1
|
Feng Y, Gao M, Xu X, Liu H, Lu K, Song Z, Yu J, Liu X, Han X, Li L, Qiu L, Qian Z, Zhou S, Zhang H, Wang X. Elevated serum magnesium levels prompt favourable outcomes in cancer patients treated with immune checkpoint blockers. Eur J Cancer 2024; 213:115069. [PMID: 39489925 DOI: 10.1016/j.ejca.2024.115069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Magnesium deficiency influences the activation and cytotoxicity of immune cells. Nevertheless, whether serum magnesium levels influence the clinical outcomes of immune checkpoint blockers (ICBs) treatment still remains ambiguous. There is an urgent need for clinical research to elucidate the relationship between serum magnesium levels and the outcomes of ICB therapy. Such insights could offer new perspectives on immunotherapy for cancer. METHODS A multi-center retrospective study involving in pan-cancer patients treated with ICBs at three large cancer centers from August 2012 to May 2023 was conducted. The primary objective was to assess the correlation between serum magnesium levels and therapeutic response in patients receiving ICBs, and further evaluate the associations between serum magnesium levels and progression-free survival (PFS) and overall survival (OS). RESULTS A total of 1441 patients treated with ICBs, including 1042 with lung cancer, 270 with esophageal cancer, and 129 with Hodgkin lymphoma, were enrolled in this study. We found that patients with elevated serum magnesium levels exhibited a favourable response to ICBs treatment. The optimal cut-off point for serum magnesium level (0.79 mmol/L) was applied for stratifying patients into distinct groups. In the three tumor cohorts, patients in high magnesium level group (Mg2+ ≥ 0.79 mmol/L) had longer PFS and OS than those in low magnesium level group (Mg2+ < 0.79 mmol/L). Univariate and multivariate analyses confirmed that the serum Mg2+ level serves as an independent prognostic factor for cancer patients receiving ICBs therapy. CONCLUSION Our multi-center study demonstrated that among patients receiving ICBs therapy, those with elevated serum magnesium levels exhibit significantly better clinical outcomes than those with low serum magnesium levels. Further prospective validation studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Yingfang Feng
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine / Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China
| | - Meng Gao
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine / Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China; The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010030, China
| | - Xiyue Xu
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine / Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Hengqi Liu
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine / Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China
| | - Ke Lu
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine / Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China; Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Zheng Song
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine / Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China
| | - Jingwei Yu
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine / Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China
| | - Xia Liu
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine / Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China
| | - Xue Han
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine / Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China
| | - Lanfang Li
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine / Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China
| | - Lihua Qiu
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine / Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China
| | - Zhengzi Qian
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine / Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China
| | - Shiyong Zhou
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine / Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China
| | - Huilai Zhang
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine / Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China.
| | - Xianhuo Wang
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine / Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China.
| |
Collapse
|
2
|
Fricke TC, Leffler A. TRPV2: a universal regulator in cellular physiology with a yet poorly defined thermosensitivity. J Physiol Sci 2024; 74:42. [PMID: 39285320 PMCID: PMC11403965 DOI: 10.1186/s12576-024-00936-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/31/2024] [Indexed: 09/22/2024]
Abstract
Transient receptor potential (TRP) ion channels serve as sensors for variations in ambient temperature, modulating both thermoregulation and temperature responsive cellular processes. Among these, the vanilloid TRP subfamily (TRPV) comprises six members and at least four of these members (TRPV1-TRPV4) have been associated with thermal sensation. TRPV2 has been described as a sensor for noxious heat, but subsequent studies have unveiled a more complex role for TRPV2 beyond temperature perception. This comprehensive review aims to elucidate the intricate thermosensitivity of TRPV2 by synthesizing current knowledge on its biophysical properties, expression pattern and known physiological functions associated with thermosensation.
