and Utilization, Zhejiang Normal University, Jinhua 321004, China; (Y.M.); (A.Y.)
| | - Anran Yu
- Provincial Key Laboratory of Wildlife Biotechnology and Conservation and Utilization, Zhejiang Normal University, Jinhua 321004, China; (Y.M.); (A.Y.)
| | - Liangliang Zhang
- Xingzhi College, Zhejiang Normal University, Jinhua 321004, China;
| | - Rongquan Zheng
- Provincial Key Laboratory of Wildlife Biotechnology and Conservation and Utilization, Zhejiang Normal University, Jinhua 321004, China; (Y.M.); (A.Y.)
- Xingzhi College, Zhejiang Normal University, Jinhua 321004, China;
| |
Collapse
|
8
|
Wang R, Feng L, Xu Q, Jiang L, Liu Y, Xia L, Zhu YG, Liu B, Zhuang M, Yang Y. Sustainable Blue Foods from Rice-Animal Coculture Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5310-5324. [PMID: 38482792 DOI: 10.1021/acs.est.3c07660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Global interest grows in blue foods as part of sustainable diets, but little is known about the potential and environmental performance of blue foods from rice-animal coculture systems. Here, we compiled a large experimental database and conducted a comprehensive life cycle assessment to estimate the impacts of scaling up rice-fish and rice-crayfish systems in China. We find that a large amount of protein can be produced from the coculture systems, equivalent to ∼20% of freshwater aquaculture and ∼70% of marine wild capture projected in 2030. Because of the ecological benefits created by the symbiotic relationships, cocultured fish and crayfish are estimated to be carbon-negative (-9.8 and -4.7 kg of CO2e per 100 g of protein, respectively). When promoted at scale to displace red meat, they can save up to ∼98 million tons of greenhouse gases and up to ∼13 million hectares of farmland, equivalent to ∼44% of China's total rice acreage. These results suggest that rice-animal coculture systems can be an important source of blue foods and contribute to a sustainable dietary shift, while reducing the environmental footprints of rice production. To harvest these benefits, robust policy supports are required to guide the sustainable development of coculture systems and promote healthy and sustainable dietary change.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Pollution Control & Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Lei Feng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, P. R. China
| | - Qiang Xu
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, P. R. China
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, P. R. China
- Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, P. R. China
| | - Lu Jiang
- State Key Laboratory of Pollution Control & Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Yize Liu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, P. R. China
| | - LongLong Xia
- Institute for Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Garmisch-Partenkirchen 82467, Germany
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Beibei Liu
- State Key Laboratory of Pollution Control & Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Minghao Zhuang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, P. R. China
| | - Yi Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, P. R. China
- College of Environment and Ecology, Chongqing University, Chongqing 400044, P. R. China
- The National Centre for International Research of Low-carbon & Green Buildings, Ministry of Science & Technology, Chongqing University, Chongqing 400044, P. R. China
- The Joint International Research Laboratory of Green Buildings and Built Environments, Ministry of Education, Chongqing University, Chongqing 400044, P. R. China
- China Chongqing Field Observation Station for River and Lake Ecosystems, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
9
|
Wu B, Huang L, Wu C, Chen J, Chen X, He J. Comparative Analysis of the Growth, Physiological Responses, and Gene Expression of Chinese Soft-Shelled Turtles Cultured in Different Modes. Animals (Basel) 2024; 14:962. [PMID: 38540060 PMCID: PMC10967438 DOI: 10.3390/ani14060962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 11/11/2024] Open
Abstract
The Chinese soft-shelled turtle (Pelodiscus sinensis) is an important freshwater aquaculture turtle due to its taste and nutritional and medicinal value. More ecological culturing modes, such as rice-turtle co-culture, should be developed to meet the ecological benefit demand. We compared growth, physiological parameters, and transcriptome data to detect the physiological responses and regulatory mechanisms of pond-cultured turtles as compared to co-cultured turtles. The co-cultured turtles grew slower than pond-cultured turtles. The gonadosomatic index of co-cultured male turtles was lower than that of pond-cultured male turtles, and both the mesenteric fat index and limb fat index were lower in co-cultured turtles than in pond-cultured turtles (p < 0.05). The blood GLU of the co-cultured turtles was significantly lower than the GLU of the pond-cultured turtles (p < 0.05), while the values of CRE, UA, BUN, AKP, ACP, GOT, and CAT were higher in the co-cultured turtles than in the pond-cultured turtles (p < 0.05). In total, 246 and 598 differentially expressed genes (DEGs) were identified in the brain and gut from turtles cultured in the two different modes, respectively. More DEGs were related to environmental information processing, metabolism, and human diseases. In the brain, the top enriched pathways of DEGs included the longevity regulating pathway, glycerolipid metabolism, cytokine-cytokine receptor interaction, Toll-like receptor signaling pathway, and PI3K-Akt signaling pathway, while in the gut, the top enriched pathways of DEGs included the cell cycle, DNA replication, cellular senescence, and p53 signaling pathway. The turtles acclimated to the different culturing conditions by adjusting their growth, physiological, and biochemical characteristics and related gene expression during a short culture period.
