1
|
Dey A, MacLean AL. Transition paths across the EMT landscape are dictated by network logic. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626660. [PMID: 39677780 PMCID: PMC11642844 DOI: 10.1101/2024.12.03.626660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
During development and cancer metastasis, cells transition reversibly from epithelial to mesenchymal via intermediate cell states during epithelial-mesenchymal transition (EMT). EMT is controlled by gene regulatory networks (GRNs) and can be described by a three-node GRN that permits tristable EMT landscapes. In this GRN, multiple inputs regulate the transcription factor ZEB that induces EMT. It is unknown how to choose the network logic for such regulation. Here we explore the effects of network logic on a tristable EMT network. We discover that the choice of additive vs multiplicative logic affects EMT phenotypes, leading to opposing predictions regarding the factors controlling EMT transition paths. We show that strong inhibition of miR-200 destabilizes the epithelial state and initiates EMT for multiplicative (AND) but not additive (OR) logic, suggesting that AND logic is in better agreement with experimental measurements of the effects of miR-200 regulation on EMT. Using experimental single-cell data, stochastic simulations, and perturbation analysis, we demonstrate how our results can be used to design experiments to infer the network logic of an EMT GRN in live cells. Our results explain how the manipulation of molecular interactions can stabilize or destabilize EMT hybrid states, of relevance during cancer progression and metastasis. More generally, we highlight the importance of the choice of network logic in GRN models in the presence of biological noise and multistability.
Collapse
Affiliation(s)
- Anupam Dey
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Adam L. MacLean
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
2
|
Cheng YC, Zhang Y, Tripathi S, Harshavardhan BV, Jolly MK, Schiebinger G, Levine H, McDonald TO, Michor F. Reconstruction of single-cell lineage trajectories and identification of diversity in fates during the epithelial-to-mesenchymal transition. Proc Natl Acad Sci U S A 2024; 121:e2406842121. [PMID: 39093947 PMCID: PMC11317558 DOI: 10.1073/pnas.2406842121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Exploring the complexity of the epithelial-to-mesenchymal transition (EMT) unveils a diversity of potential cell fates; however, the exact timing and mechanisms by which early cell states diverge into distinct EMT trajectories remain unclear. Studying these EMT trajectories through single-cell RNA sequencing is challenging due to the necessity of sacrificing cells for each measurement. In this study, we employed optimal-transport analysis to reconstruct the past trajectories of different cell fates during TGF-beta-induced EMT in the MCF10A cell line. Our analysis revealed three distinct trajectories leading to low EMT, partial EMT, and high EMT states. Cells along the partial EMT trajectory showed substantial variations in the EMT signature and exhibited pronounced stemness. Throughout this EMT trajectory, we observed a consistent downregulation of the EED and EZH2 genes. This finding was validated by recent inhibitor screens of EMT regulators and CRISPR screen studies. Moreover, we applied our analysis of early-phase differential gene expression to gene sets associated with stemness and proliferation, pinpointing ITGB4, LAMA3, and LAMB3 as genes differentially expressed in the initial stages of the partial versus high EMT trajectories. We also found that CENPF, CKS1B, and MKI67 showed significant upregulation in the high EMT trajectory. While the first group of genes aligns with findings from previous studies, our work uniquely pinpoints the precise timing of these upregulations. Finally, the identification of the latter group of genes sheds light on potential cell cycle targets for modulating EMT trajectories.
