1
|
Kaushik P, Herrmann JM, Hansen KG. MitoStores: stress-induced aggregation of mitochondrial proteins. Biol Chem 2025:hsz-2024-0148. [PMID: 39828945 DOI: 10.1515/hsz-2024-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Most mitochondrial proteins are synthesized in the cytosol and post-translationally imported into mitochondria. If the rate of protein synthesis exceeds the capacity of the mitochondrial import machinery, precursor proteins can transiently accumulate in the cytosol. The cytosolic accumulation of mitochondrial precursors jeopardizes cellular protein homeostasis (proteostasis) and can be the cause of diseases. In order to prevent these toxic effects, most non-imported precursors are rapidly degraded by the ubiquitin-proteasome system. However, cells employ a second layer of defense which is the facilitated sequestration of mitochondrial precursor proteins in transient protein aggregates. The formation of such structures is triggered by nucleation factors such as small heat shock proteins. Disaggregases and chaperones can liberate precursors from cytosolic aggregates to pass them on to the mitochondrial import machinery or, under persistent stress conditions, to the proteasome for degradation. Owing to their role as transient buffering systems, these aggregates were referred to as MitoStores. This review articles provides a general overview about the MitoStore concept and the early stages in mitochondrial protein biogenesis in yeast and, in cases where aspects differ, in mammalian cells.
Collapse
Affiliation(s)
- Pragya Kaushik
- Cell Biology, 26562 RPTU University of Kaiserslautern , Erwin-Schrödinger-Strasse 13, D-67663 Kaiserslautern, Germany
| | - Johannes M Herrmann
- Cell Biology, 26562 RPTU University of Kaiserslautern , Erwin-Schrödinger-Strasse 13, D-67663 Kaiserslautern, Germany
| | - Katja G Hansen
- Cell Biology, 26562 RPTU University of Kaiserslautern , Erwin-Schrödinger-Strasse 13, D-67663 Kaiserslautern, Germany
| |
Collapse
|
2
|
Latorre-Muro P, Vitale T, Ravichandran M, Zhang K, Palozzi JM, Bennett CF, Lamas-Paz A, Sohn JH, Jackson TD, Jedrychowski M, Gygi SP, Kajimura S, Schmoker A, Jeon H, Eck MJ, Puigserver P. Chaperone-mediated insertion of mitochondrial import receptor TOM70 protects against diet-induced obesity. Nat Cell Biol 2025; 27:130-140. [PMID: 39753947 DOI: 10.1038/s41556-024-01555-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/04/2024] [Indexed: 01/18/2025]
Abstract
Outer mitochondrial membrane (OMM) proteins communicate with the cytosol and other organelles, including the endoplasmic reticulum. This communication is important in thermogenic adipocytes to increase the energy expenditure that controls body temperature and weight. However, the regulatory mechanisms of OMM protein insertion are poorly understood. Here the stress-induced cytosolic chaperone PPID (peptidyl-prolyl isomerase D/cyclophilin 40/Cyp40) drives OMM insertion of the mitochondrial import receptor TOM70 that regulates body temperature and weight in obese mice, and respiratory/thermogenic function in brown adipocytes. PPID PPIase activity and C-terminal tetratricopeptide repeats, which show specificity towards TOM70 core and C-tail domains, facilitate OMM insertion. Our results provide an unprecedented role for endoplasmic-reticulum-stress-activated chaperones in controlling energy metabolism through a selective OMM protein insertion mechanism with implications in adaptation to cold temperatures and high-calorie diets.
