1
|
Boardman L. Cross-talk between low temperature and other environmental factors. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101193. [PMID: 38490451 DOI: 10.1016/j.cois.2024.101193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Low temperatures are rarely experienced in isolation. The impacts of low temperatures on insects can be exacerbated or alleviated by the addition of other environmental factors, including, for example, desiccation, hypoxia, or infection. One way in which environmental factors can interact is through cross-talk where different factors enact common signaling pathways. In this review, I highlight the breadth of abiotic and biotic factors that can interact with low-temperature tolerance in both natural and artificial environments; and discuss some of the candidate pathways that are possibly responsible for cross-talk between several factors. Specifically, I discuss three interesting candidates: the neurohormone octopamine, circadian clock gene vrille, and microbes. Finally, I discuss applications of cross-talk studies, and provide recommendations for researchers.
Collapse
Affiliation(s)
- Leigh Boardman
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA.
| |
Collapse
|
2
|
Ghanem S, Akülkü İ, Güzle K, Khan Z, Mayack C. Regulation of forager honey bee appetite independent of the glucose-insulin signaling pathway. FRONTIERS IN INSECT SCIENCE 2024; 4:1335350. [PMID: 38469335 PMCID: PMC10926362 DOI: 10.3389/finsc.2024.1335350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/30/2024] [Indexed: 03/13/2024]
Abstract
Introduction To maintain energetic homeostasis the energetic state of the individual needs to communicate with appetite regulatory mechanisms on a regular basis. Although hunger levels indicated by the energetic state and appetite levels, the desire for food intake, tend to be correlated, and on their own are well studied, how the two cross-talk and regulate one another is less known. Insects, in contrast to vertebrates, tend to have trehalose as the primary sugar found in the hemolymph, which could possibly serve as an alternative monitor of the energetic state in comparison to the glucose-insulin signaling pathway, found in vertebrates. Methods We investigate how manipulating hemolymph sugar levels alter the biogenic amines in the honey bee brain, appetite levels, and insulin like peptide gene expression, across three age classes, to determine how the energetic state of the honey bee might be connected to appetite regulation. Results We found that only in the forager bees, with a lowering of hemolymph trehalose levels, there was an increase in octopamine and a decrease in tyramine levels in the honey bee brain that corresponded with increased appetite levels, while there was no significant changes in Insulin Like Peptide-1 or 2 gene expression. Discussion Our findings suggest that hemolymph trehalose levels aid in regulating appetite levels, in forager bees, via octopamine and tyramine, and this regulation appears to be functioning independent of the glucose insulin signaling pathway. Whether this potentially more direct and rapid appetite regulatory pathway can be generalized to other insects, which also undergo energy demanding activities, remains to be investigated.
Collapse
Affiliation(s)
- Saleh Ghanem
- Molecular Biology, Genetics, and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Türkiye
| | - İrem Akülkü
- Molecular Biology, Genetics, and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Türkiye
| | - Kübra Güzle
- Molecular Biology, Genetics, and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Türkiye
| | - Zaeema Khan
- Molecular Biology, Genetics, and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Türkiye
| | - Christopher Mayack
- Molecular Biology, Genetics, and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Türkiye
- US Department of Agriculture, Invasive Species and Pollinator Health Research Unit (ISPHRU), Western Regional Research Center (WRRC) in the Pacific West Area (PWA), Davis, CA, United States
| |
Collapse
|
3
|
Huang Y, Li N, Yang C, Lin Y, Wen Y, Zheng L, Zhao C. Honeybee as a food nutrition analysis model of neural development and gut microbiota. Neurosci Biobehav Rev 2023; 153:105372. [PMID: 37652394 DOI: 10.1016/j.neubiorev.2023.105372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/13/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Research on the relationships between the gut microbiota and the neurophysiology and behavior of animals has grown exponentially in just a few years. Insect behavior may be controlled by molecular mechanisms that are partially homologous to those in mammals, and swarming insects may be suitable as experiment models in these types of investigations. All core gut bacteria in honeybees can be cultivated in vitro. Certain gut microflora of bees can be genetically engineered or sterilized and colonized. The bee gut bacteria model is established more rapidly and has a higher flux than other sterile animal models. It may help elucidate the pathogenesis of intestinal diseases and identify effective molecular therapeutic targets against them. In the present review, we focused on the contributions of the honeybee model in learning cognition and microbiome research. We explored the relationship between honeybee behavior and neurodevelopment and the factors determining the mechanisms by which the gut microbiota affects the host. In particular, we concentrated on the correlation between gut microbiota and brain development. Finally, we examined strategies for the effective use of simple animal models in animal cognition and microbiome research.