Collapse
Affiliation(s)
- Yu-Chen Cheng
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA02215
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA02215
- Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA02215
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
| | - Yun Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100021, China
| | - Shubham Tripathi
- Yale Center for Systems and Engineering Immunology and Department of Immunobiology, Yale School of Medicine, New Haven, CT06510
| | - B. V. Harshavardhan
- Interdisciplinary Mathematics Initiative, Indian Institute of Science, Bangalore560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore560012, India
| | - Geoffrey Schiebinger
- Department of Mathematics, University of British Columbia, Vancouver, BCV6T 1Z2, Canada
| | - Herbert Levine
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA02115
- Department of Physics, Northeastern University, Boston, MA02115
| | - Thomas O. McDonald
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA02215
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA02215
- Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA02215
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
| | - Franziska Michor
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA02215
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA02215
- Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA02215
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02138
- The Ludwig Center at Harvard, Boston, MA02115
| |
Collapse
|
3
|
Copperman J, Mclean IC, Gross SM, Singh J, Chang YH, Zuckerman DM, Heiser LM. Single-cell morphodynamical trajectories enable prediction of gene expression accompanying cell state change. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576248. [PMID: 38293173 PMCID: PMC10827140 DOI: 10.1101/2024.01.18.576248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Extracellular signals induce changes to molecular programs that modulate multiple cellular phenotypes, including proliferation, motility, and differentiation status. The connection between dynamically adapting phenotypic states and the molecular programs that define them is not well understood. Here we develop data-driven models of single-cell phenotypic responses to extracellular stimuli by linking gene transcription levels to "morphodynamics" - changes in cell morphology and motility observable in time-lapse image data. We adopt a dynamics-first view of cell state by grouping single-cell trajectories into states with shared morphodynamic responses. The single-cell trajectories enable development of a first-of-its-kind computational approach to map live-cell dynamics to snapshot gene transcript levels, which we term MMIST, Molecular and Morphodynamics-Integrated Single-cell Trajectories. The key conceptual advance of MMIST is that cell behavior can be quantified based on dynamically defined states and that extracellular signals alter the overall distribution of cell states by altering rates of switching between states. We find a cell state landscape that is bound by epithelial and mesenchymal endpoints, with distinct sequences of epithelial to mesenchymal transition (EMT) and mesenchymal to epithelial transition (MET) intermediates. The analysis yields predictions for gene expression changes consistent with curated EMT gene sets and provides a prediction of thousands of RNA transcripts through extracellular signal-induced EMT and MET with near-continuous time resolution. The MMIST framework leverages true single-cell dynamical behavior to generate molecular-level omics inferences and is broadly applicable to other biological domains, time-lapse imaging approaches and molecular snapshot data.
Collapse
Affiliation(s)
- Jeremy Copperman
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland OR 97239, U.S.A
| | - Ian C. Mclean
- Department of Biomedical Engineering, Oregon Health and Science University, Portland OR 97239, U.S.A
| | | | - Jalim Singh
- Knight Cancer Institute, Oregon Health and Science University, Portland OR 97239, U.S.A
| | - Young Hwan Chang
- Department of Biomedical Engineering, Oregon Health and Science University, Portland OR 97239, U.S.A
- Knight Cancer Institute, Oregon Health and Science University, Portland OR 97239, U.S.A
| | - Daniel M. Zuckerman
- Department of Biomedical Engineering, Oregon Health and Science University, Portland OR 97239, U.S.A
- Knight Cancer Institute, Oregon Health and Science University, Portland OR 97239, U.S.A
| | - Laura M. Heiser
- Department of Biomedical Engineering, Oregon Health and Science University, Portland OR 97239, U.S.A
- Knight Cancer Institute, Oregon Health and Science University, Portland OR 97239, U.S.A
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland OR 97239, U.S.A
| |
Collapse
|
4
|
Pang QY, Chiu YC, Huang RYJ. Regulating epithelial-mesenchymal plasticity from 3D genome organization. Commun Biol 2024; 7:750. [PMID: 38902393 PMCID: PMC11190238 DOI: 10.1038/s42003-024-06441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 06/11/2024] [Indexed: 06/22/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a dynamic process enabling polarized epithelial cells to acquire mesenchymal features implicated in development and carcinoma progression. As our understanding evolves, it is clear the reversible execution of EMT arises from complex epigenomic regulation involving histone modifications and 3-dimensional (3D) genome structural changes, leading to a cascade of transcriptional events. This review summarizes current knowledge on chromatin organization in EMT, with a focus on hierarchical structures of the 3D genome and chromatin accessibility changes.
Collapse
Affiliation(s)
- Qing You Pang
- Neuro-Oncology Research Laboratory, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Yi-Chia Chiu
- School of Medicine, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Ruby Yun-Ju Huang
- School of Medicine, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.