Collapse
Affiliation(s)
- Pedro Latorre-Muro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Tevis Vitale
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Katherine Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jonathan M Palozzi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Christopher F Bennett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Arantza Lamas-Paz
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jee Hyung Sohn
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Thomas D Jackson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Anna Schmoker
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hyesung Jeon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Michael J Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Kizmaz B, Nutz A, Egeler A, Herrmann JM. Protein insertion into the inner membrane of mitochondria: routes and mechanisms. FEBS Open Bio 2024; 14:1627-1639. [PMID: 38664330 PMCID: PMC11452304 DOI: 10.1002/2211-5463.13806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 10/06/2024] Open
Abstract
The inner membrane of mitochondria contains hundreds of different integral membrane proteins. These proteins transport molecules into and out of the matrix, they carry out multifold catalytic reactions and they promote the biogenesis or degradation of mitochondrial constituents. Most inner membrane proteins are encoded by nuclear genes and synthesized in the cytosol from where they are imported into mitochondria by translocases in the outer and inner membrane. Three different import routes direct proteins into the inner membrane and allow them to acquire their appropriate membrane topology. First, mitochondrial import intermediates can be arrested at the level of the TIM23 inner membrane translocase by a stop-transfer sequence to reach the inner membrane by lateral insertion. Second, proteins can be fully translocated through the TIM23 complex into the matrix from where they insert into the inner membrane in an export-like reaction. Carriers and other polytopic membrane proteins embark on a third insertion pathway: these hydrophobic proteins employ the specialized TIM22 translocase to insert from the intermembrane space (IMS) into the inner membrane. This review article describes these three targeting routes and provides an overview of the machinery that promotes the topogenesis of mitochondrial inner membrane proteins.
Collapse
Affiliation(s)
- Büsra Kizmaz
- Cell BiologyUniversity of Kaiserslautern, RPTUGermany
| | - Annika Nutz
- Cell BiologyUniversity of Kaiserslautern, RPTUGermany
| | - Annika Egeler
- Cell BiologyUniversity of Kaiserslautern, RPTUGermany
| | | |
Collapse
|
4
|
Steymans I, Becker T. Monitoring α-helical membrane protein insertion into the outer mitochondrial membrane of yeast cells. Methods Enzymol 2024; 707:39-62. [PMID: 39488383 DOI: 10.1016/bs.mie.2024.07.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Mitochondria are surrounded by two membranes, the outer and inner membrane. The outer membrane contains a few dozen integral membrane proteins that mediate transport, fusion and fission processes, form contact sites and are involved in signaling pathways. There are two different types of outer membrane proteins. A few proteins are membrane-integrated by a transmembrane β-barrel, while other proteins are embedded by single or multiple α-helical membrane segments. All outer membrane proteins are produced on cytosolic ribosomes, but their import mechanisms differ. The translocase of the outer mitochondrial membrane (TOM complex) and the sorting and assembly machinery (SAM complex) import β-barrel proteins. Different import pathways have been reported for proteins with α-helical membrane anchors. The mitochondrial import (MIM) complex is the major insertase for this type of proteins. The in vitro import of radiolabeled precursor proteins into isolated mitochondria is a versatile technique to study protein import into the outer mitochondrial membrane. The import of these proteins does not involve proteolytic processing and is not dependent on the membrane potential. Therefore, the import assay has to be combined with blue native electrophoresis, carbonate extraction or protease accessibility assays to determine the import efficiency. These techniques allow to define import steps, assembly intermediates and study membrane integration. The in vitro import assay has been a central tool to uncover specific import routes and mechanisms.
Collapse
Affiliation(s)
- Isabelle Steymans
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Thomas Becker
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany.
| |
Collapse
|
5
|
Drwesh L. In vitro translation in yeast extract to study interactions with cytosolic chaperones. Methods Enzymol 2024; 706:313-344. [PMID: 39455222 DOI: 10.1016/bs.mie.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Saccharomyces cerevisiae, a well-established model organism, serves as a valuable tool for unraveling various eukaryotic cellular processes. Its utility extends to studying protein folding and interactions with chaperones, as it demonstrates a capability to produce and process proteins in a manner closely resembling that of higher eukaryotes. To gain insights into the events taking place following protein synthesis in the cytosol, an in vitro translation system is essential-one that mirrors in vivo processes yet allows for easy manipulation. To address this need, multiple protocols for preparation of cell-free translation lysates from S. cerevisiae have been documented. This chapter introduces an optimized and modified in vitro pull-down approach following protein translation in yeast cell-free extract. The advantages of this system in investigating the interactions of newly synthesized mitochondrial proteins with cytosolic chaperones are described. This procedure exploits the dual advantages of yeast cell-free lysates, serving as both a protein synthesis tool, and a reservoir for cytosolic factors and chaperones. In summary, the depicted approach provides a versatile platform that deepens our understanding of the early cytosolic events in the biogenesis of nascent proteins before reaching their ultimate organelle.
