1
|
Zhao Z, Schieber MH. Progressively shifting patterns of co-modulation among premotor cortex neurons carry dynamically similar signals during action execution and observation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.11.06.565833. [PMID: 37986800 PMCID: PMC10659317 DOI: 10.1101/2023.11.06.565833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Many neurons in the premotor cortex show firing rate modulation whether the subject performs an action or observes another individual performing a similar action. Although such "mirror neurons" have been thought to have highly congruent discharge during execution and observation, many if not most actually show non-congruent activity. Studies of neuronal populations active during both execution and observation have shown that the most prevalent patterns of co-modulation-captured as neural trajectories-pass through subspaces which are shared in part, but in part are visited exclusively during either execution or observation. These studies focused on reaching movements for which low-dimensional neural trajectories exhibit comparatively simple dynamical motifs. But the neural dynamics of hand movements are more complex. We developed a novel approach to examine prevalent patterns of co-modulation during execution and observation of a task that involved reaching, grasping, and manipulation. Rather than following neural trajectories in subspaces that contain their entire time course, we identified time series of instantaneous subspaces, calculated principal angles among them, sampled trajectory segments at the times of selected behavioral events, and projected those segments into the time series of instantaneous subspaces. We found that instantaneous neural subspaces most often remained distinct during execution versus observation. Nevertheless, latent dynamics during execution and observation could be partially aligned with canonical correlation, indicating some similarity of the relationships among neural representations of different movements relative to one another during execution and observation. We also found that during action execution, mirror neurons showed consistent patterns of co-modulation both within and between sessions, but other non-mirror neurons that were modulated only during action execution and not during observation showed considerable variability of co-modulation.
Collapse
Affiliation(s)
- Zhonghao Zhao
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627
| | - Marc H. Schieber
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627
- Department of Neurology, University of Rochester, Rochester, NY, 14642
- Department of Neuroscience, University of Rochester, Rochester, NY 14642
| |
Collapse
|
2
|
Ninomiya T, Isoda M. Dynamic spatial representation of self and others' actions in the macaque frontal cortex. Proc Natl Acad Sci U S A 2024; 121:e2403445121. [PMID: 39047041 PMCID: PMC11295024 DOI: 10.1073/pnas.2403445121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Modulation of neuronal firing rates by the spatial locations of physical objects is a widespread phenomenon in the brain. However, little is known about how neuronal responses to the actions of biological entities are spatially tuned and whether such spatially tuned responses are affected by social contexts. These issues are of key importance for understanding the neural basis of embodied social cognition, such as imitation and perspective-taking. Here, we show that spatial representation of actions can be dynamically changed depending on others' social relevance and agents of action. Monkeys performed a turn-taking choice task with a real monkey partner sitting face-to-face or a filmed partner in prerecorded videos. Three rectangular buttons (left, center, and right) were positioned in front of the subject and partner as their choice targets. We recorded from single neurons in two frontal nodes in the social brain, the ventral premotor cortex (PMv) and the medial prefrontal cortex (MPFC). When the partner was filmed rather than real, spatial preference for partner-actions was markedly diminished in MPFC, but not PMv, neurons. This social context-dependent modulation in the MPFC was also evident for self-actions. Strikingly, a subset of neurons in both areas switched their spatial preference between self-actions and partner-actions in a diametrically opposite manner. This observation suggests that these cortical areas are associated with coordinate transformation in ways consistent with an actor-centered perspective-taking coding scheme. The PMv may subserve such functions in context-independent manners, whereas the MPFC may do so primarily in social contexts.
Collapse
Affiliation(s)
- Taihei Ninomiya
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi444-8585, Japan
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies, Hayama, Kanagawa240-0193, Japan
| | - Masaki Isoda
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi444-8585, Japan
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies, Hayama, Kanagawa240-0193, Japan
| |
Collapse
|
3
|
Chiappini E, Turrini S, Zanon M, Marangon M, Borgomaneri S, Avenanti A. Driving Hebbian plasticity over ventral premotor-motor projections transiently enhances motor resonance. Brain Stimul 2024; 17:211-220. [PMID: 38387557 DOI: 10.1016/j.brs.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/23/2023] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Making sense of others' actions relies on the activation of an action observation network (AON), which maps visual information about observed actions onto the observer's motor system. This motor resonance process manifests in the primary motor cortex (M1) as increased corticospinal excitability finely tuned to the muscles engaged in the observed action. Motor resonance in M1 is facilitated by projections from higher-order AON regions. However, whether manipulating the strength of AON-to-M1 connectivity affects motor resonance remains unclear. METHODS We used transcranial magnetic stimulation (TMS) in 48 healthy humans. Cortico-cortical paired associative stimulation (ccPAS) was administered over M1 and the ventral premotor cortex (PMv), a key AON node, to induce spike-timing-dependent plasticity (STDP) in the pathway connecting them. Single-pulse TMS assessed motor resonance during action observation. RESULTS Before ccPAS, action observation increased corticospinal excitability in the muscles corresponding to the observed movements, reflecting motor resonance in M1. Notably, ccPAS aimed at strengthening projections from PMv to M1 (PMv→M1) induced short-term enhancement of motor resonance. The enhancement specifically occurred with the ccPAS configuration consistent with forward PMv→M1 projections and dissipated 20 min post-stimulation; ccPAS administered in the reverse order (M1→PMv) and sham stimulation did not affect motor resonance. CONCLUSIONS These findings provide the first evidence that inducing STDP to strengthen PMv input to M1 neurons causally enhances muscle-specific motor resonance in M1. Our study sheds light on the plastic mechanisms that shape AON functionality and demonstrates that exogenous manipulation of AON connectivity can influence basic mirror mechanisms that underlie social perception.
Collapse
Affiliation(s)
- Emilio Chiappini
- Department of Clinical and Health Psychology, University of Vienna, 1010, Vienna, Austria; Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors (IfADo), 44139, Dortmund, Germany.
| | - Sonia Turrini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, United States
| | - Marco Zanon
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Neuroscience Area, International School for Advanced Studies (SISSA), 34136, Trieste, Italy
| | - Mattia Marangon
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Dipartimento di Neuroscienze, Biomedicina e Scienze del Movimento, Sezione di Fisiologia e Psicologia, Università di Verona, 37124, Verona, Italy
| | - Sara Borgomaneri
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy
| | - Alessio Avenanti
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Centro de Investigación en Neuropsicología y Neurociencias Cognitivas (CINPSI Neurocog), Universidad Católica Del Maule, 346000, Talca, Chile.
| |
Collapse
|