- Center for Advanced Computing and Imaging in Biomedicine, National Taiwan University, Taipei, 10051, Taiwan.
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore.
| |
Collapse
|
5
|
Khan S, Conover R, Asthagiri AR, Slavov N. Dynamics of Single-Cell Protein Covariation during Epithelial-Mesenchymal Transition. J Proteome Res 2024:10.1021/acs.jproteome.4c00277. [PMID: 38663020 PMCID: PMC11502509 DOI: 10.1021/acs.jproteome.4c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Physiological processes, such as the epithelial-mesenchymal transition (EMT), are mediated by changes in protein interactions. These changes may be better reflected in protein covariation within a cellular cluster than in the temporal dynamics of cluster-average protein abundance. To explore this possibility, we quantified proteins in single human cells undergoing EMT. Covariation analysis of the data revealed that functionally coherent protein clusters dynamically changed their protein-protein correlations without concomitant changes in the cluster-average protein abundance. These dynamics of protein-protein correlations were monotonic in time and delineated protein modules functioning in actin cytoskeleton organization, energy metabolism, and protein transport. These protein modules are defined by protein covariation within the same time point and cluster and, thus, reflect biological regulation masked by the cluster-average protein dynamics. Thus, protein correlation dynamics across single cells offers a window into protein regulation during physiological transitions.
Collapse
Affiliation(s)
- Saad Khan
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Rachel Conover
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Anand R Asthagiri
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Biology, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Nikolai Slavov
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Biology, Northeastern University, Boston, Massachusetts 02115, United States
- Parallel Squared Technology Institute, Watertown, Massachusetts 02472, United States
| |
Collapse
|
6
|
Khan S, Conover R, Asthagiri AR, Slavov N. Dynamics of single-cell protein covariation during epithelial-mesenchymal transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.21.572913. [PMID: 38187715 PMCID: PMC10769332 DOI: 10.1101/2023.12.21.572913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Physiological processes, such as epithelial-mesenchymal transition (EMT), are mediated by changes in protein interactions. These changes may be better reflected in protein covariation within cellular cluster than in the temporal dynamics of cluster-average protein abundance. To explore this possibility, we quantified proteins in single human cells undergoing EMT. Covariation analysis of the data revealed that functionally coherent protein clusters dynamically changed their protein-protein correlations without concomitant changes in cluster-average protein abundance. These dynamics of protein-protein correlations were monotonic in time and delineated protein modules functioning in actin cytoskeleton organization, energy metabolism and protein transport. These protein modules are defined by protein covariation within the same time point and cluster and thus reflect biological regulation masked by the cluster-average protein dynamics. Thus, protein correlation dynamics across single cells offer a window into protein regulation during physiological transitions.
Collapse
Affiliation(s)
- Saad Khan
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Rachel Conover
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Anand R. Asthagiri
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Biology, Northeastern University, Boston, MA, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Nikolai Slavov
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Biology, Northeastern University, Boston, MA, USA
- Parallel Squared Technology Institute, Watertown, MA 02472, USA
| |
Collapse
|
7
|
Hong T, Xing J. Data- and theory-driven approaches for understanding paths of epithelial-mesenchymal transition. Genesis 2024; 62:e23591. [PMID: 38553870 PMCID: PMC11017362 DOI: 10.1002/dvg.23591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/16/2024] [Accepted: 03/16/2024] [Indexed: 04/02/2024]
Abstract
Reversible transitions between epithelial and mesenchymal cell states are a crucial form of epithelial plasticity for development and disease progression. Recent experimental data and mechanistic models showed multiple intermediate epithelial-mesenchymal transition (EMT) states as well as trajectories of EMT underpinned by complex gene regulatory networks. In this review, we summarize recent progress in quantifying EMT and characterizing EMT paths with computational methods and quantitative experiments including omics-level measurements. We provide perspectives on how these studies can help relating fundamental cell biology to physiological and pathological outcomes of EMT.
