1
|
Feldman MJ, Bliss-Moreau E, Lindquist KA. The neurobiology of interoception and affect. Trends Cogn Sci 2024; 28:643-661. [PMID: 38395706 PMCID: PMC11222051 DOI: 10.1016/j.tics.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Scholars have argued for centuries that affective states involve interoception, or representations of the state of the body. Yet, we lack a mechanistic understanding of how signals from the body are transduced, transmitted, compressed, and integrated by the brains of humans to produce affective states. We suggest that to understand how the body contributes to affect, we first need to understand information flow through the nervous system's interoceptive pathways. We outline such a model and discuss how unique anatomical and physiological aspects of interoceptive pathways may give rise to the qualities of affective experiences in general and valence and arousal in particular. We conclude by considering implications and future directions for research on interoception, affect, emotions, and human mental experiences.
Collapse
Affiliation(s)
- M J Feldman
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - E Bliss-Moreau
- Department of Psychology, University of California Davis, Davis, CA, USA; California National Primate Research Center, University of California Davis, Davis, CA, USA
| | - K A Lindquist
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Xu H, Dugué GP, Cantaut-Belarif Y, Lejeune FX, Gupta S, Wyart C, Lehtinen MK. SCO-spondin knockout mice exhibit small brain ventricles and mild spine deformation. Fluids Barriers CNS 2023; 20:89. [PMID: 38049798 PMCID: PMC10696872 DOI: 10.1186/s12987-023-00491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/18/2023] [Indexed: 12/06/2023] Open
Abstract
Reissner's fiber (RF) is an extracellular polymer comprising the large monomeric protein SCO-spondin (SSPO) secreted by the subcommissural organ (SCO) that extends through cerebrospinal fluid (CSF)-filled ventricles into the central canal of the spinal cord. In zebrafish, RF and CSF-contacting neurons (CSF-cNs) form an axial sensory system that detects spinal curvature, instructs morphogenesis of the body axis, and enables proper alignment of the spine. In mammalian models, RF has been implicated in CSF circulation. However, challenges in manipulating Sspo, an exceptionally large gene of 15,719 nucleotides, with traditional approaches has limited progress. Here, we generated a Sspo knockout mouse model using CRISPR/Cas9-mediated genome-editing. Sspo knockout mice lacked RF-positive material in the SCO and fibrillar condensates in the brain ventricles. Remarkably, Sspo knockout brain ventricle sizes were reduced compared to littermate controls. Minor defects in thoracic spine curvature were detected in Sspo knockouts, which did not alter basic motor behaviors tested. Altogether, our work in mouse demonstrates that SSPO and RF regulate ventricle size during development but only moderately impact spine geometry.
Collapse
Affiliation(s)
- Huixin Xu
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Guillaume P Dugué
- Neurophysiology of Brain Circuits, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Yasmine Cantaut-Belarif
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale (INSERM) U1127, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225, Assistance Publique-Hôpitaux de Paris (APHP), Campus Hospitalier Pitié-Salpêtrière, 47, bld Hospital, 75013, Paris, France
| | - François-Xavier Lejeune
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale (INSERM) U1127, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225, Assistance Publique-Hôpitaux de Paris (APHP), Campus Hospitalier Pitié-Salpêtrière, 47, bld Hospital, 75013, Paris, France
| | - Suhasini Gupta
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Claire Wyart
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale (INSERM) U1127, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225, Assistance Publique-Hôpitaux de Paris (APHP), Campus Hospitalier Pitié-Salpêtrière, 47, bld Hospital, 75013, Paris, France.
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Wyart C, Carbo-Tano M. Design of mechanosensory feedback during undulatory locomotion to enhance speed and stability. Curr Opin Neurobiol 2023; 83:102777. [PMID: 37666012 DOI: 10.1016/j.conb.2023.102777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 09/06/2023]
Abstract
Undulatory locomotion relies on the propagation of a wave of excitation in the spinal cord leading to consequential activation of segmental skeletal muscles along the body. Although this process relies on self-generated oscillations of motor circuits in the spinal cord, mechanosensory feedback is crucial to entrain the underlying oscillatory activity and thereby, to enhance movement power and speed. This effect is achieved through directional projections of mechanosensory neurons either sensing stretching or compression of the trunk along the rostrocaudal axis. Different mechanosensory feedback pathways act in concert to shorten and fasten the excitatory wave propagating along the body. While inhibitory mechanosensory cells feedback inhibition on excitatory premotor interneurons and motor neurons, excitatory mechanosensory cells feedforward excitation to premotor excitatory interneurons. Together, diverse mechanosensory cells coordinate the activity of skeletal muscles controlling the head and tail to optimize speed and stabilize balance during fast locomotion.
