1
|
Li X, Li C, Kang Y, Zhang R, Li P, Zheng Q, Wang H, Xiao H, Yuan L. G protein coupled receptor in apoptosis and apoptotic cell clearance. FASEB Bioadv 2024; 6:289-297. [PMID: 39399480 PMCID: PMC11467729 DOI: 10.1096/fba.2024-00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 10/15/2024] Open
Abstract
Apoptosis is a genetically programmed form of cell death that is substantially conserved across the evolutionary tree. Apoptotic cell elimination includes recognition, phagocytosis, and degradation. Failure to clear apoptotic cells can ultimately cause a series of human diseases, such as systemic lupus erythematosus, Alzheimer's disease, atherosclerosis, and cancer. Consequently, the timely and effective removal of apoptotic cells is crucial to maintaining the body's homeostasis. GPCRs belong to the largest membrane receptor family. Its intracellular domain exerts an effect on the trimer G protein. By combining with a variety of ligands, the extracellular domain of G protein initiates the dissociation of G protein trimers and progressively transmits signals downstream. Presently, numerous G protein-coupled receptors (GPCRs) have been identified as participants in the apoptosis signal transduction pathway and the apoptotic cell clearance pathway. Therefore, studies on the mechanism of GPCRs in the clearance of apoptotic cells is important for the development of GPCRs therapeutics.
Collapse
Affiliation(s)
- Xinyan Li
- College of Life Sciences, Shaanxi Normal University Xi'an China
| | - Chao Li
- College of Life Sciences, Shaanxi Normal University Xi'an China
| | - Yang Kang
- College of Life Sciences, Shaanxi Normal University Xi'an China
| | - Rui Zhang
- Emergency Department The Second Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - Peiyao Li
- College of Life Sciences, Shaanxi Normal University Xi'an China
| | - Qian Zheng
- College of Life Sciences, Shaanxi Normal University Xi'an China
| | - Hui Wang
- College of Life Sciences, Shaanxi Normal University Xi'an China
| | - Hui Xiao
- College of Life Sciences, Shaanxi Normal University Xi'an China
| | - Lei Yuan
- College of Life Sciences, Shaanxi Normal University Xi'an China
| |
Collapse
|
2
|
Zhang F, Liu Y, Li Y, Liu X, Zhang Y, Su G. HMG-3 contributes to meiotic chromosome maintenance and inhibits reproductive aging in C. elegans. J Genet Genomics 2024:S1673-8527(24)00213-3. [PMID: 39214452 DOI: 10.1016/j.jgg.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Fengguo Zhang
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China; Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Yuanyuan Liu
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, Shandong 250300, China
| | - Yanmei Li
- Department of Operations, Jinan Blood Centre, Jinan, Shandong 250001, China
| | - Xiuxiu Liu
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Yingchun Zhang
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China.
| | - Guohai Su
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China; Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China.
| |
Collapse
|
3
|
Harders RH, Morthorst TH, Landgrebe LE, Lande AD, Fuglsang MS, Mortensen SB, Feteira-Montero V, Jensen HH, Wesseltoft JB, Olsen A. CED-6/GULP and components of the clathrin-mediated endocytosis machinery act redundantly to correctly display CED-1 on the cell membrane in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2024; 14:jkae088. [PMID: 38696649 PMCID: PMC11228867 DOI: 10.1093/g3journal/jkae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 05/04/2024]
Abstract
CED-1 (cell death abnormal) is a transmembrane receptor involved in the recognition of "eat-me" signals displayed on the surface of apoptotic cells and thus central for the subsequent engulfment of the cell corpse in Caenorhabditis elegans. The roles of CED-1 in engulfment are well established, as are its downstream effectors. The latter include the adapter protein CED-6/GULP and the ATP-binding cassette family homolog CED-7. However, how CED-1 is maintained on the plasma membrane in the absence of engulfment is currently unknown. Here, we show that CED-6 and CED-7 have a novel role in maintaining CED-1 correctly on the plasma membrane. We propose that the underlying mechanism is via endocytosis as CED-6 and CED-7 act redundantly with clathrin and its adaptor, the Adaptor protein 2 complex, in ensuring correct CED-1 localization. In conclusion, CED-6 and CED-7 impact other cellular processes than engulfment of apoptotic cells.