Collapse
Affiliation(s)
- Tabea C Fricke
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Carl-Neuberg Strasse 1, 30625, Hannover, Germany
| | - Andreas Leffler
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Carl-Neuberg Strasse 1, 30625, Hannover, Germany.
| |
Collapse
|
3
|
Yang S, Du Y, Li Y, Tang Q, Zhang Y, Zhao X. Tyrosine phosphorylation and palmitoylation of TRPV2 ion channel tune microglial beta-amyloid peptide phagocytosis. J Neuroinflammation 2024; 21:218. [PMID: 39227967 PMCID: PMC11370263 DOI: 10.1186/s12974-024-03204-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024] Open
Abstract
Alzheimer's disease (AD) is the leading form of dementia, characterized by the accumulation and aggregation of amyloid in brain. Transient receptor potential vanilloid 2 (TRPV2) is an ion channel involved in diverse physiopathological processes, including microglial phagocytosis. Previous studies suggested that cannabidiol (CBD), an activator of TRPV2, improves microglial amyloid-β (Aβ) phagocytosis by TRPV2 modulation. However, the molecular mechanism of TRPV2 in microglial Aβ phagocytosis remains unknown. In this study, we aimed to investigate the involvement of TRPV2 channel in microglial Aβ phagocytosis and the underlying mechanisms. Utilizing human datasets, mouse primary neuron and microglia cultures, and AD model mice, to evaluate TRPV2 expression and microglial Aβ phagocytosis in both in vivo and in vitro. TRPV2 was expressed in cortex, hippocampus, and microglia.Cannabidiol (CBD) could activate and sensitize TRPV2 channel. Short-term CBD (1 week) injection intraperitoneally (i.p.) reduced the expression of neuroinflammation and microglial phagocytic receptors, but long-term CBD (3 week) administration (i.p.) induced neuroinflammation and suppressed the expression of microglial phagocytic receptors in APP/PS1 mice. Furthermore, the hyper-sensitivity of TRPV2 channel was mediated by tyrosine phosphorylation at the molecular sites Tyr(338), Tyr(466), and Tyr(520) by protein tyrosine kinase JAK1, and these sites mutation reduced the microglial Aβ phagocytosis partially dependence on its localization. While TRPV2 was palmitoylated at Cys 277 site and blocking TRPV2 palmitoylation improved microglial Aβ phagocytosis. Moreover, it was demonstrated that TRPV2 palmitoylation was dynamically regulated by ZDHHC21. Overall, our findings elucidated the intricate interplay between TRPV2 channel regulated by tyrosine phosphorylation/dephosphorylation and cysteine palmitoylation/depalmitoylation, which had divergent effects on microglial Aβ phagocytosis. These findings provide valuable insights into the underlying mechanisms linking microglial phagocytosis and TRPV2 sensitivity, and offer potential therapeutic strategies for managing AD.
Collapse
Affiliation(s)
- Shaobin Yang
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, 730070, China.
| | - Yaqin Du
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Yanhong Li
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Qi Tang
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Yimeng Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Xiaoqian Zhao
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, 730070, China
| |
Collapse
|
4
|
Haug FM, Pumroy RA, Sridhar A, Pantke S, Dimek F, Fricke TC, Hage A, Herzog C, Echtermeyer FG, de la Roche J, Koh A, Kotecha A, Howard RJ, Lindahl E, Moiseenkova-Bell V, Leffler A. Functional and structural insights into activation of TRPV2 by weak acids. EMBO J 2024; 43:2264-2290. [PMID: 38671253 PMCID: PMC11148119 DOI: 10.1038/s44318-024-00106-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Transient receptor potential (TRP) ion channels are involved in the surveillance or regulation of the acid-base balance. Here, we demonstrate that weak carbonic acids, including acetic acid, lactic acid, and CO2 activate and sensitize TRPV2 through a mechanism requiring permeation through the cell membrane. TRPV2 channels in cell-free inside-out patches maintain weak acid-sensitivity, but protons applied on either side of the membrane do not induce channel activation or sensitization. The involvement of proton modulation sites for weak acid-sensitivity was supported by the identification of titratable extracellular (Glu495, Glu561) and intracellular (His521) residues on a cryo-EM structure of rat TRPV2 (rTRPV2) treated with acetic acid. Molecular dynamics simulations as well as patch clamp experiments on mutant rTRPV2 constructs confirmed that these residues are critical for weak acid-sensitivity. We also demonstrate that the pore residue Glu609 dictates an inhibition of weak acid-induced currents by extracellular calcium. Finally, TRPV2-expression in HEK293 cells is associated with an increased weak acid-induced cytotoxicity. Together, our data provide new insights into weak acids as endogenous modulators of TRPV2.
