1
|
Xu ZQ, Jergic S, Lo ATY, Pradhan AC, Brown SHJ, Bouwer JC, Ghodke H, Lewis PJ, Tolun G, Oakley AJ, Dixon NE. Structural characterisation of the complete cycle of sliding clamp loading in Escherichia coli. Nat Commun 2024; 15:8372. [PMID: 39333521 PMCID: PMC11436948 DOI: 10.1038/s41467-024-52623-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
Ring-shaped DNA sliding clamps are essential for DNA replication and genome maintenance. Clamps need to be opened and chaperoned onto DNA by clamp loader complexes (CLCs). Detailed understanding of the mechanisms by which CLCs open and place clamps around DNA remains incomplete. Here, we present a series of six structures of the Escherichia coli CLC bound to an open or closed clamp prior to and after binding to a primer-template DNA, representing the most significant intermediates in the clamp loading process. We show that the ATP-bound CLC first binds to a clamp, then constricts to hold onto it. The CLC then expands to open the clamp with a gap large enough for double-stranded DNA to enter. Upon binding to DNA, the CLC constricts slightly, allowing clamp closing around DNA. These structures provide critical high-resolution snapshots of clamp loading by the E. coli CLC, revealing how the molecular machine works.
Collapse
Affiliation(s)
- Zhi-Qiang Xu
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.
| | - Slobodan Jergic
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Allen T Y Lo
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Alok C Pradhan
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
- ARC Industrial Transformation Training Centre for Cryo-Electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, Australia
| | - Simon H J Brown
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
- ARC Industrial Transformation Training Centre for Cryo-Electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, Australia
| | - James C Bouwer
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
- ARC Industrial Transformation Training Centre for Cryo-Electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, Australia
| | - Harshad Ghodke
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Peter J Lewis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
- Hunter Biological Solutions, Hamilton, Australia
| | - Gökhan Tolun
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
- ARC Industrial Transformation Training Centre for Cryo-Electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, Australia
| | - Aaron J Oakley
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Nicholas E Dixon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.
- ARC Industrial Transformation Training Centre for Cryo-Electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, Australia.
| |
Collapse
|
2
|
Yuan Z, Georgescu R, Yao NY, Yurieva O, O’Donnell ME, Li H. Mechanism of PCNA loading by Ctf18-RFC for leading-strand DNA synthesis. Science 2024; 385:eadk5901. [PMID: 39088616 PMCID: PMC11349045 DOI: 10.1126/science.adk5901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/10/2024] [Accepted: 05/31/2024] [Indexed: 08/03/2024]
Abstract
The proliferating cell nuclear antigen (PCNA) clamp encircles DNA to hold DNA polymerases (Pols) to DNA for processivity. The Ctf18-RFC PCNA loader, a replication factor C (RFC) variant, is specific to the leading-strand Pol (Polε). We reveal here the underlying mechanism of Ctf18-RFC specificity to Polε using cryo-electron microscopy and biochemical studies. We found that both Ctf18-RFC and Polε contain specific structural features that direct PCNA loading onto DNA. Unlike other clamp loaders, Ctf18-RFC has a disordered ATPase associated with a diverse cellular activities (AAA+) motor that requires Polε to bind and stabilize it for efficient PCNA loading. In addition, Ctf18-RFC can pry prebound Polε off of DNA, then load PCNA onto DNA and transfer the PCNA-DNA back to Polε. These elements in both Ctf18-RFC and Polε provide specificity in loading PCNA onto DNA for Polε.