Collapse
Affiliation(s)
- Layla Drwesh
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany; Hertie Institute for Clinical Brain Research, Tuebingen, Germany.
| |
Collapse
|
6
|
Jung F, Rödl S, Herrmann JM, Mühlhaus T. Analysis and prediction of internal mitochondrial targeting signals. Methods Enzymol 2024; 706:263-283. [PMID: 39455219 DOI: 10.1016/bs.mie.2024.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Mitochondria consist of several hundreds of proteins, the vast majority of which are synthesized in the cytosol as precursor proteins from where they are targeted to and imported into mitochondria. The transport of proteins into mitochondria relies on specific targeting information encoded within the protein sequence, known as mitochondrial targeting sequences (MTSs). These N-terminal extensions are usually between 8 and 80 residues long and form amphipathic helices with one hydrophobic and one positively charged surface. Receptors on the mitochondrial surface recognize the MTSs and direct precursors through protein-conducting channels in the outer and inner membrane to the mitochondrial matrix, where presequences are often removed by proteases. In addition to these MTSs, many mitochondrial proteins contain internal matrix targeting sequences (iMTSs) which share the same structural features with MTSs. These iMTSs are neither necessary nor sufficient for mitochondrial targeting, however, they help to increase the import-competence of precursor proteins as they bind to the TOM receptors and presumably facilitate the unfolding of precursors on the mitochondrial surface. Prediction algorithms allow the identification of iMTSs in protein sequences. In this chapter, we present iMLP, an agnostic algorithm for the prediction of iMTS propensity profiles. This iMTS prediction tool is provided via an iMLP webservice at http://iMLP.bio.uni-kl.de and is also available as a BioFSharp application that can be executed locally. We describe and explain the usage of this prediction algorithm and how to interpret the results of this valuable tool.
Collapse
Affiliation(s)
- Felix Jung
- Computational Systems Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Saskia Rödl
- Cell Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Johannes M Herrmann
- Cell Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern, Germany.
| |
Collapse
|
7
|
den Brave F, Schulte U, Fakler B, Pfanner N, Becker T. Mitochondrial complexome and import network. Trends Cell Biol 2024; 34:578-594. [PMID: 37914576 DOI: 10.1016/j.tcb.2023.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023]
Abstract
Mitochondria perform crucial functions in cellular metabolism, protein and lipid biogenesis, quality control, and signaling. The systematic analysis of protein complexes and interaction networks provided exciting insights into the structural and functional organization of mitochondria. Most mitochondrial proteins do not act as independent units, but are interconnected by stable or dynamic protein-protein interactions. Protein translocases are responsible for importing precursor proteins into mitochondria and form central elements of several protein interaction networks. These networks include molecular chaperones and quality control factors, metabolite channels and respiratory chain complexes, and membrane and organellar contact sites. Protein translocases link the distinct networks into an overarching network, the mitochondrial import network (MitimNet), to coordinate biogenesis, membrane organization and function of mitochondria.
Collapse
Affiliation(s)
- Fabian den Brave
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, 53115 Bonn, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Nikolaus Pfanner
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
8
|
Koch C, Lenhard S, Räschle M, Prescianotto-Baschong C, Spang A, Herrmann JM. The ER-SURF pathway uses ER-mitochondria contact sites for protein targeting to mitochondria. EMBO Rep 2024; 25:2071-2096. [PMID: 38565738 PMCID: PMC11014988 DOI: 10.1038/s44319-024-00113-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Most mitochondrial proteins are synthesized on cytosolic ribosomes and imported into mitochondria in a post-translational reaction. Mitochondrial precursor proteins which use the ER-SURF pathway employ the surface of the endoplasmic reticulum (ER) as an important sorting platform. How they reach the mitochondrial import machinery from the ER is not known. Here we show that mitochondrial contact sites play a crucial role in the ER-to-mitochondria transfer of precursor proteins. The ER mitochondria encounter structure (ERMES) and Tom70, together with Djp1 and Lam6, are part of two parallel and partially redundant ER-to-mitochondria delivery routes. When ER-to-mitochondria transfer is prevented by loss of these two contact sites, many precursors of mitochondrial inner membrane proteins are left stranded on the ER membrane, resulting in mitochondrial dysfunction. Our observations support an active role of the ER in mitochondrial protein biogenesis.
