1
|
Sakamoto R, Murrell MP. Mechanical power is maximized during contractile ring-like formation in a biomimetic dividing cell model. Nat Commun 2024; 15:9731. [PMID: 39523366 PMCID: PMC11551154 DOI: 10.1038/s41467-024-53228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
The spatial and temporal dynamics of forces in cells coordinate essential behaviors like division, polarization, and migration. While intracellular signaling initiates contractile ring assembly during cell division, how mechanical forces coordinate division and their energetic costs remain unclear. Here, we develop an in vitro model where myosin-induced stress drives division-like shape changes in giant unilamellar vesicles (GUVs, liposomes). Myosin activity is controlled by light patterns globally or locally at the equator. Global activation causes slow, shallow cleavage furrows due to a tug-of-war between the equatorial and polar forces. By contrast, local activation leads to faster, deeper, and symmetric division as equatorial forces dominate. Dissociating the actin cortex at the poles is crucial for inducing significant furrowing. During furrowing, actomyosin flows align actin filaments parallel to the division plane, forming a contractile ring-like structure. Mechanical power is not greatest during contraction, but is maximized just before furrowing. This study reveals the quantitative relationship between force patterning and mechanical energy during division-like shape changes, providing insights into cell division mechanics.
Collapse
Affiliation(s)
- Ryota Sakamoto
- Department of Biomedical Engineering, Yale University, 10 Hillhouse Avenue, New Haven, CT, USA.
- Systems Biology Institute, 850 West Campus Drive, West Haven, CT, USA.
| | - Michael P Murrell
- Department of Biomedical Engineering, Yale University, 10 Hillhouse Avenue, New Haven, CT, USA.
- Systems Biology Institute, 850 West Campus Drive, West Haven, CT, USA.
- Department of Physics, Yale University, 217 Prospect Street, New Haven, CT, USA.
| |
Collapse
|
2
|
Pismen LM. Nematodynamics with odd and rotational viscosities. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2024; 47:50. [PMID: 39068304 PMCID: PMC11283408 DOI: 10.1140/epje/s10189-024-00441-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
We explore a novel mechanism of interactions between nematic order and flow including odd and rotational viscosities, and investigate activity-induced instabilities in the framework of this model. We show how these modes of viscous dissipation can be incorporated in the Ericksen-Leslie formalism, but it does not eliminate deficiencies of the approach based on Onsager's reciprocal relations that lead to spurious instabilities. The suggested way of deriving nematodynamic equations, based on a specific mechanism applicable to rigid rods, is not universal, but it avoids referring to Onsager's relations and avoids spurious instabilities in the absence of an active inputs. The model is further applied to the analysis of instabilities in active media.
Collapse
Affiliation(s)
- L M Pismen
- Department of Chemical Engineering, Technion - Israel Institute of Technology, 32000, Haifa, Israel.
| |
Collapse
|
3
|
Fossati M, Scheibner C, Fruchart M, Vitelli V. Odd elasticity and topological waves in active surfaces. Phys Rev E 2024; 109:024608. [PMID: 38491602 DOI: 10.1103/physreve.109.024608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/12/2024] [Indexed: 03/18/2024]
Abstract
Odd elasticity describes active elastic systems whose stress-strain relationship is not compatible with a potential energy. As the requirement of energy conservation is lifted from linear elasticity, new antisymmetric (odd) components appear in the elastic tensor. In this work we study the odd elasticity and non-Hermitian wave dynamics of active surfaces, specifically plates of moderate thickness. These odd moduli can endow the vibrational modes of the plate with a nonzero topological invariant known as the first Chern number. Within continuum elastic theory, we show that the Chern number is related to the presence of unidirectional shearing waves that are hosted at the plate's boundary. We show that the existence of these chiral edge waves hinges on a distinctive two-step mechanism. Unlike electronic Chern insulators where the magnetic field at the same time gaps the spectrum and imparts chirality, here the finite thickness of the sample gaps the shear modes, and the odd elasticity makes them chiral.