Collapse
Affiliation(s)
- Zuanning Yuan
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Roxana Georgescu
- DNA Replication Laboratory, The Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, New York, New York, USA
| | - Nina Y. Yao
- DNA Replication Laboratory, The Rockefeller University, New York, New York, USA
| | - Olga Yurieva
- DNA Replication Laboratory, The Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, New York, New York, USA
| | - Michael E. O’Donnell
- DNA Replication Laboratory, The Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, New York, New York, USA
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| |
Collapse
|
3
|
Alcón P, Kaczmarczyk AP, Ray KK, Liolios T, Guilbaud G, Sijacki T, Shen Y, McLaughlin SH, Sale JE, Knipscheer P, Rueda DS, Passmore LA. FANCD2-FANCI surveys DNA and recognizes double- to single-stranded junctions. Nature 2024; 632:1165-1173. [PMID: 39085614 PMCID: PMC11358013 DOI: 10.1038/s41586-024-07770-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
DNA crosslinks block DNA replication and are repaired by the Fanconi anaemia pathway. The FANCD2-FANCI (D2-I) protein complex is central to this process as it initiates repair by coordinating DNA incisions around the lesion1. However, D2-I is also known to have a more general role in DNA repair and in protecting stalled replication forks from unscheduled degradation2-4. At present, it is unclear how DNA crosslinks are recognized and how D2-I functions in replication fork protection. Here, using single-molecule imaging, we show that D2-I is a sliding clamp that binds to and diffuses on double-stranded DNA. Notably, sliding D2-I stalls on encountering single-stranded-double-stranded (ss-ds) DNA junctions, structures that are generated when replication forks stall at DNA lesions5. Using cryogenic electron microscopy, we determined structures of D2-I on DNA that show that stalled D2-I makes specific interactions with the ss-dsDNA junction that are distinct from those made by sliding D2-I. Thus, D2-I surveys dsDNA and, when it reaches an ssDNA gap, it specifically clamps onto ss-dsDNA junctions. Because ss-dsDNA junctions are found at stalled replication forks, D2-I can identify sites of DNA damage. Therefore, our data provide a unified molecular mechanism that reconciles the roles of D2-I in the recognition and protection of stalled replication forks in several DNA repair pathways.
Collapse
Affiliation(s)
- Pablo Alcón
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Artur P Kaczmarczyk
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, London, UK
| | - Korak Kumar Ray
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, London, UK
| | - Themistoklis Liolios
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Yichao Shen
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - David S Rueda
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK.
- MRC Laboratory of Medical Sciences, London, UK.
| | | |
Collapse
|
4
|
Shukla S, Gupta K, Singh K, Mishra A, Kumar A. An Updated Canvas of the RFC1-mediated CANVAS (Cerebellar Ataxia, Neuropathy and Vestibular Areflexia Syndrome). Mol Neurobiol 2024:10.1007/s12035-024-04307-0. [PMID: 38898197 DOI: 10.1007/s12035-024-04307-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Proliferation of specific nucleotide sequences within the coding and non-coding regions of numerous genes has been implicated in approximately 40 neurodegenerative disorders. Cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS), a neurodegenerative disorder, is distinguished by a pathological triad of sensory neuropathy, bilateral vestibular areflexia and cerebellar impairments. It manifests in adults gradually and is autosomal recessive and multi-system ataxia. Predominantly, CANVAS is associated with biallelic AAGGG repeat expansions in intron 2 of the RFC1 gene. Although various motifs have been identified, only a subset induces pathological consequences, by forming stable secondary structures that disrupt gene functions both in vitro and in vivo. The pathogenesis of CANVAS remains a subject of intensive research, yet its precise mechanisms remain elusive. Herein, we aim to comprehensively review the epidemiology, clinical ramifications, molecular mechanisms, genetics, and potential therapeutics in light of the current findings, extending an overview of the most significant research on CANVAS.
Collapse
Affiliation(s)
- Sakshi Shukla
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Kanav Gupta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Krishna Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, Rajasthan, 342037, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, India.
| |
Collapse
|
5
|
Wang F, He Q, Yao NY, O'Donnell ME, Li H. The human ATAD5 has evolved unique structural elements to function exclusively as a PCNA unloader. Nat Struct Mol Biol 2024:10.1038/s41594-024-01332-4. [PMID: 38871854 DOI: 10.1038/s41594-024-01332-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/13/2024] [Indexed: 06/15/2024]
Abstract
Humans have three different proliferating cell nuclear antigen (PCNA) clamp-loading complexes: RFC and CTF18-RFC load PCNA onto DNA, but ATAD5-RFC can only unload PCNA from DNA. The underlying structural basis of ATAD5-RFC unloading is unknown. We show here that ATAD5 has two unique locking loops that appear to tie the complex into a rigid structure, and together with a domain that plugs the DNA-binding chamber, prevent conformation changes required for DNA binding, likely explaining why ATAD5-RFC is exclusively a PCNA unloader. These features are conserved in the yeast PCNA unloader Elg1-RFC. We observe intermediates in which PCNA bound to ATAD5-RFC exists as a closed planar ring, a cracked spiral or a gapped spiral. Surprisingly, ATAD5-RFC can open a PCNA gap between PCNA protomers 2 and 3, different from the PCNA protomers 1 and 3 gap observed in all previously characterized clamp loaders.