Collapse
Affiliation(s)
- Tian Hong
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville TN, USA
| | - Jianhua Xing
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Shakarchy A, Zarfati G, Hazak A, Mealem R, Huk K, Ziv T, Avinoam O, Zaritsky A. Machine learning inference of continuous single-cell state transitions during myoblast differentiation and fusion. Mol Syst Biol 2024; 20:217-241. [PMID: 38238594 PMCID: PMC10912675 DOI: 10.1038/s44320-024-00010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 03/06/2024] Open
Abstract
Cells modify their internal organization during continuous state transitions, supporting functions from cell division to differentiation. However, tools to measure dynamic physiological states of individual transitioning cells are lacking. We combined live-cell imaging and machine learning to monitor ERK1/2-inhibited primary murine skeletal muscle precursor cells, that transition rapidly and robustly from proliferating myoblasts to post-mitotic myocytes and then fuse, forming multinucleated myotubes. Our models, trained using motility or actin intensity features from single-cell tracking data, effectively tracked real-time continuous differentiation, revealing that differentiation occurs 7.5-14.5 h post induction, followed by fusion ~3 h later. Co-inhibition of ERK1/2 and p38 led to differentiation without fusion. Our model inferred co-inhibition leads to terminal differentiation, indicating that p38 is specifically required for transitioning from terminal differentiation to fusion. Our model also predicted that co-inhibition leads to changes in actin dynamics. Mass spectrometry supported these in silico predictions and suggested novel fusion and maturation regulators downstream of differentiation. Collectively, this approach can be adapted to various biological processes to uncover novel links between dynamic single-cell states and their functional outcomes.
Collapse
Affiliation(s)
- Amit Shakarchy
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Giulia Zarfati
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Adi Hazak
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Reut Mealem
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Karina Huk
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Tamar Ziv
- The Smoler Proteomics Center, Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ori Avinoam
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 761001, Israel.
| | - Assaf Zaritsky
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| |
Collapse
|
9
|
Eddy CZ, Naylor A, Cunningham CT, Sun B. Facilitating cell segmentation with the projection-enhancement network. Phys Biol 2023; 20:10.1088/1478-3975/acfe53. [PMID: 37769666 PMCID: PMC10586931 DOI: 10.1088/1478-3975/acfe53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Contemporary approaches to instance segmentation in cell science use 2D or 3D convolutional networks depending on the experiment and data structures. However, limitations in microscopy systems or efforts to prevent phototoxicity commonly require recording sub-optimally sampled data that greatly reduces the utility of such 3D data, especially in crowded sample space with significant axial overlap between objects. In such regimes, 2D segmentations are both more reliable for cell morphology and easier to annotate. In this work, we propose the projection enhancement network (PEN), a novel convolutional module which processes the sub-sampled 3D data and produces a 2D RGB semantic compression, and is trained in conjunction with an instance segmentation network of choice to produce 2D segmentations. Our approach combines augmentation to increase cell density using a low-density cell image dataset to train PEN, and curated datasets to evaluate PEN. We show that with PEN, the learned semantic representation in CellPose encodes depth and greatly improves segmentation performance in comparison to maximum intensity projection images as input, but does not similarly aid segmentation in region-based networks like Mask-RCNN. Finally, we dissect the segmentation strength against cell density of PEN with CellPose on disseminated cells from side-by-side spheroids. We present PEN as a data-driven solution to form compressed representations of 3D data that improve 2D segmentations from instance segmentation networks.
Collapse
Affiliation(s)
| | - Austin Naylor
- Oregon State University, Department of Physics, Corvallis, 97331, USA
| | | | - Bo Sun
- Oregon State University, Department of Physics, Corvallis, 97331, USA
| |
Collapse
|
10
|
Shah S, Philipp LM, Giaimo S, Sebens S, Traulsen A, Raatz M. Understanding and leveraging phenotypic plasticity during metastasis formation. NPJ Syst Biol Appl 2023; 9:48. [PMID: 37803056 PMCID: PMC10558468 DOI: 10.1038/s41540-023-00309-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/15/2023] [Indexed: 10/08/2023] Open
Abstract
Cancer metastasis is the process of detrimental systemic spread and the primary cause of cancer-related fatalities. Successful metastasis formation requires tumor cells to be proliferative and invasive; however, cells cannot be effective at both tasks simultaneously. Tumor cells compensate for this trade-off by changing their phenotype during metastasis formation through phenotypic plasticity. Given the changing selection pressures and competitive interactions that tumor cells face, it is poorly understood how plasticity shapes the process of metastasis formation. Here, we develop an ecology-inspired mathematical model with phenotypic plasticity and resource competition between phenotypes to address this knowledge gap. We find that phenotypically plastic tumor cell populations attain a stable phenotype equilibrium that maintains tumor cell heterogeneity. Considering treatment types inspired by chemo- and immunotherapy, we highlight that plasticity can protect tumors against interventions. Turning this strength into a weakness, we corroborate current clinical practices to use plasticity as a target for adjuvant therapy. We present a parsimonious view of tumor plasticity-driven metastasis that is quantitative and experimentally testable, and thus potentially improving the mechanistic understanding of metastasis at the cell population level, and its treatment consequences.