Collapse
Affiliation(s)
- Rikke Hindsgaul Harders
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg, DK-9220, Denmark
| | - Tine H Morthorst
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, Aarhus, DK-8000, Denmark
| | - Line E Landgrebe
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, Aarhus, DK-8000, Denmark
| | - Anna D Lande
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, Aarhus, DK-8000, Denmark
| | - Marie Sikjær Fuglsang
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, Aarhus, DK-8000, Denmark
| | - Stine Bothilde Mortensen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg, DK-9220, Denmark
| | - Verónica Feteira-Montero
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg, DK-9220, Denmark
| | - Helene Halkjær Jensen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg, DK-9220, Denmark
| | - Jonas Bruhn Wesseltoft
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg, DK-9220, Denmark
| | - Anders Olsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg, DK-9220, Denmark
| |
Collapse
|
4
|
Ahsan N, Shariq M, Surolia A, Raj R, Khan MF, Kumar P. Multipronged regulation of autophagy and apoptosis: emerging role of TRIM proteins. Cell Mol Biol Lett 2024; 29:13. [PMID: 38225560 PMCID: PMC10790450 DOI: 10.1186/s11658-023-00528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024] Open
Abstract
TRIM proteins are characterized by their conserved N-terminal RING, B-box, and coiled-coil domains. These proteins are efficient regulators of autophagy, apoptosis, and innate immune responses and confer immunity against viruses and bacteria. TRIMs function as receptors or scaffold proteins that target substrates for autophagy-mediated degradation. Most TRIMs interact with the BECN1-ULK1 complex to form TRIMosomes, thereby efficiently targeting substrates to autophagosomes. They regulate the functions of ATG proteins through physical interactions or ubiquitination. TRIMs affect the lipidation of MAP1LC3B1 to form MAP1LC3B2, which is a prerequisite for phagophore and autophagosome formation. In addition, they regulate MTOR kinase and TFEB, thereby regulating the expression of ATG genes. TRIM proteins are efficient regulators of apoptosis and are crucial for regulating cell proliferation and tumor formation. Many TRIM proteins regulate intrinsic and extrinsic apoptosis via the cell surface receptors TGFBR2, TNFRSF1A, and FAS. Mitochondria modulate the anti- and proapoptotic functions of BCL2, BAX, BAK1, and CYCS. These proteins use a multipronged approach to regulate the intrinsic and extrinsic apoptotic pathways, culminating in coordinated activation or inhibition of the initiator and executor CASPs. Furthermore, TRIMs can have a dual effect in determining cell fate and are therefore crucial for cellular homeostasis. In this review, we discuss mechanistic insights into the role of TRIM proteins in regulating autophagy and apoptosis, which can be used to better understand cellular physiology. These findings can be used to develop therapeutic interventions to prevent or treat multiple genetic and infectious diseases.
Collapse
Affiliation(s)
- Nuzhat Ahsan
- Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE.
| | - Mohd Shariq
- Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE
| | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 460012, India.
| | - Reshmi Raj
- Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE
| | | | - Pramod Kumar
- Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE
| |
Collapse
|
5
|
Huang Y, Gao X, He QY, Liu W. A Interacting Model: How TRIM21 Orchestrates with Proteins in Intracellular Immunity. SMALL METHODS 2024; 8:e2301142. [PMID: 37922533 DOI: 10.1002/smtd.202301142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/12/2023] [Indexed: 11/07/2023]
Abstract
Tripartite motif-containing protein 21 (TRIM21), identified as both a cytosolic E3 ubiquitin ligase and FcR (Fragment crystallizable receptor), primarily interacts with proteins via its PRY/SPRY domains and promotes their proteasomal degradation to regulate intracellular immunity. But how TRIM21 involves in intracellular immunity still lacks systematical understanding. Herein, it is probed into the TRIM21-related literature and raises an interacting model about how TRIM21 orchestrates proteins in cytosol. In this novel model, TRIM21 generally interacts with miscellaneous protein in intracellular immunity in two ways: For one, TRIM21 solely plays as an E3, ubiquitylating a glut of proteins that contain specific interferon-regulatory factor, nuclear transcription factor kappaB, virus sensors and others, and involving inflammatory responses. For another, TRIM21 serves as both E3 and specific FcR that detects antibody-complexes and facilitates antibody destroying target proteins. Correspondingly delineated as Fc-independent signaling and Fc-dependent signaling in this review, how TRIM21's interactions contribute to intracellular immunity, expecting to provide a systematical understanding of this important protein and invest enlightenment for further research on the pathogenesis of related diseases and its prospective application is elaborated.