Collapse
Affiliation(s)
- Feng Wang
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Qing He
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Nina Y Yao
- DNA Replication Laboratory and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Michael E O'Donnell
- DNA Replication Laboratory and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
6
|
Kang S, Yoo J, Myung K. PCNA cycling dynamics during DNA replication and repair in mammals. Trends Genet 2024; 40:526-539. [PMID: 38485608 DOI: 10.1016/j.tig.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 06/06/2024]
Abstract
Proliferating cell nuclear antigen (PCNA) is a eukaryotic replicative DNA clamp. Furthermore, DNA-loaded PCNA functions as a molecular hub during DNA replication and repair. PCNA forms a closed homotrimeric ring that encircles the DNA, and association and dissociation of PCNA from DNA are mediated by clamp-loader complexes. PCNA must be actively released from DNA after completion of its function. If it is not released, abnormal accumulation of PCNA on chromatin will interfere with DNA metabolism. ATAD5 containing replication factor C-like complex (RLC) is a PCNA-unloading clamp-loader complex. ATAD5 deficiency causes various DNA replication and repair problems, leading to genome instability. Here, we review recent progress regarding the understanding of the action mechanisms of PCNA unloading complex in DNA replication/repair pathways.
Collapse
Affiliation(s)
- Sukhyun Kang
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Juyeong Yoo
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea; Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
7
|
Weyh M, Jokisch ML, Nguyen TA, Fottner M, Lang K. Deciphering functional roles of protein succinylation and glutarylation using genetic code expansion. Nat Chem 2024; 16:913-921. [PMID: 38531969 PMCID: PMC11164685 DOI: 10.1038/s41557-024-01500-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/01/2024] [Indexed: 03/28/2024]
Abstract
Post-translational modifications (PTMs) dynamically regulate cellular processes. Lysine undergoes a range of acylations, including malonylation, succinylation (SucK) and glutarylation (GluK). These PTMs increase the size of the lysine side chain and reverse its charge from +1 to -1 under physiological conditions, probably impacting protein structure and function. To understand the functional roles of these PTMs, homogeneously modified proteins are required for biochemical studies. While the site-specific encoding of PTMs and their mimics via genetic code expansion has facilitated the characterization of the functional roles of many PTMs, negatively charged lysine acylations have defied this approach. Here we describe site-specific incorporation of SucK and GluK into proteins via temporarily masking their negative charge through thioester derivatives. We prepare succinylated and glutarylated bacterial and mammalian target proteins, including non-refoldable multidomain proteins. This allows us to study how succinylation and glutarylation impact enzymatic activity of metabolic enzymes and regulate protein-DNA and protein-protein interactions in biological processes from replication to ubiquitin signalling.
Collapse
Affiliation(s)
- Maria Weyh
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Marie-Lena Jokisch
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Tuan-Anh Nguyen
- Department of Chemistry, Laboratory for Synthetic Biochemistry, Technical University of Munich Institute for Advanced Study, Garching, Germany
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | - Maximilian Fottner
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| | - Kathrin Lang
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
- Department of Chemistry, Laboratory for Synthetic Biochemistry, Technical University of Munich Institute for Advanced Study, Garching, Germany.
| |
Collapse
|
8
|
He Q, Wang F, O’Donnell ME, Li H. Cryo-EM reveals a nearly complete PCNA loading process and unique features of the human alternative clamp loader CTF18-RFC. Proc Natl Acad Sci U S A 2024; 121:e2319727121. [PMID: 38669181 PMCID: PMC11067034 DOI: 10.1073/pnas.2319727121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/15/2024] [Indexed: 04/28/2024] Open
Abstract
The DNA sliding clamp PCNA is a multipurpose platform for DNA polymerases and many other proteins involved in DNA metabolism. The topologically closed PCNA ring needs to be cracked open and loaded onto DNA by a clamp loader, e.g., the well-studied pentameric ATPase complex RFC (RFC1-5). The CTF18-RFC complex is an alternative clamp loader found recently to bind the leading strand DNA polymerase ε and load PCNA onto leading strand DNA, but its structure and the loading mechanism have been unknown. By cryo-EM analysis of in vitro assembled human CTF18-RFC-DNA-PCNA complex, we have captured seven loading intermediates, revealing a detailed PCNA loading mechanism onto a 3'-ss/dsDNA junction by CTF18-RFC. Interestingly, the alternative loader has evolved a highly mobile CTF18 AAA+ module likely to lower the loading activity, perhaps to avoid competition with the RFC and to limit its role to leading strand clamp loading. To compensate for the lost stability due to the mobile AAA+ module, CTF18 has evolved a unique β-hairpin motif that reaches across RFC2 to interact with RFC5, thereby stabilizing the pentameric complex. Further, we found that CTF18 also contains a separation pin to locally melt DNA from the 3'-end of the primer; this ensures its ability to load PCNA to any 3'-ss/dsDNA junction, facilitated by the binding energy of the E-plug to the major groove. Our study reveals unique structural features of the human CTF18-RFC and contributes to a broader understanding of PCNA loading by the alternative clamp loaders.