Collapse
Affiliation(s)
- Ferdinand M Haug
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, 30625, Hannover, Germany
| | - Ruth A Pumroy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Akshay Sridhar
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Sebastian Pantke
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, 30625, Hannover, Germany
| | - Florian Dimek
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, 30625, Hannover, Germany
| | - Tabea C Fricke
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, 30625, Hannover, Germany
| | - Axel Hage
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, 30625, Hannover, Germany
| | - Christine Herzog
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, 30625, Hannover, Germany
| | - Frank G Echtermeyer
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, 30625, Hannover, Germany
| | - Jeanne de la Roche
- Institute for Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Adrian Koh
- Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Abhay Kotecha
- Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Rebecca J Howard
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Erik Lindahl
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Vera Moiseenkova-Bell
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| | - Andreas Leffler
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
5
|
Guo YY, Gao Y, Zhao YL, Xie C, Gan H, Cheng X, Yang LP, Hu J, Shu HB, Zhong B, Lin D, Yao J. Viral infection and spread are inhibited by the polyubiquitination and downregulation of TRPV2 channel by the interferon-stimulated gene TRIM21. Cell Rep 2024; 43:114095. [PMID: 38613787 DOI: 10.1016/j.celrep.2024.114095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/08/2024] [Accepted: 03/27/2024] [Indexed: 04/15/2024] Open
Abstract
Interferon (IFN) contributes to the host's antiviral response by inducing IFN-stimulated genes (ISGs). However, their functional targets and the mechanism of action remain elusive. Here, we report that one such ISG, TRIM21, interacts with and degrades the TRPV2 channel in myeloid cells, reducing its expression and providing host protection against viral infections. Moreover, viral infection upregulates TRIM21 in paracrine and autocrine manners, downregulating TRPV2 in neighboring cells to prevent viral spread to uninfected cells. Consistently, the Trim21-/- mice are more susceptible to HSV-1 and VSV infection than the Trim21+/+ littermates, in which viral susceptibility is rescued by inhibition or deletion of TRPV2. Mechanistically, TRIM21 catalyzes the K48-linked ubiquitination of TRPV2 at Lys295. TRPV2K295R is resistant to viral-infection-induced TRIM21-dependent ubiquitination and degradation, promoting viral infection more profoundly than wild-type TRPV2 when reconstituted into Lyz2-Cre;Trpv2fl/fl myeloid cells. These findings characterize targeting the TRIM21-TRPV2 axis as a conducive strategy to control viral spread to bystander cells.
Collapse
Affiliation(s)
- Yu-Yao Guo
- Cancer Center, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430072, Hubei, China; Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, Hubei, China
| | - Yue Gao
- Cancer Center, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430072, Hubei, China
| | - Yun-Lin Zhao
- Cancer Center, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430072, Hubei, China
| | - Chang Xie
- Cancer Center, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430072, Hubei, China
| | - Hu Gan
- Cancer Center, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430072, Hubei, China
| | - Xufeng Cheng
- Cancer Center, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430072, Hubei, China
| | - Li-Ping Yang
- Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, Hubei, China
| | - Junyan Hu
- Cancer Center, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430072, Hubei, China
| | - Hong-Bing Shu
- Cancer Center, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430072, Hubei, China; Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, Hubei, China
| | - Bo Zhong
- Cancer Center, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430072, Hubei, China; Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, Hubei, China; Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, Hubei, China.
| | - Dandan Lin
- Cancer Center, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430072, Hubei, China.
| | - Jing Yao
- Cancer Center, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430072, Hubei, China; Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, Hubei, China.
| |
Collapse
|
6
|
Niu L, Wang Q, Feng F, Yang W, Xie Z, Zheng G, Zhou W, Duan L, Du K, Li Y, Tian Y, Chen J, Xie Q, Fan A, Dan H, Liu J, Fan D, Hong L, Zhang J, Zheng J. Small extracellular vesicles-mediated cellular interactions between tumor cells and tumor-associated macrophages: Implication for immunotherapy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166917. [PMID: 37820821 DOI: 10.1016/j.bbadis.2023.166917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/14/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
The tumor microenvironment consists of cancer cells and various stromal cells, including macrophages, which exhibit diverse phenotypes with either pro-inflammatory (M1) or anti-inflammatory (M2) effects. The interaction between cancer cells and macrophages plays a crucial role in tumor progression. Small extracellular vesicles (sEVs), which facilitate intercellular communication, are known to play a vital role in this process. This review provides a comprehensive summary of how sEVs derived from cancer cells, containing miRNAs, lncRNAs, proteins, and lipids, can influence macrophage polarization. Additionally, we discuss the impact of macrophage-secreted sEVs on tumor malignant transformation, including effects on proliferation, metastasis, angiogenesis, chemoresistance, and immune escape. Furthermore, we address the therapeutic advancements and current challenges associated with macrophage-associated sEVs, along with potential solutions.