Collapse
Affiliation(s)
| | | | | | | | | | - Jixiang He
- Anhui Province Key Laboratory of Aquaculture and Stock Enhancement, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (B.W.)
| |
Collapse
|
10
|
Ge L, Sun Y, Li Y, Wang L, Guo G, Song L, Wang C, Wu G, Zang X, Cai X, Li S, Li P. Ecosystem sustainability of rice and aquatic animal co-culture systems and a synthesis of its underlying mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163314. [PMID: 37030380 DOI: 10.1016/j.scitotenv.2023.163314] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/20/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023]
Abstract
Integrated planting and breeding of rice and aquatic animals, including traditional rice-fish co-culture (RF), has been conducted for over 1200 years. It is one of the primary modes of modern ecologically sustainable agriculture. Rice and aquatic animal (RA) co-culture systems reduce risks of environmental pollution, reduce greenhouse gas emissions, maintain soil fertility, stabilize grain incomes, and preserve paddy field biodiversity. Nevertheless, the mechanisms that underlie the ecological sustainability of these systems remain controversial and poorly understood, restricting their practice at a larger scale. Here, the latest advance in understanding the evolution and extension of RA systems is synthesized, in addition to a discussion of the underlying ecological mechanisms of taxonomic interactions, complementary nutrient use, and microbially-driven elemental cycling. Specifically, the aim of this review is to provide a theoretical framework for the design of sustainable agricultural systems by integrating traditional knowledge and modern technologies.
Collapse
Affiliation(s)
- Lei Ge
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Yu Sun
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Yujie Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Luyao Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Guanqing Guo
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Lili Song
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Cui Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Guogan Wu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Xiaoyun Zang
- Shanghai Co-Elite Agricultural Sci-Tech (Group) Co., Ltd., Shanghai 201106, China
| | - Xiaomei Cai
- Shanghai Co-Elite Agricultural Sci-Tech (Group) Co., Ltd., Shanghai 201106, China
| | - Shuangxi Li
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Peng Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Co-Elite Agricultural Sci-Tech (Group) Co., Ltd., Shanghai 201106, China.
| |
Collapse
|
11
|
Tao L, Chai J, Liu H, Huang W, Zou Y, Wu M, Peng B, Wang Q, Tang K. Characterization and Dynamics of the Gut Microbiota in Rice Fishes at Different Developmental Stages in Rice-Fish Coculture Systems. Microorganisms 2022; 10:2373. [PMID: 36557627 PMCID: PMC9787495 DOI: 10.3390/microorganisms10122373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
The rice-fish system (RFS), a traditional coculture farming model, was selected as a "globally important agricultural heritage system." Host-associated microbiota play important roles in development, metabolism, physiology, and immune function. However, studies on the gut microbiota of aquatic animals in the RFS are scarce, especially the lack of baseline knowledge of the dynamics of gut microbial communities in rice fish during different developmental stages. In this study, we characterized the microbial composition, community structure, and functions of several sympatric aquatic animals (common carp (Cyprinus carpio), crucian carp (Carassius carassius), and black-spotted frogs (Pelophylax nigromaculatus)), and the environment (water) in the RFS using 16S rRNA gene sequencing. Moreover, we investigated stage-specific signatures in the gut microbiota of common carp throughout the three developmental stages (juvenile, sub-adult, and adult). Our results indicated that the Fusobacteriota, Proteobacteria, and Firmicutes were dominant gut microbial phyla in rice fish. The differences in gut microbial compositions and community structure between the three aquatic species were observed. Although no significant differences in alpha diversity were observed across the three developmental stages, the microbial composition and community structure varied with development in common carp in the RFS, with an increase in the relative abundance of Firmicutes in sub-adults and a shift in the functional features of the community. This study sheds light on the gut microbiota of aquatic animals in the RFS. It deepens our understanding of the dynamics of gut microflora during common carp development, which may help improve aquaculture strategies in the RFS.