Collapse
Affiliation(s)
- Qing He
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI49503
| | - Feng Wang
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI49503
| | - Michael E. O’Donnell
- DNA Replication Laboratory, The Rockefeller University, New York, NY10065
- HHMI, The Rockefeller University, New York, NY10065
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI49503
| |
Collapse
|
9
|
Landeck JT, Pajak J, Norman EK, Sedivy EL, Kelch BA. Differences between bacteria and eukaryotes in clamp loader mechanism, a conserved process underlying DNA replication. J Biol Chem 2024; 300:107166. [PMID: 38490435 PMCID: PMC11044049 DOI: 10.1016/j.jbc.2024.107166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/17/2024] Open
Abstract
Clamp loaders are pentameric ATPases that place circular sliding clamps onto DNA, where they function in DNA replication and genome integrity. The central activity of a clamp loader is the opening of the ring-shaped sliding clamp and the subsequent binding to primer-template (p/t)-junctions. The general architecture of clamp loaders is conserved across all life, suggesting that their mechanism is retained. Recent structural studies of the eukaryotic clamp loader replication factor C (RFC) revealed that it functions using a crab-claw mechanism, where clamp opening is coupled to a massive conformational change in the loader. Here we investigate the clamp loading mechanism of the Escherichia coli clamp loader at high resolution using cryo-electron microscopy. We find that the E. coli clamp loader opens the clamp using a crab-claw motion at a single pivot point, whereas the eukaryotic RFC loader uses motions distributed across the complex. Furthermore, we find clamp opening occurs in multiple steps, starting with a partly open state with a spiral conformation, and proceeding to a wide open clamp in a surprising planar geometry. Finally, our structures in the presence of p/t-junctions illustrate how the clamp closes around p/t-junctions and how the clamp loader initiates release from the loaded clamp. Our results reveal mechanistic distinctions in a macromolecular machine that is conserved across all domains of life.
Collapse
Affiliation(s)
- Jacob T Landeck
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Joshua Pajak
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Emily K Norman
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Emma L Sedivy
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Brian A Kelch
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA.
| |
Collapse
|
10
|
Zheng F, Yao NY, Georgescu RE, Li H, O’Donnell ME. Structure of the PCNA unloader Elg1-RFC. SCIENCE ADVANCES 2024; 10:eadl1739. [PMID: 38427736 PMCID: PMC10906927 DOI: 10.1126/sciadv.adl1739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/26/2024] [Indexed: 03/03/2024]
Abstract
During DNA replication, the proliferating cell nuclear antigen (PCNA) clamps are loaded onto primed sites for each Okazaki fragment synthesis by the AAA+ heteropentamer replication factor C (RFC). PCNA encircling duplex DNA is quite stable and is removed from DNA by the dedicated clamp unloader Elg1-RFC. Here, we show the cryo-EM structure of Elg1-RFC in various states with PCNA. The structures reveal essential features of Elg1-RFC that explain how it is dedicated to PCNA unloading. Specifically, Elg1 contains two external loops that block opening of the Elg1-RFC complex for DNA binding, and an "Elg1 plug" domain that fills the central DNA binding chamber, thereby reinforcing the exclusive PCNA unloading activity of Elg1-RFC. Elg1-RFC was capable of unloading PCNA using non-hydrolyzable AMP-PNP. Both RFC and Elg1-RFC could remove PCNA from covalently closed circular DNA, indicating that PCNA unloading occurs by a mechanism that is distinct from PCNA loading. Implications for the PCNA unloading mechanism are discussed.