Collapse
Affiliation(s)
- Yajun Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Na Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengfeng Yang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yan Lin
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuxi Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, 32004 Ourense, Spain
| | - Lingjun Zheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
4
|
Everitt T, Wallberg A, Christmas MJ, Olsson A, Hoffmann W, Neumann P, Webster MT. The Genomic Basis of Adaptation to High Elevations in Africanized Honey Bees. Genome Biol Evol 2023; 15:evad157. [PMID: 37625795 PMCID: PMC10484329 DOI: 10.1093/gbe/evad157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
A range of different genetic architectures underpin local adaptation in nature. Honey bees (Apis mellifera) in the Eastern African Mountains harbor high frequencies of two chromosomal inversions that likely govern adaptation to this high-elevation habitat. In the Americas, honey bees are hybrids of European and African ancestries and adaptation to latitudinal variation in climate correlates with the proportion of these ancestries across the genome. It is unknown which, if either, of these forms of genetic variation governs adaptation in honey bees living at high elevations in the Americas. Here, we performed whole-genome sequencing of 29 honey bees from both high- and low-elevation populations in Colombia. Analysis of genetic ancestry indicated that both populations were predominantly of African ancestry, but the East African inversions were not detected. However, individuals in the higher elevation population had significantly higher proportions of European ancestry, likely reflecting local adaptation. Several genomic regions exhibited particularly high differentiation between highland and lowland bees, containing candidate loci for local adaptation. Genes that were highly differentiated between highland and lowland populations were enriched for functions related to reproduction and sperm competition. Furthermore, variation in levels of European ancestry across the genome was correlated between populations of honey bees in the highland population and populations at higher latitudes in South America. The results are consistent with the hypothesis that adaptation to both latitude and elevation in these hybrid honey bees are mediated by variation in ancestry at many loci across the genome.
Collapse
Affiliation(s)
- Turid Everitt
- Department Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Andreas Wallberg
- Department Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Matthew J Christmas
- Department Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Olsson
- Department Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Wolfgang Hoffmann
- Grupo de Biocalorimetría, Universidad de Pamplona, Pamplona, Colombia
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland
| | - Matthew T Webster
- Department Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Barron A, Fahrbach SE, Mercer AR, Mesce KA, Schulz DJ, Smith BH, Søvik E. Comment on "Food wanting is mediated by transient activation of dopaminergic signaling in the honey bee brain". Science 2023; 381:eadg3916. [PMID: 37535717 DOI: 10.1126/science.adg3916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Huang et al. (1) make an exciting claim about a human-like dopamine-regulated neuromodulatory mechanism underlying food-seeking behavior in honey bees. Their claim is based on experiments designed to measure brain biogenic amine levels and manipulate receptor activity. We have concerns that need to be addressed before broad acceptance of their results and the interpretation provided.
Collapse
Affiliation(s)
- Andrew Barron
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Susan E Fahrbach
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Alison R Mercer
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Karen A Mesce
- Departments of Entomology and Neuroscience, University of Minnesota, St. Paul, MN 55108, USA
| | - David J Schulz
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Brian H Smith
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Eirik Søvik
- Department of Science and Mathematics, Volda University College, 6100 Volda, Norway
| |
Collapse
|
6
|
Rother L, Müller R, Kirschenmann E, Foster JJ, Kaya-Zeeb S, Thamm M, Pfeiffer K. Walking bumblebees see faster. Proc Biol Sci 2023; 290:20230460. [PMID: 37192665 PMCID: PMC10188239 DOI: 10.1098/rspb.2023.0460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/21/2023] [Indexed: 05/18/2023] Open
Abstract
The behavioural state of animals has profound effects on neuronal information processing. Locomotion changes the response properties of visual interneurons in the insect brain, but it is still unknown if it also alters the response properties of photoreceptors. Photoreceptor responses become faster at higher temperatures. It has therefore been suggested that thermoregulation in insects could improve temporal resolution in vision, but direct evidence for this idea has so far been missing. Here, we compared electroretinograms from the compound eyes of tethered bumblebees that were either sitting or walking on an air-supported ball. We found that the visual processing speed strongly increased when the bumblebees were walking. By monitoring the eye temperature during recording, we saw that the increase in response speed was in synchrony with a rise in eye temperature. By artificially heating the head, we show that the walking-induced temperature increase of the visual system is sufficient to explain the rise in processing speed. We also show that walking accelerates the visual system to the equivalent of a 14-fold increase in light intensity. We conclude that the walking-induced rise in temperature accelerates the processing of visual information-an ideal strategy to process the increased information flow during locomotion.