Collapse
Affiliation(s)
- Saumil Shah
- Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany.
| | - Lisa-Marie Philipp
- Institute for Experimental Cancer Research, Kiel University and University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Building U30, Entrance 1, 24105, Kiel, Germany
| | - Stefano Giaimo
- Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Kiel University and University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Building U30, Entrance 1, 24105, Kiel, Germany
| | - Arne Traulsen
- Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany
| | - Michael Raatz
- Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany
| |
Collapse
|
11
|
Lewis GR, Marshall WF. Mitochondrial networks through the lens of mathematics. Phys Biol 2023; 20:051001. [PMID: 37290456 PMCID: PMC10347554 DOI: 10.1088/1478-3975/acdcdb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/10/2023]
Abstract
Mitochondria serve a wide range of functions within cells, most notably via their production of ATP. Although their morphology is commonly described as bean-like, mitochondria often form interconnected networks within cells that exhibit dynamic restructuring through a variety of physical changes. Further, though relationships between form and function in biology are well established, the extant toolkit for understanding mitochondrial morphology is limited. Here, we emphasize new and established methods for quantitatively describing mitochondrial networks, ranging from unweighted graph-theoretic representations to multi-scale approaches from applied topology, in particular persistent homology. We also show fundamental relationships between mitochondrial networks, mathematics, and physics, using ideas of graph planarity and statistical mechanics to better understand the full possible morphological space of mitochondrial network structures. Lastly, we provide suggestions for how examination of mitochondrial network form through the language of mathematics can inform biological understanding, and vice versa.
Collapse
Affiliation(s)
- Greyson R Lewis
- Biophysics Graduate Program, University of California—San Francisco, San Francisco, CA, United States of America
- NSF Center for Cellular Construction, Department of Biochemistry and Biophysics, UCSF, 600 16th St., San Francisco, CA, United States of America
- Department of Biochemistry and Biophysics, Center for Cellular Construction, University of California San Francisco, San Francisco, CA, United States of America
| | - Wallace F Marshall
- NSF Center for Cellular Construction, Department of Biochemistry and Biophysics, UCSF, 600 16th St., San Francisco, CA, United States of America
- Department of Biochemistry and Biophysics, Center for Cellular Construction, University of California San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
12
|
Sisto M, Lisi S. Immune and Non-Immune Inflammatory Cells Involved in Autoimmune Fibrosis: New Discoveries. J Clin Med 2023; 12:jcm12113801. [PMID: 37297996 DOI: 10.3390/jcm12113801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Fibrosis is an important health problem and its pathogenetic activation is still largely unknown. It can develop either spontaneously or, more frequently, as a consequence of various underlying diseases, such as chronic inflammatory autoimmune diseases. Fibrotic tissue is always characterized by mononuclear immune cells infiltration. The cytokine profile of these cells shows clear proinflammatory and profibrotic characteristics. Furthermore, the production of inflammatory mediators by non-immune cells, in response to several stimuli, can be involved in the fibrotic process. It is now established that defects in the abilities of non-immune cells to mediate immune regulation may be involved in the pathogenicity of a series of inflammatory diseases. The convergence of several, not yet well identified, factors results in the aberrant activation of non-immune cells, such as epithelial cells, endothelial cells, and fibroblasts, that, by producing pro-inflammatory molecules, exacerbate the inflammatory condition leading to the excessive and chaotic secretion of extracellular matrix proteins. However, the precise cellular mechanisms involved in this process have not yet been fully elucidated. In this review, we explore the latest discoveries on the mechanisms that initiate and perpetuate the vicious circle of abnormal communications between immune and non-immune cells, responsible for fibrotic evolution of inflammatory autoimmune diseases.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Sabrina Lisi
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
13
|