Collapse
Affiliation(s)
- Fengwei Zheng
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Nina Y. Yao
- DNA Replication Laboratory and Howard Hughes Medical Institute, The Rockefeller University, NY, New York, USA
| | - Roxana E. Georgescu
- DNA Replication Laboratory and Howard Hughes Medical Institute, The Rockefeller University, NY, New York, USA
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Michael E. O’Donnell
- DNA Replication Laboratory and Howard Hughes Medical Institute, The Rockefeller University, NY, New York, USA
| |
Collapse
|
11
|
He Z, Sun C, Ma Y, Chen X, Wang Y, Chen K, Xie F, Zhang Y, Yuan Y, Liu C. Rejuvenating Aged Bone Repair through Multihierarchy Reactive Oxygen Species-Regulated Hydrogel. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306552. [PMID: 37848015 DOI: 10.1002/adma.202306552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/05/2023] [Indexed: 10/19/2023]
Abstract
Aging exacerbates the dysfunction of tissue regeneration at multiple levels and gradually diminishes individual's capacity to withstand stress, damage, and disease. The excessive accumulation of reactive oxygen species (ROS) is considered a hallmark feature of senescent stem cells, which causes oxidative stress, deteriorates the host microenvironment, and eventually becomes a critical obstacle for aged bone defect repair. Till now, the strategies cannot synchronously and thoroughly regulate intracellular and extracellular ROS in senescent cells. Herein, a multihierarchy ROS scavenging system for aged bone regeneration is developed by fabricating an injectable PEGylated poly(glycerol sebacate) (PEGS-NH2 )/poly(γ-glutamic acid) (γ-PGA) hydrogel containing rapamycin-loaded poly(diselenide-carbonate) nanomicelles (PSeR). This PSeR hydrogel exhibits highly sensitive ROS responsiveness to the local aged microenvironment and dynamically releases drug-loaded nanomicelles to scavenge the intracellular ROS accumulated in senescent bone mesenchymal stem cells. The PSeR hydrogel effectively tunes the antioxidant function and delays senescence of bone mesenchymal stem cells by safeguarding DNA replication in an oxidative environment, thereby promoting the self-renewal ability and enhancing the osteogenic capacity for aged bone repair in vitro and in vivo. Thus, this multihierarchy ROS-regulated hydrogel provides a new strategy for treating degenerative diseases.
Collapse
Affiliation(s)
- Zirui He
- Basic Science Center Project of National Natural Science Foundation of China, Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Chuanhao Sun
- Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yifan Ma
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Xi Chen
- Basic Science Center Project of National Natural Science Foundation of China, Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ying Wang
- Basic Science Center Project of National Natural Science Foundation of China, Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Kai Chen
- Basic Science Center Project of National Natural Science Foundation of China, Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Fangru Xie
- Basic Science Center Project of National Natural Science Foundation of China, Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yan Zhang
- Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yuan Yuan
- Basic Science Center Project of National Natural Science Foundation of China, Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Changsheng Liu
- Basic Science Center Project of National Natural Science Foundation of China, Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
12
|
Kawasoe Y, Shimokawa S, Gillespie PJ, Blow JJ, Tsurimoto T, Takahashi TS. The Atad5 RFC-like complex is the major unloader of proliferating cell nuclear antigen in Xenopus egg extracts. J Biol Chem 2024; 300:105588. [PMID: 38141767 PMCID: PMC10827553 DOI: 10.1016/j.jbc.2023.105588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is a homo-trimeric clamp complex that serves as the molecular hub for various DNA transactions, including DNA synthesis and post-replicative mismatch repair. Its timely loading and unloading are critical for genome stability. PCNA loading is catalyzed by Replication factor C (RFC) and the Ctf18 RFC-like complex (Ctf18-RLC), and its unloading is catalyzed by Atad5/Elg1-RLC. However, RFC, Ctf18-RLC, and even some subcomplexes of their shared subunits are capable of unloading PCNA in vitro, leaving an ambiguity in the division of labor in eukaryotic clamp dynamics. By using a system that specifically detects PCNA unloading, we show here that Atad5-RLC, which accounts for only approximately 3% of RFC/RLCs, nevertheless provides the major PCNA unloading activity in Xenopus egg extracts. RFC and Ctf18-RLC each account for approximately 40% of RFC/RLCs, while immunodepletion of neither Rfc1 nor Ctf18 detectably affects the rate of PCNA unloading in our system. PCNA unloading is dependent on the ATP-binding motif of Atad5, independent of nicks on DNA and chromatin assembly, and inhibited effectively by PCNA-interacting peptides. These results support a model in which Atad5-RLC preferentially unloads DNA-bound PCNA molecules that are free from their interactors.