Collapse
Affiliation(s)
- Christian Koch
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Svenja Lenhard
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Markus Räschle
- Molecular Genetics, University of Kaiserslautern, Kaiserslautern, Germany
| | | | - Anne Spang
- Biozentrum, University of Basel, 4056, Basel, Switzerland
| | | |
Collapse
|
9
|
Muthukumar G, Stevens TA, Inglis AJ, Esantsi TK, Saunders RA, Schulte F, Voorhees RM, Guna A, Weissman JS. Triaging of α-helical proteins to the mitochondrial outer membrane by distinct chaperone machinery based on substrate topology. Mol Cell 2024; 84:1101-1119.e9. [PMID: 38428433 DOI: 10.1016/j.molcel.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/08/2023] [Accepted: 01/31/2024] [Indexed: 03/03/2024]
Abstract
Mitochondrial outer membrane ⍺-helical proteins play critical roles in mitochondrial-cytoplasmic communication, but the rules governing the targeting and insertion of these biophysically diverse proteins remain unknown. Here, we first defined the complement of required mammalian biogenesis machinery through genome-wide CRISPRi screens using topologically distinct membrane proteins. Systematic analysis of nine identified factors across 21 diverse ⍺-helical substrates reveals that these components are organized into distinct targeting pathways that act on substrates based on their topology. NAC is required for the efficient targeting of polytopic proteins, whereas signal-anchored proteins require TTC1, a cytosolic chaperone that physically engages substrates. Biochemical and mutational studies reveal that TTC1 employs a conserved TPR domain and a hydrophobic groove in its C-terminal domain to support substrate solubilization and insertion into mitochondria. Thus, the targeting of diverse mitochondrial membrane proteins is achieved through topological triaging in the cytosol using principles with similarities to ER membrane protein biogenesis systems.
Collapse
Affiliation(s)
- Gayathri Muthukumar
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Taylor A Stevens
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Alison J Inglis
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Theodore K Esantsi
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Reuben A Saunders
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Fabian Schulte
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Rebecca M Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Alina Guna
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA.
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
10
|
Marszalek J, De Los Rios P, Cyr D, Mayer MP, Adupa V, Andréasson C, Blatch GL, Braun JEA, Brodsky JL, Bukau B, Chapple JP, Conz C, Dementin S, Genevaux P, Genest O, Goloubinoff P, Gestwicki J, Hammond CM, Hines JK, Ishikawa K, Joachimiak LA, Kirstein J, Liberek K, Mokranjac D, Nillegoda N, Ramos CHI, Rebeaud M, Ron D, Rospert S, Sahi C, Shalgi R, Tomiczek B, Ushioda R, Ustyantseva E, Ye Y, Zylicz M, Kampinga HH. J-domain proteins: From molecular mechanisms to diseases. Cell Stress Chaperones 2024; 29:21-33. [PMID: 38320449 PMCID: PMC10939069 DOI: 10.1016/j.cstres.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 02/08/2024] Open
Abstract
J-domain proteins (JDPs) are the largest family of chaperones in most organisms, but much of how they function within the network of other chaperones and protein quality control machineries is still an enigma. Here, we report on the latest findings related to JDP functions presented at a dedicated JDP workshop in Gdansk, Poland. The report does not include all (details) of what was shared and discussed at the meeting, because some of these original data have not yet been accepted for publication elsewhere or represented still preliminary observations at the time.