Subhadarshini S, Markus J, Sahoo S, Jolly MK. Dynamics of Epithelial-Mesenchymal Plasticity: What Have Single-Cell Investigations Elucidated So Far? ACS OMEGA 2023; 8:11665-11673. [PMID: 37033874 PMCID: PMC10077445 DOI: 10.1021/acsomega.2c07989] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Epithelial-mesenchymal plasticity (EMP) is a key driver of cancer metastasis and therapeutic resistance, through which cancer cells can reversibly and dynamically alter their molecular and functional traits along the epithelial-mesenchymal spectrum. While cells in the epithelial phenotype are usually tightly adherent, less metastatic, and drug-sensitive, those in the hybrid epithelial/mesenchymal and/or mesenchymal state are more invasive, migratory, drug-resistant, and immune-evasive. Single-cell studies have emerged as a powerful tool in gaining new insights into the dynamics of EMP across various cancer types. Here, we review many recent studies that employ single-cell analysis techniques to better understand the dynamics of EMP in cancer both in vitro and in vivo. These single-cell studies have underlined the plurality of trajectories cells can traverse during EMP and the consequent heterogeneity of hybrid epithelial/mesenchymal phenotypes seen at both preclinical and clinical levels. They also demonstrate how diverse EMP trajectories may exhibit hysteretic behavior and how the rate of such cell-state transitions depends on the genetic/epigenetic background of recipient cells, as well as the dose and/or duration of EMP-inducing growth factors. Finally, we discuss the relationship between EMP and patient survival across many cancer types. We also present a next set of questions related to EMP that could benefit much from single-cell observations and pave the way to better tackle phenotypic switching and heterogeneity in clinic.
Collapse
Affiliation(s)
| | - Joel Markus
- Centre
for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Sarthak Sahoo
- Centre
for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Centre
for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
14
|
Miroshnikova YA, Shahbazi MN, Negrete J, Chalut KJ, Smith A. Cell state transitions: catch them if you can. Development 2023; 150:dev201139. [PMID: 36930528 PMCID: PMC10655867 DOI: 10.1242/dev.201139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The Company of Biologists' 2022 workshop on 'Cell State Transitions: Approaches, Experimental Systems and Models' brought together an international and interdisciplinary team of investigators spanning the fields of cell and developmental biology, stem cell biology, physics, mathematics and engineering to tackle the question of how cells precisely navigate between distinct identities and do so in a dynamic manner. This second edition of the workshop was organized after a successful virtual workshop on the same topic that took place in 2021.
Collapse
Affiliation(s)
- Yekaterina A. Miroshnikova
- Stem Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marta N. Shahbazi
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Jose Negrete
- Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Kevin J. Chalut
- Altos Labs, Cambridge Institute of Science, Cambridge CB2 0AW, UK
| | - Austin Smith
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
15
|
Xing J. Reconstructing data-driven governing equations for cell phenotypic transitions: integration of data science and systems biology. Phys Biol 2022; 19:10.1088/1478-3975/ac8c16. [PMID: 35998617 PMCID: PMC9585661 DOI: 10.1088/1478-3975/ac8c16] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/23/2022] [Indexed: 11/11/2022]
Abstract
Cells with the same genome can exist in different phenotypes and can change between distinct phenotypes when subject to specific stimuli and microenvironments. Some examples include cell differentiation during development, reprogramming for induced pluripotent stem cells and transdifferentiation, cancer metastasis and fibrosis progression. The regulation and dynamics of cell phenotypic conversion is a fundamental problem in biology, and has a long history of being studied within the formalism of dynamical systems. A main challenge for mechanism-driven modeling studies is acquiring sufficient amount of quantitative information for constraining model parameters. Advances in quantitative experimental approaches, especially high throughput single-cell techniques, have accelerated the emergence of a new direction for reconstructing the governing dynamical equations of a cellular system from quantitative single-cell data, beyond the dominant statistical approaches. Here I review a selected number of recent studies using live- and fixed-cell data and provide my perspective on future development.