Collapse
Affiliation(s)
- Ling Tao
- College of Life Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Jie Chai
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Hongyi Liu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Wenhao Huang
- College of Life Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Yan Zou
- College of Life Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Mengling Wu
- College of Life Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Buqing Peng
- College of Life Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Qiong Wang
- College of Life Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Keyi Tang
- College of Life Sciences, Sichuan Normal University, Chengdu 610066, China
| |
Collapse
|
12
|
Determination of Soil Cadmium Safety Thresholds for Food Production in a Rice-Crayfish Coculture System. Foods 2022; 11:foods11233828. [PMID: 36496637 PMCID: PMC9740835 DOI: 10.3390/foods11233828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Previous studies have mainly focused on cadmium (Cd) contamination in conventional rice monocultures, and no research on rice-crayfish coculture has been reported. In this study, a Cd-contaminated (0−30 mg kg−1) rice-crayfish co-culture system was established by adding exogenous Cd. The results showed that the Cd concentration in each tissue of rice and each organ of crayfish increased with increasing soil Cd concentration. Specifically, the Cd concentration in each rice tissue was as follows: root > stem > leaf ≈ panicle > grain > brown rice, and the jointing and heading stages were critical periods for the rapid enrichment of Cd in the aboveground tissues of rice. The Cd concentration in each organ of crayfish was as follows: hepatopancreas > gut > gill ≈ exoskeleton > abdominal muscle. Cd was gradually enriched in the abdominal muscle after 30 days of coculture between crayfish and rice. Pearson’s correlation analysis showed that the soil’s total Cd concentration, available Cd concentration, and water Cd concentration were positively correlated with Cd content in various tissues of rice and various organs of crayfish, whereas EC and TDS in water were markedly related to rice stems, leaves, stalks, and small crayfish. According to the maximum limit of Cd in grain (0.2 mg kg−1) and crustacean aquatic products (0.5 mg kg−1) in China, the safe threshold of soil Cd for rice and crayfish under the rice-crayfish coculture system is 3.67 and 14.62 mg kg−1, respectively. Therefore, when the soil Cd concentration in the rice-crayfish coculture system exceeds 3.67 mg kg−1, the safety risk to humans through the consumption of food from this coculture system will increase. This study provides a theoretical basis for safe food production in a rice-crayfish coculture system using the established Cd pollution model.
Collapse
|
13
|
Liu B, Yang Y. Large benefits of timely planting. NATURE FOOD 2022; 3:495-496. [PMID: 37117945 DOI: 10.1038/s43016-022-00553-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- Beibei Liu
- State Key Laboratory of Pollution Control & Resource Reuse School of Environment, Nanjing University, Nanjing, P. R. China.
- The Johns Hopkins University-Nanjing University Center for Chinese and American Studies, Nanjing, P. R. China.
| | - Yi Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, P. R. China.
| |
Collapse
|
14
|
Abstract
Allowing aquatic organisms to grow in rice fields – a practice called co-culture – increases rice yields while maintaining soil fertility and reducing weeds.
Collapse
Affiliation(s)
- Jian Liu
- School of Environment and Sustainability, Global Institute for Water Security, University of Saskatchewan, Saskatoon, Canada
| | - Siri Caspersen
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Jean W H Yong
- School of Environment and Sustainability, Global Institute for Water Security, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|