Collapse
Affiliation(s)
- Jaroslaw Marszalek
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, Gdansk 80-307, Poland
| | - Paolo De Los Rios
- Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne - EPFL, Lausanne CH 1015, Switzerland; Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne - EPFL, Lausanne CH 1015, Switzerland
| | - Douglas Cyr
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
| | - Vasista Adupa
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm S-10691, Sweden
| | - Gregory L Blatch
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates; The Vice Chancellery, The University of Notre Dame Australia, Fremantle, Western Australia, Australia; Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Janice E A Braun
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
| | - J Paul Chapple
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Charlotte Conz
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sébastien Dementin
- Aix Marseille Univ, CNRS, BIP UMR 7281, IMM, 31 Chemin Joseph Aiguier, Marseille 13402, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Olivier Genest
- Aix Marseille Univ, CNRS, BIP UMR 7281, IMM, 31 Chemin Joseph Aiguier, Marseille 13402, France
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, Lausanne University, Lausanne 1015, Switzerland
| | - Jason Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA 94308, USA
| | - Colin M Hammond
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Molecular & Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Justin K Hines
- Department of Chemistry, Lafayette College, Easton, PA, USA
| | - Koji Ishikawa
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
| | - Lukasz A Joachimiak
- Center for Alzheimer's and Neurodegenerative Diseases, UT Southwestern Medical Center, Dallas, TX, USA; Peter O'Donnell Jr Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Janine Kirstein
- Leibniz Institute on Aging - Fritz Lipmann Institute and Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena, Jena 07745, Germany
| | - Krzysztof Liberek
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, Gdansk 80-307, Poland
| | - Dejana Mokranjac
- LMU Munich, Biocenter-Cell Biology, Großhadernerstr. 2, Planegg-Martinsried 82152, Germany
| | - Nadinath Nillegoda
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia; Centre for Dementia and Brain Repair at the Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Carlos H I Ramos
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Mathieu Rebeaud
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne - EPFL, Lausanne CH 1015, Switzerland
| | - David Ron
- University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Sabine Rospert
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Chandan Sahi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal, Madhya Pradesh, India; IISER Bhopal, Room Number 117, AB3, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| | - Reut Shalgi
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Bartlomiej Tomiczek
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, Gdansk 80-307, Poland
| | - Ryo Ushioda
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Elizaveta Ustyantseva
- Department of Biomedical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Yihong Ye
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maciej Zylicz
- Foundation for Polish Science, Warsaw 02-611, Poland
| | - Harm H Kampinga
- Department of Biomedical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
11
|
Ronayne CT, Latorre-Muro P. Navigating the landscape of mitochondrial-ER communication in health and disease. Front Mol Biosci 2024; 11:1356500. [PMID: 38323074 PMCID: PMC10844478 DOI: 10.3389/fmolb.2024.1356500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 02/08/2024] Open
Abstract
Intracellular organelle communication enables the maintenance of tissue homeostasis and health through synchronized adaptive processes triggered by environmental cues. Mitochondrial-Endoplasmic Reticulum (ER) communication sustains cellular fitness by adjusting protein synthesis and degradation, and metabolite and protein trafficking through organelle membranes. Mitochondrial-ER communication is bidirectional and requires that the ER-components of the Integrated Stress Response signal to mitochondria upon activation and, likewise, mitochondria signal to the ER under conditions of metabolite and protein overload to maintain proper functionality and ensure cellular survival. Declines in the mitochondrial-ER communication occur upon ageing and correlate with the onset of a myriad of heterogeneous age-related diseases such as obesity, type 2 diabetes, cancer, or neurodegenerative pathologies. Thus, the exploration of the molecular mechanisms of mitochondrial-ER signaling and regulation will provide insights into the most fundamental cellular adaptive processes with important therapeutical opportunities. In this review, we will discuss the pathways and mechanisms of mitochondrial-ER communication at the mitochondrial-ER interface and their implications in health and disease.
Collapse
Affiliation(s)
- Conor T. Ronayne
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| | - Pedro Latorre-Muro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
12
|
Cho H, Liu Y, Chung S, Chandrasekar S, Weiss S, Shan SO. Dynamic stability of Sgt2 enables selective and privileged client handover in a chaperone triad. Nat Commun 2024; 15:134. [PMID: 38167697 PMCID: PMC10761869 DOI: 10.1038/s41467-023-44260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Membrane protein biogenesis poses acute challenges to protein homeostasis, and how they are selectively escorted to the target membrane is not well understood. Here we address this question in the guided-entry-of-tail-anchored protein (GET) pathway, in which tail-anchored membrane proteins (TAs) are relayed through an Hsp70-Sgt2-Get3 chaperone triad for targeting to the endoplasmic reticulum. We show that the Hsp70 ATPase cycle and TA substrate drive dimeric Sgt2 from a wide-open conformation to a closed state, in which TAs are protected by both substrate binding domains of Sgt2. Get3 is privileged to receive TA from closed Sgt2, whereas off-pathway chaperones remove TAs from open Sgt2. Sgt2 closing is less favorable with suboptimal GET substrates, which are rejected during or after the Hsp70-to-Sgt2 handover. Our results demonstrate how fine-tuned conformational dynamics in Sgt2 enable hydrophobic TAs to be effectively funneled onto their dedicated targeting factor while also providing a mechanism for substrate selection.