Collapse
Affiliation(s)
- Jianhua Xing
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15232, USA
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15232, USA
- UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Xing J. Reconstructing data-driven governing equations for cell phenotypic transitions: integration of data science and systems biology. Phys Biol 2022. [PMID: 35998617 DOI: 10.48550/arxiv.2203.14964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cells with the same genome can exist in different phenotypes and can change between distinct phenotypes when subject to specific stimuli and microenvironments. Some examples include cell differentiation during development, reprogramming for induced pluripotent stem cells and transdifferentiation, cancer metastasis and fibrosis progression. The regulation and dynamics of cell phenotypic conversion is a fundamental problem in biology, and has a long history of being studied within the formalism of dynamical systems. A main challenge for mechanism-driven modeling studies is acquiring sufficient amount of quantitative information for constraining model parameters. Advances in quantitative experimental approaches, especially high throughput single-cell techniques, have accelerated the emergence of a new direction for reconstructing the governing dynamical equations of a cellular system from quantitative single-cell data, beyond the dominant statistical approaches. Here I review a selected number of recent studies using live- and fixed-cell data and provide my perspective on future development.
Collapse
Affiliation(s)
- Jianhua Xing
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15232, United States of America.,Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15232, United States of America.,UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
17
|
Panchy N, Watanabe K, Takahashi M, Willems A, Hong T. Comparative single-cell transcriptomes of dose and time dependent epithelial–mesenchymal spectrums. NAR Genom Bioinform 2022; 4:lqac072. [PMID: 36159174 PMCID: PMC9492285 DOI: 10.1093/nargab/lqac072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/17/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Epithelial–mesenchymal transition (EMT) is a cellular process involved in development and disease progression. Intermediate EMT states were observed in tumors and fibrotic tissues, but previous in vitro studies focused on time-dependent responses with single doses of signals; it was unclear whether single-cell transcriptomes support stable intermediates observed in diseases. Here, we performed single-cell RNA-sequencing with human mammary epithelial cells treated with multiple doses of TGF-β. We found that dose-dependent EMT harbors multiple intermediate states at nearly steady state. Comparisons of dose- and time-dependent EMT transcriptomes revealed that the dose-dependent data enable higher sensitivity to detect genes associated with EMT. We identified cell clusters unique to time-dependent EMT, reflecting cells en route to stable states. Combining dose- and time-dependent cell clusters gave rise to accurate prognosis for cancer patients. Our transcriptomic data and analyses uncover a stable EMT continuum at the single-cell resolution, and complementary information of two types of single-cell experiments.
Collapse
Affiliation(s)
- Nicholas Panchy
- Department of Biochemistry & Cellular and Molecular Biology. The University of Tennessee , Knoxville, Knoxville, TN 37996, USA
| | - Kazuhide Watanabe
- RIKEN Center for Integrative Medical Sciences , 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Masataka Takahashi
- RIKEN Center for Integrative Medical Sciences , 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Andrew Willems
- School of Genome Science and Technology, The University of Tennessee , Knoxville, Knoxville, TN 37916, USA
| | - Tian Hong
- Department of Biochemistry & Cellular and Molecular Biology. The University of Tennessee , Knoxville, Knoxville, TN 37996, USA
- National Institute for Mathematical and Biological Synthesis , Knoxville, TN 37996, USA
| |
Collapse
|
18
|
MacLean AL. Profiling intermediate cell states in high resolution. CELL REPORTS METHODS 2022; 2:100204. [PMID: 35497492 PMCID: PMC9046438 DOI: 10.1016/j.crmeth.2022.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Kong et al. present Capybara, a computational method to identify cell states from single-cell gene expression data. Notably, Capybara can identify intermediate cell states and cell state transitions, offering biologists new means with which to interrogate the states and fates of cells.
Collapse
Affiliation(s)
- Adam L. MacLean
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|