Collapse
Affiliation(s)
- Liaoran Niu
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qi Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Fan Feng
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wanli Yang
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhenyu Xie
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Gaozan Zheng
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wei Zhou
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lili Duan
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kunli Du
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yiding Li
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ye Tian
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Junfeng Chen
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qibin Xie
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Aqiang Fan
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hanjun Dan
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jinqiang Liu
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Liu Hong
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Jian Zhang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Jianyong Zheng
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; Department of Aviation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
7
|
Zou W, Zhang L, Hu Y, Gao Y, Zhang J, Zheng J. The role of TRPV ion channels in adipocyte differentiation: What is the evidence? Cell Biochem Funct 2024; 42:e3933. [PMID: 38269518 DOI: 10.1002/cbf.3933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/27/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024]
Abstract
Obesity is a complex disorder, and the incidence of obesity continues to rise at an alarming rate worldwide. In particular, the growing incidence of overweight and obesity in children is a major health concern. However, the underlying mechanisms of obesity remain unclear and the efficacy of several approaches for weight loss is limited. As an important calcium-permeable temperature-sensitive cation channel, transient receptor potential vanilloid (TRPV) ion channels directly participate in thermo-, mechano-, and chemosensory responses. Modulation of TRPV ion channel activity can alter the physiological function of the ion channel, leading to neurodegenerative diseases, chronic pain, cancer, and skin disorders. In recent years, increasing studies have demonstrated that TRPV ion channels are abundantly expressed in metabolic organs, including the liver, adipose tissue, skeletal muscle, pancreas, and central nervous system, which has been implicated in various metabolic diseases, including obesity and diabetes mellitus. In addition, as an important process for the pathophysiology of adipocyte metabolism, adipocyte differentiation plays a critical role in obesity. In this review, we focus on the role of TRPV ion channels in adipocyte differentiation to broaden the ideas for prevention and control strategies for obesity.
Collapse
Affiliation(s)
- Wenyu Zou
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Ling Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Yongyan Hu
- Laboratory Animal Facility, Peking University First Hospital, Beijing, China
| | - Ying Gao
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Jia Zheng
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| |
Collapse
|
8
|
Bai Y, Hao W, Zeng Z, Zhang T, Zhang W, Yang J, Wu F, Li X. Bell's palsy was associated with TRPV2 downregulation of Schwann cell by cold stress. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2023; 124:101533. [PMID: 37307913 DOI: 10.1016/j.jormas.2023.101533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
OBJECTIVE Epidemiological and clinical studies have shown that sharp changes in the ambient temperature are associated with the occurrence and development of Bell's palsy. However, the specific pathogenesis of peripheral facial paralysis remains nebulous. This study investigated the effect of cold stress on transient receptor potential cation channel subfamily V member 2 (TRPV2) secretion by Schwann cells and its role in Bell's palsy. MATERIALS AND METHODS Schwann cell morphology was observed using transmission electron microscopy (TEM). Cell proliferation, apoptosis and cell cycle were analysed using CCK8 and flow cytometry. ELISA, Reverse transcription-quantitative PCR, western blotting and immunocytochemical fluorescence staining were used to detect the effects of cold stress on TRPV2, neural cell adhesion molecule (NCAM) and nerve growth factor (NGF) expression in Schwann cells. RESULTS Cold stress resulted in a widening of the intercellular space, and the particles on the membrane showed different degrees of loss. Cold stress may cause Schwann cells to enter a cold dormant state. ELISA, RT-qPCR, western blotting and immunocytochemical fluorescences staining indicated that cold stress inhibited the expression of TRPV2, NCAM, and NGF. CONCLUSIONS Drastic temperature difference between cold and heat can downregulate TRPV2 and the secretome of Schwann cells. The imbalance of Schwann cell homeostasis under such stress may contribute to nerve signalling dysfunction leading to the development of facial paralysis.