Collapse
Affiliation(s)
| | - Sakiko Shimokawa
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Peter J Gillespie
- Division of Molecular, Cell & Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - J Julian Blow
- Division of Molecular, Cell & Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | | | | |
Collapse
|
13
|
Landeck JT, Pajak J, Norman EK, Sedivy EL, Kelch BA. Differences in clamp loader mechanism between bacteria and eukaryotes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569468. [PMID: 38076975 PMCID: PMC10705477 DOI: 10.1101/2023.11.30.569468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Clamp loaders are pentameric ATPases that place circular sliding clamps onto DNA, where they function in DNA replication and genome integrity. The central activity of a clamp loader is the opening of the ring-shaped sliding clamp, and the subsequent binding to primer-template (p/t)-junctions. The general architecture of clamp loaders is conserved across all life, suggesting that their mechanism is retained. Recent structural studies of the eukaryotic clamp loader Replication Factor C (RFC) revealed that it functions using a crab-claw mechanism, where clamp opening is coupled to a massive conformational change in the loader. Here we investigate the clamp loading mechanism of the E. coli clamp loader at high resolution using cryo-electron microscopy (cryo-EM). We find that the E. coli clamp loader opens the clamp using a crab-claw motion at a single pivot point, whereas the eukaryotic RFC loader uses motions distributed across the complex. Furthermore, we find clamp opening occurs in multiple steps, starting with a partly open state with a spiral conformation, and proceeding to a wide open clamp in a surprising planar geometry. Finally, our structures in the presence of p/t-junctions illustrate how clamp closes around p/t-junctions and how the clamp loader initiates release from the loaded clamp. Our results reveal mechanistic distinctions in a macromolecular machine that is conserved across all domains of life.
Collapse
Affiliation(s)
- Jacob T. Landeck
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester MA
| | - Joshua Pajak
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester MA
| | - Emily K. Norman
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester MA
| | - Emma L. Sedivy
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester MA
| | - Brian A. Kelch
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester MA
| |
Collapse
|
14
|
Bocanegra R, Ortíz-Rodríguez M, Zumeta L, Plaza-G A I, Faro E, Ibarra B. DNA replication machineries: Structural insights from crystallography and electron microscopy. Enzymes 2023; 54:249-271. [PMID: 37945174 DOI: 10.1016/bs.enz.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Since the discovery of DNA as the genetic material, scientists have been investigating how the information contained in this biological polymer is transmitted from generation to generation. X-ray crystallography, and more recently, cryo-electron microscopy techniques have been instrumental in providing essential information about the structure, functions and interactions of the DNA and the protein machinery (replisome) responsible for its replication. In this chapter, we highlight several works that describe the structure and structure-function relationships of the core components of the prokaryotic and eukaryotic replisomes. We also discuss the most recent studies on the structural organization of full replisomes.
Collapse
Affiliation(s)
| | | | - Lyra Zumeta
- IMDEA Nanociencia, Campus Cantoblanco, Madrid, Spain
| | | | - Elías Faro
- IMDEA Nanociencia, Campus Cantoblanco, Madrid, Spain
| | - Borja Ibarra
- IMDEA Nanociencia, Campus Cantoblanco, Madrid, Spain.
| |
Collapse
|
15
|
Zheng F, Georgescu RE, Yao NY, O'Donnell ME, Li H. Structures of 9-1-1 DNA checkpoint clamp loading at gaps from start to finish and ramification on biology. Cell Rep 2023; 42:112694. [PMID: 37392384 PMCID: PMC10529453 DOI: 10.1016/j.celrep.2023.112694] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/01/2023] [Accepted: 06/09/2023] [Indexed: 07/03/2023] Open
Abstract
Rad24-RFC (replication factor C) loads the 9-1-1 checkpoint clamp onto the recessed 5' ends by binding a 5' DNA at an external surface site and threading the 3' single-stranded DNA (ssDNA) into 9-1-1. We find here that Rad24-RFC loads 9-1-1 onto DNA gaps in preference to a recessed 5' end, thus presumably leaving 9-1-1 on duplex 3' ss/double-stranded DNA (dsDNA) after Rad24-RFC ejects from DNA. We captured five Rad24-RFC-9-1-1 loading intermediates using a 10-nt gap DNA. We also determined the structure of Rad24-RFC-9-1-1 using a 5-nt gap DNA. The structures reveal that Rad24-RFC is unable to melt DNA ends and that a Rad24 loop limits the dsDNA length in the chamber. These observations explain Rad24-RFC's preference for a preexisting gap of over 5-nt ssDNA and suggest a direct role of the 9-1-1 in gap repair with various TLS (trans-lesion synthesis) polymerases in addition to signaling the ATR kinase.
