1
|
Peña OA, Martin P. Cellular and molecular mechanisms of skin wound healing. Nat Rev Mol Cell Biol 2024; 25:599-616. [PMID: 38528155 DOI: 10.1038/s41580-024-00715-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/27/2024]
Abstract
Wound healing is a complex process that involves the coordinated actions of many different tissues and cell lineages. It requires tight orchestration of cell migration, proliferation, matrix deposition and remodelling, alongside inflammation and angiogenesis. Whereas small skin wounds heal in days, larger injuries resulting from trauma, acute illness or major surgery can take several weeks to heal, generally leaving behind a fibrotic scar that can impact tissue function. Development of therapeutics to prevent scarring and successfully repair chronic wounds requires a fuller knowledge of the cellular and molecular mechanisms driving wound healing. In this Review, we discuss the current understanding of the different phases of wound healing, from clot formation through re-epithelialization, angiogenesis and subsequent scar deposition. We highlight the contribution of different cell types to skin repair, with emphasis on how both innate and adaptive immune cells in the wound inflammatory response influence classically studied wound cell lineages, including keratinocytes, fibroblasts and endothelial cells, but also some of the less-studied cell lineages such as adipocytes, melanocytes and cutaneous nerves. Finally, we discuss newer approaches and research directions that have the potential to further our understanding of the mechanisms underpinning tissue repair.
Collapse
Affiliation(s)
- Oscar A Peña
- School of Biochemistry, University of Bristol, Bristol, UK.
| | - Paul Martin
- School of Biochemistry, University of Bristol, Bristol, UK.
| |
Collapse
|
2
|
Pasquin S. Highlight of 2023: Unconventional T cells: recent insights on development, trafficking and target cell recognition. Immunol Cell Biol 2024; 102:429-431. [PMID: 38690663 DOI: 10.1111/imcb.12767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
In this article for the Highlights of 2023 Series, we discuss recent research on unconventional T cells with a focus on gamma delta T cell development and cancer cell targeting, as well as the contributions of MAIT cells to wound repair.
Collapse
Affiliation(s)
- Sarah Pasquin
- Immunologie-oncologie, Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
3
|
Rhoiney ML, Alvizo CR, Jameson JM. Skin Homeostasis and Repair: A T Lymphocyte Perspective. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1266-1275. [PMID: 37844280 DOI: 10.4049/jimmunol.2300153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/22/2023] [Indexed: 10/18/2023]
Abstract
Chronic, nonhealing wounds remain a clinical challenge and a significant burden for the healthcare system. Skin-resident and infiltrating T cells that recognize pathogens, microbiota, or self-antigens participate in wound healing. A precise balance between proinflammatory T cells and regulatory T cells is required for the stages of wound repair to proceed efficiently. When diseases such as diabetes disrupt the skin microenvironment, T cell activation and function are altered, and wound repair is hindered. Recent studies have used cutting-edge technology to further define the cellular makeup of the skin prior to and during tissue repair. In this review, we discuss key advances that highlight mechanisms used by T cell subsets to populate the epidermis and dermis, maintain skin homeostasis, and regulate wound repair. Advances in our understanding of how skin cells communicate in the skin pave the way for therapeutics that modulate regulatory versus effector functions to improve nonhealing wound treatment.
Collapse
Affiliation(s)
- Mikaela L Rhoiney
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA
| | - Cristian R Alvizo
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA
| | - Julie M Jameson
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA
| |
Collapse
|
4
|
Li R, Rouse M, Pace BT, Grey SF, Mclaughlin K, Schobel SA, Simons MP. Host CD3 + T-cells can significantly modulate phage treatment effects on bacterial bioburden in mouse models. Front Microbiol 2023; 14:1240176. [PMID: 37766890 PMCID: PMC10520710 DOI: 10.3389/fmicb.2023.1240176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/03/2023] [Indexed: 09/29/2023] Open
Abstract
Wound healing is a complex system including such key players as host, microbe, and treatments. However, little is known about their dynamic interactions. Here we explored the interplay between: (1) bacterial bioburden and host immune responses, (2) bacterial bioburden and wound size, and (3) treatments and wound size, using murine models and various treatment modalities: Phosphate buffer saline (PBS or vehicle, negative control), doxycycline, and two doses of A. baumannii phage mixtures. We uncovered that the interplay between bacterial bioburden and host immune system may be bidirectional, and that there is an interaction between host CD3+ T-cells and phage dosage, which significantly impacts bacterial bioburden. Furthermore, the bacterial bioburden and wound size association is significantly modulated by the host CD3+ T-cells. When the host CD3+ T-cells (x on log10 scale) are in the appropriate range (1.35 < x < = 1.5), we observed a strong association between colony forming units (CFU) and wound size, indicating a hallmark of wound healing. On the basis of the findings and our previous work, we proposed an integrated parallel systems biology model.
Collapse
Affiliation(s)
- Renhua Li
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Surgical Critical Care Initiative (SC2i), Uniformed Services University (USU), Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, United States
| | - Michael Rouse
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Surgical Critical Care Initiative (SC2i), Uniformed Services University (USU), Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, United States
- Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Brendon T. Pace
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Eastern Virginia Medical School, Norfolk, VA, United States
| | - Scott F. Grey
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Surgical Critical Care Initiative (SC2i), Uniformed Services University (USU), Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, United States
| | - Kimberly Mclaughlin
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Surgical Critical Care Initiative (SC2i), Uniformed Services University (USU), Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, United States
| | - Seth A. Schobel
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Surgical Critical Care Initiative (SC2i), Uniformed Services University (USU), Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, United States
| | - Mark P. Simons
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Naval Medical Research Center, Silver Spring, MD, United States
| |
Collapse
|
5
|
Strobl J, Haniffa M. Functional heterogeneity of human skin-resident memory T cells in health and disease. Immunol Rev 2023; 316:104-119. [PMID: 37144705 PMCID: PMC10952320 DOI: 10.1111/imr.13213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/06/2023]
Abstract
The human skin is populated by a diverse pool of memory T cells, which can act rapidly in response to pathogens and cancer antigens. Tissue-resident memory T cells (TRM ) have been implicated in range of allergic, autoimmune and inflammatory skin diseases. Clonal expansion of cells with TRM properties is also known to contribute to cutaneous T-cell lymphoma. Here, we review the heterogeneous phenotypes, transcriptional programs, and effector functions of skin TRM . We summarize recent studies on TRM formation, longevity, plasticity, and retrograde migration and contextualize the findings to skin TRM and their role in maintaining skin homeostasis and altered functions in skin disease.
Collapse
Affiliation(s)
- Johanna Strobl
- Department of DermatologyMedical University of ViennaViennaAustria
- CeMM Research Center for Molecular MedicineViennaAustria
| | - Muzlifah Haniffa
- Wellcome Sanger InstituteCambridgeUK
- Department of Dermatology and NIHR Newcastle Biomedical Research CentreNewcastle Hospitals NHS Foundation TrustNewcastle upon TyneUK
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|