Collapse
Affiliation(s)
- Hyunju Cho
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Center for Biomolecular and Cellular Structure, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Yumeng Liu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Biochemistry and Molecular Biotechnology Department, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - SangYoon Chung
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Sowmya Chandrasekar
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
13
|
Muthukumar G, Stevens TA, Inglis AJ, Esantsi TK, Saunders RA, Schulte F, Voorhees RM, Guna A, Weissman JS. Triaging of α-helical proteins to the mitochondrial outer membrane by distinct chaperone machinery based on substrate topology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553624. [PMID: 37645817 PMCID: PMC10462106 DOI: 10.1101/2023.08.16.553624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Mitochondrial outer membrane α-helical proteins play critical roles in mitochondrial-cytoplasmic communication, but the rules governing the targeting and insertion of these biophysically diverse substrates remain unknown. Here, we first defined the complement of required mammalian biogenesis machinery through genome-wide CRISPRi screens using topologically distinct membrane proteins. Systematic analysis of nine identified factors across 21 diverse α-helical substrates reveals that these components are organized into distinct targeting pathways which act on substrates based on their topology. NAC is required for efficient targeting of polytopic proteins whereas signal-anchored proteins require TTC1, a novel cytosolic chaperone which physically engages substrates. Biochemical and mutational studies reveal that TTC1 employs a conserved TPR domain and a hydrophobic groove in its C-terminal domain to support substrate solubilization and insertion into mitochondria. Thus, targeting of diverse mitochondrial membrane proteins is achieved through topological triaging in the cytosol using principles with similarities to ER membrane protein biogenesis systems.
Collapse
Affiliation(s)
- Gayathri Muthukumar
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Taylor A. Stevens
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Alison J. Inglis
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Theodore K. Esantsi
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Reuben A. Saunders
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Fabian Schulte
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Rebecca M. Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Alina Guna
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Jonathan S. Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute Technology, Cambridge 02142, MA
| |
Collapse
|
14
|
Busch JD, Fielden LF, Pfanner N, Wiedemann N. Mitochondrial protein transport: Versatility of translocases and mechanisms. Mol Cell 2023; 83:890-910. [PMID: 36931257 DOI: 10.1016/j.molcel.2023.02.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/17/2023]
Abstract
Biogenesis of mitochondria requires the import of approximately 1,000 different precursor proteins into and across the mitochondrial membranes. Mitochondria exhibit a wide variety of mechanisms and machineries for the translocation and sorting of precursor proteins. Five major import pathways that transport proteins to their functional intramitochondrial destination have been elucidated; these pathways range from the classical amino-terminal presequence-directed pathway to pathways using internal or even carboxy-terminal targeting signals in the precursors. Recent studies have provided important insights into the structural organization of membrane-embedded preprotein translocases of mitochondria. A comparison of the different translocases reveals the existence of at least three fundamentally different mechanisms: two-pore-translocase, β-barrel switching, and transport cavities open to the lipid bilayer. In addition, translocases are physically engaged in dynamic interactions with respiratory chain complexes, metabolite transporters, quality control factors, and machineries controlling membrane morphology. Thus, mitochondrial preprotein translocases are integrated into multi-functional networks of mitochondrial and cellular machineries.
Collapse
Affiliation(s)
- Jakob D Busch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Laura F Fielden
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
15
|
Shan SO. Role of Hsp70 in Post-Translational Protein Targeting: Tail-Anchored Membrane Proteins and Beyond. Int J Mol Sci 2023; 24:1170. [PMID: 36674686 PMCID: PMC9866221 DOI: 10.3390/ijms24021170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The Hsp70 family of molecular chaperones acts as a central 'hub' in the cell that interacts with numerous newly synthesized proteins to assist in their biogenesis. Apart from its central and well-established role in facilitating protein folding, Hsp70s also act as key decision points in the cellular chaperone network that direct client proteins to distinct biogenesis and quality control pathways. In this paper, we review accumulating data that illustrate a new branch in the Hsp70 network: the post-translational targeting of nascent membrane and organellar proteins to diverse cellular organelles. Work in multiple pathways suggests that Hsp70, via its ability to interact with components of protein targeting and translocation machineries, can initiate elaborate substrate relays in a sophisticated cascade of chaperones, cochaperones, and receptor proteins, and thus provide a mechanism to safeguard and deliver nascent membrane proteins to the correct cellular membrane. We discuss the mechanistic principles gleaned from better-studied Hsp70-dependent targeting pathways and outline the observations and outstanding questions in less well-studied systems.
Collapse
Affiliation(s)
- Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|