Collapse
Affiliation(s)
- Yulan Bai
- Shanxi Medical University School and Hospital of Stomatology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi, 030001, China
| | - Weijiang Hao
- Shanxi Medical University School and Hospital of Stomatology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi, 030001, China
| | - Ziqi Zeng
- Shanxi Medical University School and Hospital of Stomatology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi, 030001, China
| | - Tiefeng Zhang
- Chengxi Branch of Hangzhou Stomatology Hospital, Hangzhou, 310000, China
| | | | - Jing Yang
- Institute for Oral Science, Matsumoto Dental University, Shiojiri 399-0781, Japan
| | - Feng Wu
- Shanxi Medical University School and Hospital of Stomatology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi, 030001, China
| | - Xianqi Li
- Shanxi Medical University School and Hospital of Stomatology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi, 030001, China; Institute for Oral Science, Matsumoto Dental University, Shiojiri 399-0781, Japan; Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri 399-0781, Japan.
| |
Collapse
|
9
|
Shen C, Fu C, Suo Y, Li K, Zhang Z, Yang S, Zhang Y, Lin Y, Li Z, Wu Z, Huang S, Chen H, Fan Z, Hu H. Pan-cancer analyses of clinical prognosis, immune infiltration, and immunotherapy efficacy for TRPV family using multi-omics data. Heliyon 2023; 9:e16897. [PMID: 37346342 PMCID: PMC10279839 DOI: 10.1016/j.heliyon.2023.e16897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023] Open
Abstract
Background Transient receptor potential cation channel subfamily V (TRPV) play an essential in cancer initiation, progression, and treatment. TRPV expression alteration are shown relate to multiple cancers prognosis and treatment of cancers but are less-studied in pan-cancer. In this study, we characterize the clinical prediction value of TRPV at pan-cancer level. Methods Several databases were used to examine the transcript expression difference in tumor vs. normal tissue, copy-number variant (CNV) and single nucleotide polymorphisms (SNP) mutation of each TRPV members in pan-cancer, including The Cancer Genome Atlas (TCGA) and cBioPortal. We performed K-M survival curve and univariate Cox regression analyses to identify survival and prognosis value of TRPV. CellMiner were selected to explore drug sensitivity. We also analyzed association between tumor mutation burden (TMB), microsatellite instability (MSI), tumor immune microenvironment and TRPV family genes expression. Moreover, we investigated the relationship between TRPVs expression and effectiveness of immunotherapy in multiple cohorts, including one melanoma (GSE78220), one renal cell carcinoma (GSE67501), and three bladder cancer cohorts (GSE111636, IMvigor210, GSE176307 and our own sequencing dataset (TRUCE-01)), and further analyzed the changes of TRPVs expression before and after treatment (tislelizumab combined with nab-paclitaxel) of bladder cancer. Next, we made a special effort to investigate and study biological functions of TRPV in bladder cancer using gene set enrichment analysis (GSEA), and conducted immune infiltration analysis with TRPVs family genes expression, copy number or somatic mutations of bladder cancer by TIMER 2.0. Finally, real-time PCR and protein expression validation of TRPVs within 10 paired cancer and para-carcinoma tissue samples, were also performed in bladder cancer. Results Only TRPV2 expression was lower in most cancer types among TRPV family genes. All TRPVs were correlated with survival changes. Amplification was the significant gene alternation in all TRPVs. Next, analysis between TRPVs and clinical traits showed that TRPVs were related to pathologic stage, TNM stage and first course treatment outcome. Moreover, TRPV expression was highly correlated with MSI and TMB. Immunotherapy is a research hotspot at present, our result showed the significant association between TRPVs expression and immune infiltration indicated that TRPV expression alternation could be used to guide prognosis. In addition, we also discovered that the expression level of TRPV1/2/3/4/6 was positively or negatively correlated with objective responses to anti-PD-1/PD-L1 across multiple immunotherapy cohort. Further analysis of drug sensitivity showed the value to treatment. Based on the above analysis, we next focused on TRPV family in bladder cancer. The result demonstrated TRPV also played an important role in bladder cancer. Finally, qPCR assay verified our analysis in bladder cancer. Conclusion Our study firstly revealed expression and genome alternation of TRPV in pan-cancer. TRPV could be used to predict prognosis or instructing treatment of human cancers, especially bladder cancer.
Collapse
Affiliation(s)
- Chong Shen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chong Fu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yong Suo
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Kai Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhe Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shaobo Yang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yu Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yuda Lin
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhi Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhouliang Wu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shiwang Huang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Houyuan Chen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhenqian Fan
- Department of Endocrinology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hailong Hu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|