Collapse
Affiliation(s)
- Michele Fossati
- SISSA, Trieste 34136, Italy
- INFN Sezione di Trieste, Trieste 34127, Italy
| | - Colin Scheibner
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
- Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| | - Michel Fruchart
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
- Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| | - Vincenzo Vitelli
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
- Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
- Kadanoff Center for Theoretical Physics, University of Chicago, Chicago, Illinois 60637, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
4
|
Bonn L, Ardaševa A, Doostmohammadi A. Elasticity tunes mechanical stress localization around active topological defects. SOFT MATTER 2023; 20:115-123. [PMID: 38050783 DOI: 10.1039/d3sm01113e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Mechanical stresses are increasingly found to be associated with various biological functionalities. At the same time, topological defects are being identified across a diverse range of biological systems and are points of localized mechanical stress. It is therefore important to ask how mechanical stress localization around topological defects is controlled. Here, we use continuum simulations of nonequilibrium, fluctuating and active nematics to explore the patterns of stress localization, as well as their extent and intensity around topological defects. We find that by increasing the orientational elasticity of the material, the isotropic stress pattern around topological defects is changed substantially, from a stress dipole characterized by symmetric compression-tension regions around the core of the defect, to a localized stress monopole at the defect position. Moreover, we show that elastic anisotropy alters the extent and intensity of the stresses, and can result in the dominance of tension or compression around defects. Finally, including both nonequilibrium fluctuations and active stress generation, we find that the elastic constant tunes the relative effect of each, leading to the flipping of tension and compression regions around topological defects. This flipping of the tension-compression regions only by changing the elastic constant presents an interesting, simple, way of switching the dynamic behavior in active matter by changing a passive material property. We expect these findings to motivate further exploration tuning stresses in active biological materials by varying material properties of the constituent units.
Collapse
Affiliation(s)
- Lasse Bonn
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen, Denmark.
| | - Aleksandra Ardaševa
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen, Denmark.
| | - Amin Doostmohammadi
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen, Denmark.
| |
Collapse
|
5
|
Hoffmann LA, Carenza LN, Giomi L. Tuneable defect-curvature coupling and topological transitions in active shells. SOFT MATTER 2023; 19:3423-3435. [PMID: 37129899 DOI: 10.1039/d2sm01370c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Recent experimental observations have suggested that topological defects can facilitate the creation of sharp features in developing embryos. Whereas these observations echo established knowledge about the interplay between geometry and topology in two-dimensional passive liquid crystals, the role of activity has mostly remained unexplored. In this article we focus on deformable shells consisting of either polar or nematic active liquid crystals and demonstrate that activity renders the mechanical coupling between defects and curvature much more involved and versatile than previously thought. Using a combination of linear stability analysis and three-dimensional computational fluid dynamics, we demonstrate that such a coupling can in fact be tuned, depending on the type of liquid crystal order, the specific structure of the defect (i.e. asters or vortices) and the nature of the active forces. In polar systems, this can drive a spectacular transition from spherical to toroidal topology, in the presence of large extensile activity. Our analysis strengthens the idea that defects could serve as topological morphogens and provides a number of predictions that could be tested in in vitro studies, for instance in the context of organoids.
Collapse
Affiliation(s)
- Ludwig A Hoffmann
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands.
| | - Livio Nicola Carenza
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands.
| | - Luca Giomi
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
6
|
Wang Z, Marchetti MC, Brauns F. Patterning of morphogenetic anisotropy fields. Proc Natl Acad Sci U S A 2023; 120:e2220167120. [PMID: 36947516 PMCID: PMC10068776 DOI: 10.1073/pnas.2220167120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/15/2023] [Indexed: 03/23/2023] Open
Abstract
Orientational order, encoded in anisotropic fields, plays an important role during the development of an organism. A striking example of this is the freshwater polyp Hydra, where topological defects in the muscle fiber orientation have been shown to localize to key features of the body plan. This body plan is organized by morphogen concentration gradients, raising the question how muscle fiber orientation, morphogen gradients and body shape interact. Here, we introduce a minimal model that couples nematic orientational order to the gradient of a morphogen field. We show that on a planar surface, alignment to a radial concentration gradient can induce unbinding of topological defects, as observed during budding and tentacle formation in Hydra, and stabilize aster/vortex-like defects, as observed at a Hydra's mouth. On curved surfaces mimicking the morphologies of Hydra in various stages of development-from spheroid to adult-our model reproduces the experimentally observed reorganization of orientational order. Our results suggest how gradient alignment and curvature effects may work together to control orientational order during development and lay the foundations for future modeling efforts that will include the tissue mechanics that drive shape deformations.