Collapse
Affiliation(s)
- Fengwei Zheng
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Roxana E Georgescu
- DNA Replication Laboratory, The Rockefeller University, New York, NY, USA
| | - Nina Y Yao
- DNA Replication Laboratory, The Rockefeller University, New York, NY, USA
| | - Michael E O'Donnell
- DNA Replication Laboratory, The Rockefeller University, New York, NY, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
16
|
Wu J, Zheng H, Gong P. Crystal structure of African swine fever virus pE301R reveals a ring-shaped trimeric DNA sliding clamp. J Biol Chem 2023:104872. [PMID: 37257822 PMCID: PMC10320598 DOI: 10.1016/j.jbc.2023.104872] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 05/11/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023] Open
Abstract
African swine fever virus (ASFV) is an important animal pathogen that is causing a current ASF pandemic and affecting pork industry globally. ASFV encodes at least 150 proteins, and the functions of many of them remain to be clarified. The ASFV protein E301R (pE301R) was predicted to be a DNA sliding clamp protein homolog working as a DNA replication processivity factor. However, structural evidence was lacking to support the existence of a ring-shaped sliding clamp in large eukaryotic DNA viruses. Here we have solved a high-resolution crystal structure of pE301R and identified a canonical ring-shaped clamp comprising a pE301R trimer. Interestingly, this complete-toroidal structure is different from those of the monomeric clamp protein homolog, herpes simplex virus UL42, and the C-shaped dimeric human cytomegalovirus UL44, but highly homologous to that of the eukaryotic clamp homolog proliferating cell nuclear antigen. Moreover, pE301R has a unique N-terminal extension (NE) that is important in maintaining the trimeric form of the protein in solution, while specific features in length and surface electrostatic potential of its inter-domain connector (IDC) implies specificity in interactions with binding partners such as the viral DNA polymerase. Thus, our data pave the way for further dissection of the processivity clamp protein structural and functional diversity and ASFV DNA replication mechanisms.
Collapse
Affiliation(s)
- Jiqin Wu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.262 Jin Long Street, Wuhan, Hubei, 430207, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China
| | - Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.262 Jin Long Street, Wuhan, Hubei, 430207, China; Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, 300350, China; Hubei Jiangxia Laboratory, Wuhan, Hubei 430207, China.
| |
Collapse
|
17
|
Zheng F, Georgescu RE, Yao NY, O’Donnell ME, Li H. Structures of 9-1-1 DNA checkpoint clamp loading at gaps from start to finish and ramification to biology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539266. [PMID: 37205533 PMCID: PMC10187155 DOI: 10.1101/2023.05.03.539266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Recent structural studies show the Rad24-RFC loads the 9-1-1 checkpoint clamp onto a recessed 5' end by binding the 5' DNA on Rad24 at an external surface site and threading the 3' ssDNA into the well-established internal chamber and into 9-1-1. We find here that Rad24-RFC loads 9-1-1 onto DNA gaps in preference to a recessed 5' DNA end, thus presumably leaving 9-1-1 on a 3' ss/ds DNA after Rad24-RFC ejects from the 5' gap end and may explain reports of 9-1-1 directly functioning in DNA repair with various TLS polymerases, in addition to signaling the ATR kinase. To gain a deeper understanding of 9-1-1 loading at gaps we report high-resolution structures of Rad24-RFC during loading of 9-1-1 onto 10-nt and 5-nt gapped DNAs. At a 10-nt gap we captured five Rad24-RFC-9-1-1 loading intermediates in which the 9-1-1 DNA entry gate varies from fully open to fully closed around DNA using ATPγS, supporting the emerging view that ATP hydrolysis is not needed for clamp opening/closing, but instead for dissociation of the loader from the clamp encircling DNA. The structure of Rad24-RFC-9-1-1 at a 5-nt gap shows a 180° axially rotated 3'-dsDNA which orients the template strand to bridge the 3'- and 5'- junctions with a minimum 5-nt ssDNA. The structures reveal a unique loop on Rad24 that limits the length of dsDNA in the inner chamber, and inability to melt DNA ends unlike RFC, thereby explaining Rad24-RFC's preference for a preexisting ssDNA gap and suggesting a direct role in gap repair in addition to its checkpoint role.