Collapse
Affiliation(s)
- Yisha Huang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xuejuan Gao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Wanting Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
6
|
Li P, Gong X, Yuan L, Mu L, Zheng Q, Xiao H, Wang H. Palmitoylation in apoptosis. J Cell Physiol 2023; 238:1641-1650. [PMID: 37260091 DOI: 10.1002/jcp.31047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023]
Abstract
Palmitoylation, a critical lipid modification of proteins, is involved in various physiological processes such as altering protein localization, transport, and stability, which perform essential roles in protein function. Palmitoyltransferases are specific enzymes involved in the palmitoylation modification of substrates. S-palmitoylation, as the only reversible palmitoylation modification, is able to be deacylated by deacyltransferases. As an important mode of programmed cell death, apoptosis functions in the maintenance of organismal homeostasis as well as being associated with inflammatory and immune diseases. Recently, studies have found that palmitoylation and apoptosis have been demonstrated to be related in many human diseases. In this review, we will focus on the role of palmitoylation modifications in apoptosis.
Collapse
Affiliation(s)
- Peiyao Li
- Department of Cell and Development Biology, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiaoyi Gong
- Department of Cell and Development Biology, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Lei Yuan
- Department of Cell and Development Biology, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Lina Mu
- Department of Cell and Development Biology, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Qian Zheng
- Department of Cell and Development Biology, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hui Xiao
- Department of Cell and Development Biology, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hui Wang
- Department of Cell and Development Biology, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
7
|
Xiao K, Peng S, Lu J, Zhou T, Hong X, Chen S, Liu G, Li H, Huang J, Chen X, Lin T. UBE2S interacting with TRIM21 mediates the K11-linked ubiquitination of LPP to promote the lymphatic metastasis of bladder cancer. Cell Death Dis 2023; 14:408. [PMID: 37422473 PMCID: PMC10329682 DOI: 10.1038/s41419-023-05938-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/30/2023] [Indexed: 07/10/2023]
Abstract
Lymphatic metastasis is the most common pattern of bladder cancer (BCa) metastasis and has an extremely poor prognosis. Emerging evidence shows that ubiquitination plays crucial roles in various processes of tumors, including tumorigenesis and progression. However, the molecular mechanisms underlying the roles of ubiquitination in the lymphatic metastasis of BCa are largely unknown. In the present study, through bioinformatics analysis and validation in tissue samples, we found that the ubiquitin-conjugating E2 enzyme UBE2S was positively correlated with the lymphatic metastasis status, high tumor stage, histological grade, and poor prognosis of BCa patients. Functional assays showed that UBE2S promoted BCa cell migration and invasion in vitro, as well as lymphatic metastasis in vivo. Mechanistically, UBE2S interacted with tripartite motif containing 21 (TRIM21) and jointly induced the ubiquitination of lipoma preferred partner (LPP) via K11-linked polyubiquitination but not K48- or K63-linked polyubiquitination. Moreover, LPP silencing rescued the anti-metastatic phenotypes and inhibited the epithelial-mesenchymal transition of BCa cells after UBE2S knockdown. Finally, targeting UBE2S with cephalomannine distinctly inhibited the progression of BCa in cell lines and human BCa-derived organoids in vitro, as well as in a lymphatic metastasis model in vivo, without significant toxicity. In conclusion, our study reveals that UBE2S, by interacting with TRIM21, degrades LPP through K11-linked ubiquitination to promote the lymphatic metastasis of BCa, suggesting that UBE2S represents a potent and promising therapeutic target for metastatic BCa.
Collapse
Affiliation(s)
- Kanghua Xiao
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, PR China
| | - Shengmeng Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, PR China
| | - Junlin Lu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, PR China
| | - Ting Zhou
- Biobank of Sun Yat-sen University Cancer Center, Guangzhou, 510120, Guangdong, PR China
| | - Xuwei Hong
- Department of Urology, Shantou Central Hospital, Shantou, 515031, PR China
| | - Siting Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, PR China
| | - Guangyao Liu
- School of Medicine, South China University of Technology, Guangzhou, 510120, Guangdong, PR China
| | - Hong Li
- BioMed Laboratory, Guangzhou Jingke Biotech Group, Guangzhou, 510120, Guangdong, PR China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, PR China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, PR China.
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, 510120, Guangdong, PR China.
| | - Xu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, PR China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, PR China.
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, 510120, Guangdong, PR China.
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, PR China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, PR China.
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, 510120, Guangdong, PR China.
| |
Collapse
|