Collapse
Affiliation(s)
- Lisa Rother
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Robin Müller
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Erwin Kirschenmann
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - James J. Foster
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Sinan Kaya-Zeeb
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Markus Thamm
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Keram Pfeiffer
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
7
|
Lin YC, Lu YH, Tang CK, Yang EC, Wu YL. Honey bee foraging ability suppressed by imidacloprid can be ameliorated by adding adenosine. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121920. [PMID: 37257810 DOI: 10.1016/j.envpol.2023.121920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/15/2023] [Accepted: 05/27/2023] [Indexed: 06/02/2023]
Abstract
Honey bees are important pollinators in most ecosystem, but they are currently facing many threats, which have led to a reduction in their population. Previous studies have indicated that neonicotinoid pesticide can impair the memory and learning ability of honey bees, which can eventually lead to a decline in their foraging and homing abilities. In this study, we investigated the homing ability barrier from the perspective of energy supply. We believe that when worker bees experience stress, their energy supply may shift from pro-movement to pro-resistance; this will lead to inadequate energy provision to the flight muscles, causing a reduction in wingbeat frequency and impairing the flight ability of the worker bees. To test this, the worker bees were treated with imidacloprid, and wing beats between the treatment groups were compared. Their glucose, glycogen, trehalose, and ATP contents were also measured, and their genes for energy metabolism and resistance were analyzed. The addition of adenosine improved the ATP content and helped recover the wingbeat frequency of the worker bees. The preliminary results obtained showed that wingbeat frequency and glucose content in the worker bees treated with imidacloprid were significantly lower than those in the control group. This result is consistent with our hypothesis and demonstrates that energy supply imbalances can prevent worker bees from returning to their hives.
Collapse
Affiliation(s)
- Yu-Chun Lin
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Yun-Heng Lu
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Cheng-Kang Tang
- Plant Health Care Master Degree Program, Academy of Circular Economy, National Chung-Hsing University, Taichung, 504, Taiwan
| | - En-Cheng Yang
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Yueh-Lung Wu
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
8
|
Molecular and Pharmacological Characterization of β-Adrenergic-like Octopamine Receptors in the Endoparasitoid Cotesia chilonis (Hymenoptera: Braconidae). Int J Mol Sci 2022; 23:ijms232314513. [PMID: 36498840 PMCID: PMC9740559 DOI: 10.3390/ijms232314513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Octopamine (OA) is structurally and functionally similar to adrenaline/noradrenaline in vertebrates, and OA modulates diverse physiological and behavioral processes in invertebrates. OA exerts its actions by binding to specific octopamine receptors (OARs). Functional and pharmacological characterization of OARs have been investigated in several insects. However, the literature on OARs is scarce for parasitoids. Here we cloned three β-adrenergic-like OARs (CcOctβRs) from Cotesia chilonis. CcOctβRs share high similarity with their own orthologous receptors. The transcript levels of CcOctβRs were varied in different tissues. When heterologously expressed in CHO-K1 cells, CcOctβRs induced cAMP production, and were dose-dependently activated by OA, TA and putative octopaminergic agonists. Their activities were inhibited by potential antagonists and were most efficiently blocked by epinastine. Our study offers important information about the molecular and pharmacological properties of β-adrenergic-like OARs from C. chilonis that will provide the basis to reveal the contribution of individual receptors to the physiological processes and behaviors in parasitoids.
Collapse
|
9
|
Kaya-Zeeb S, Delac S, Wolf L, Marante AL, Scherf-Clavel O, Thamm M. Robustness of the honeybee neuro-muscular octopaminergic system in the face of cold stress. Front Physiol 2022; 13:1002740. [PMID: 36237520 PMCID: PMC9551396 DOI: 10.3389/fphys.2022.1002740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
In recent decades, our planet has undergone dramatic environmental changes resulting in the loss of numerous species. This contrasts with species that can adapt quickly to rapidly changing ambient conditions, which require physiological plasticity and must occur rapidly. The Western honeybee (Apis mellifera) apparently meets this challenge with remarkable success, as this species is adapted to numerous climates, resulting in an almost worldwide distribution. Here, coordinated individual thermoregulatory activities ensure survival at the colony level and thus the transmission of genetic material. Recently, we showed that shivering thermogenesis, which is critical for honeybee thermoregulation, depends on octopamine signaling. In this study, we tested the hypothesis that the thoracic neuro-muscular octopaminergic system strives for a steady-state equilibrium under cold stress to maintain endogenous thermogenesis. We can show that this applies for both, octopamine provision by flight muscle innervating neurons and octopamine receptor expression in the flight muscles. Additionally, we discovered alternative splicing for AmOARβ2. At least the expression of one isoform is needed to survive cold stress conditions. We assume that the thoracic neuro-muscular octopaminergic system is finely tuned in order to contribute decisively to survival in a changing environment.
Collapse
Affiliation(s)
- Sinan Kaya-Zeeb
- Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
- *Correspondence: Sinan Kaya-Zeeb,
| | - Saskia Delac
- Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
| | - Lena Wolf
- Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
| | - Ana Luiza Marante
- Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
| | - Oliver Scherf-Clavel
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
| | - Markus Thamm
- Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|