Collapse
Affiliation(s)
- Zihang Wang
- Department of Physics, University of California, Santa Barbara, CA93106
| | | | - Fridtjof Brauns
- Department of Physics, University of California, Santa Barbara, CA93106
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA93106
| |
Collapse
|
7
|
Espina JA, Cordeiro MH, Barriga EH. Tissue interplay during morphogenesis. Semin Cell Dev Biol 2023; 147:12-23. [PMID: 37002130 DOI: 10.1016/j.semcdb.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/25/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023]
Abstract
The process by which biological systems such as cells, tissues and organisms acquire shape has been named as morphogenesis and it is central to a plethora of biological contexts including embryo development, wound healing, or even cancer. Morphogenesis relies in both self-organising properties of the system and in environmental inputs (biochemical and biophysical). The classical view of morphogenesis is based on the study of external biochemical molecules, such as morphogens. However, recent studies are establishing that the mechanical environment is also used by cells to communicate within tissues, suggesting that this mechanical crosstalk is essential to synchronise morphogenetic transitions and self-organisation. In this article we discuss how tissue interaction drive robust morphogenesis, starting from a classical biochemical view, to finalise with more recent advances on how the biophysical properties of a tissue feedback with their surroundings to allow form acquisition. We also comment on how in silico models aid to integrate and predict changes in cell and tissue behaviour. Finally, considering recent advances from the developmental biomechanics field showing that mechanical inputs work as cues that promote morphogenesis, we invite to revisit the concept of morphogen.
Collapse
Affiliation(s)
- Jaime A Espina
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| | - Marilia H Cordeiro
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| | - Elias H Barriga
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal.
| |
Collapse
|
8
|
Glentis A, Blanch-Mercader C, Balasubramaniam L, Saw TB, d’Alessandro J, Janel S, Douanier A, Delaval B, Lafont F, Lim CT, Delacour D, Prost J, Xi W, Ladoux B. The emergence of spontaneous coordinated epithelial rotation on cylindrical curved surfaces. SCIENCE ADVANCES 2022; 8:eabn5406. [PMID: 36103541 PMCID: PMC9473582 DOI: 10.1126/sciadv.abn5406] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Three-dimensional collective epithelial rotation around a given axis represents a coordinated cellular movement driving tissue morphogenesis and transformation. Questions regarding these behaviors and their relationship with substrate curvatures are intimately linked to spontaneous active matter processes and to vital morphogenetic and embryonic processes. Here, using interdisciplinary approaches, we study the dynamics of epithelial layers lining different cylindrical surfaces. We observe large-scale, persistent, and circumferential rotation in both concavely and convexly curved cylindrical tissues. While epithelia of inverse curvature show an orthogonal switch in actomyosin network orientation and opposite apicobasal polarities, their rotational movements emerge and vary similarly within a common curvature window. We further reveal that this persisting rotation requires stable cell-cell adhesion and Rac-1-dependent cell polarity. Using an active polar gel model, we unveil the different relationships of collective cell polarity and actin alignment with curvatures, which lead to coordinated rotational behavior despite the inverted curvature and cytoskeleton order.
Collapse
Affiliation(s)
- Alexandros Glentis
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Carles Blanch-Mercader
- Laboratoire Physico Chimie Curie, UMR 168, Institut Curie, PSL Research University, CNRS, Sorbonne Université, 75005 Paris, France
| | | | - Thuan Beng Saw
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | | | - Sebastien Janel
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019–UMR 9017–CIIL–Center for Infection and Immunity of Lille, F-59000 Lille, France
| | | | | | - Frank Lafont
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019–UMR 9017–CIIL–Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Delphine Delacour
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Jacques Prost
- Laboratoire Physico Chimie Curie, UMR 168, Institut Curie, PSL Research University, CNRS, Sorbonne Université, 75005 Paris, France
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Wang Xi
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Benoit Ladoux
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| |
Collapse
|