Collapse
Affiliation(s)
- Fengwei Zheng
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Roxana E. Georgescu
- DNA Replication Laboratory, The Rockefeller University, New York, New York, USA
| | - Nina Y. Yao
- DNA Replication Laboratory, The Rockefeller University, New York, New York, USA
| | - Michael E. O’Donnell
- DNA Replication Laboratory, The Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| |
Collapse
|
18
|
Kim S, Kim Y, Kim Y, Yoon S, Lee KY, Lee Y, Kang S, Myung K, Oh CK. PCNA Ser46-Leu47 residues are crucial in preserving genomic integrity. PLoS One 2023; 18:e0285337. [PMID: 37205694 DOI: 10.1371/journal.pone.0285337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/19/2023] [Indexed: 05/21/2023] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is a maestro of DNA replication. PCNA forms a homotrimer and interacts with various proteins, such as DNA polymerases, DNA ligase I (LIG1), and flap endonuclease 1 (FEN1) for faithful DNA replication. Here, we identify the crucial role of Ser46-Leu47 residues of PCNA in maintaining genomic integrity using in vitro, and cell-based assays and structural prediction. The predicted PCNAΔSL47 structure shows the potential distortion of the central loop and reduced hydrophobicity. PCNAΔSL47 shows a defective interaction with PCNAWT leading to defects in homo-trimerization in vitro. PCNAΔSL47 is defective in the FEN1 and LIG1 interaction. PCNA ubiquitination and DNA-RNA hybrid processing are defective in PCNAΔSL47-expressing cells. Accordingly, PCNAΔSL47-expressing cells exhibit an increased number of single-stranded DNA gaps and higher levels of γH2AX, and sensitivity to DNA-damaging agents, highlighting the importance of PCNA Ser46-Leu47 residues in maintaining genomic integrity.
Collapse
Affiliation(s)
- Sangin Kim
- Institute for Basic Science, Center for Genomic Integrity, Ulsan, Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, College of Information-Bio Convergence Engineering, Ulsan, Korea
| | - Yeongjae Kim
- Institute for Basic Science, Center for Genomic Integrity, Ulsan, Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, College of Information-Bio Convergence Engineering, Ulsan, Korea
| | - Youyoung Kim
- Institute for Basic Science, Center for Genomic Integrity, Ulsan, Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, College of Information-Bio Convergence Engineering, Ulsan, Korea
| | - Suhyeon Yoon
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Integrated Data Sciences Section, Research Technologies Branch, Bethesda, MD, United States of America
| | - Kyoo-Young Lee
- Institute for Basic Science, Center for Genomic Integrity, Ulsan, Korea
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Gangwon-do, Korea
| | - Yoonsung Lee
- Clinical Research Institute, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Sukhyun Kang
- Institute for Basic Science, Center for Genomic Integrity, Ulsan, Korea
| | - Kyungjae Myung
- Institute for Basic Science, Center for Genomic Integrity, Ulsan, Korea
- Ulsan National Institute of Science and Technology, Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan, Korea
| | - Chang-Kyu Oh
- Department of Biochemistry, Pusan National University, School of Medicine, Yangsan, Korea
| |
Collapse
|
19
|
Li H, O'Donnell M, Kelch B. Unexpected new insights into DNA clamp loaders: Eukaryotic clamp loaders contain a second DNA site for recessed 5' ends that facilitates repair and signals DNA damage: Eukaryotic clamp loaders contain a second DNA site for recessed 5' ends that facilitates repair and signals DNA damage. Bioessays 2022; 44:e2200154. [PMID: 36116108 PMCID: PMC9927785 DOI: 10.1002/bies.202200154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 12/15/2022]
Abstract
Clamp loaders are pentameric AAA+ assemblies that use ATP to open and close circular DNA sliding clamps around DNA. Clamp loaders show homology in all organisms, from bacteria to human. The eukaryotic PCNA clamp is loaded onto 3' primed DNA by the replication factor C (RFC) hetero-pentameric clamp loader. Eukaryotes also have three alternative RFC-like clamp loaders (RLCs) in which the Rfc1 subunit is substituted by another protein. One of these is the yeast Rad24-RFC (Rad17-RFC in human) that loads a 9-1-1 heterotrimer clamp onto a recessed 5' end of DNA. Recent structural studies of Rad24-RFC have discovered an unexpected 5' DNA binding site on the outside of the clamp loader and reveal how a 5' end can be utilized for loading the 9-1-1 clamp onto DNA. In light of these results, new studies reveal that RFC also contains a 5' DNA binding site, which functions in gap repair. These studies also reveal many new features of clamp loaders. As reviewed herein, these recent studies together have transformed our view of the clamp loader mechanism.
Collapse
Affiliation(s)
- Huilin Li
- Department of Structural BiologyVan Andel InstituteGrand RapidsMichiganUSA
| | - Mike O'Donnell
- DNA Replication LaboratoryThe Rockefeller UniversityNew YorkNew YorkUSA,Howard Hughes Medical InstituteThe Rockefeller UniversityNew YorkNew YorkUSA
| | - Brian Kelch
- Department of Biochemistry and Molecular BiotechnologyUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| |
Collapse
|