Collapse
Affiliation(s)
- Claire Wyart
- Sorbonne Université, INSERM U1127, UMR CNRS 7225, Institut du Cerveau (ICM), 47 bld de l'hôpital, Paris 75013, France.
| | - Martin Carbo-Tano
- Sorbonne Université, INSERM U1127, UMR CNRS 7225, Institut du Cerveau (ICM), 47 bld de l'hôpital, Paris 75013, France. https://twitter.com/martincarbotano
| |
Collapse
|
4
|
Liu X, Rich K, Nasseri SM, Li G, Hjæresen S, Finsen B, Scherberger H, Svenningsen Å, Zhang M. A Comparison of PKD2L1-Expressing Cerebrospinal Fluid Contacting Neurons in Spinal Cords of Rodents, Carnivores, and Primates. Int J Mol Sci 2023; 24:13582. [PMID: 37686387 PMCID: PMC10488076 DOI: 10.3390/ijms241713582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Cerebrospinal fluid contacting neurons (CSF-cNs) are a specific type of neurons located around the ventricles in the brain and the central canal in the spinal cord and have been demonstrated to be intrinsic sensory neurons in the central nervous system. One of the important channels responsible for the sensory function is the polycystic kidney disease 2-like 1 (PKD2L1) channel. Most of the studies concerning the distribution and function of the PKD2L1-expressing CSF-cNs in the spinal cord have previously been performed in non-mammalian vertebrates. In the present study immunohistochemistry was performed to determine the distribution of PKD2L1-immunoreactive (IR) CSF-cNs in the spinal cords of four mammalian species: mouse, rat, cat, and macaque monkey. Here, we found that PKD2L1-expressing CSF-cNs were present at all levels of the spinal cord in these animal species. Although the distribution pattern was similar across these species, differences existed. Mice and rats presented a clear PKD2L1-IR cell body labeling, whereas in cats and macaques the PKD2L1-IR cell bodies were more weakly labeled. Ectopic PKD2L1-IR neurons away from the ependymal layer were observed in all the animal species although the abundance and the detailed locations varied. The apical dendritic protrusions with ciliated fibers were clearly seen in the lumen of the central canal in all the animal species, but the sizes of protrusion bulbs were different among the species. PKD2L1-IR cell bodies/dendrites were co-expressed with doublecortin, MAP2 (microtubule-associated protein 2), and aromatic L-amino acid decarboxylase, but not with NeuN (neuronal nuclear protein), indicating their immature properties and ability to synthesize monoamine transmitters. In addition, in situ hybridization performed in rats revealed PKD2L1 mRNA expression in the cells around the central canal. Our results indicate that the intrinsic sensory neurons are conserved across non-mammalian and mammalian vertebrates. The similar morphology of the dendritic bulbs with ciliated fibers (probably representing stereocilia and kinocilia) protruding into the central canal across different animal species supports the notion that PKD2L1 is a chemo- and mechanical sensory channel that responds to mechanical stimulations and maintains homeostasis of the spinal cord. However, the differences of PKD2L1 distribution and expression between the species suggest that PKD2L1-expressing neurons may receive and process sensory signals differently in different animal species.
Collapse
Affiliation(s)
- Xiaohe Liu
- Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark; (X.L.); (K.R.); (S.M.N.); (G.L.); (S.H.); (B.F.); (Å.S.)
| | - Karen Rich
- Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark; (X.L.); (K.R.); (S.M.N.); (G.L.); (S.H.); (B.F.); (Å.S.)
| | - Sohail M. Nasseri
- Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark; (X.L.); (K.R.); (S.M.N.); (G.L.); (S.H.); (B.F.); (Å.S.)
| | - Guifa Li
- Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark; (X.L.); (K.R.); (S.M.N.); (G.L.); (S.H.); (B.F.); (Å.S.)
| | - Simone Hjæresen
- Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark; (X.L.); (K.R.); (S.M.N.); (G.L.); (S.H.); (B.F.); (Å.S.)
| | - Bente Finsen
- Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark; (X.L.); (K.R.); (S.M.N.); (G.L.); (S.H.); (B.F.); (Å.S.)
| | - Hansjörg Scherberger
- Deutsches Primantenzentrum, GmbH, 37077 Göttingen, Germany;
- Department of Biology and Psychology, University of Göttingen, 37077 Göttingen, Germany
| | - Åsa Svenningsen
- Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark; (X.L.); (K.R.); (S.M.N.); (G.L.); (S.H.); (B.F.); (Å.S.)
- BRIDGE, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Mengliang Zhang
- Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark; (X.L.); (K.R.); (S.M.N.); (G.L.); (S.H.); (B.F.); (Å.S.)
- BRIDGE, University of Southern Denmark, DK-5000 Odense, Denmark
| |
Collapse
|
5
|
Xu H, Dugué GP, Cantaut-Belarif Y, Lejeune FX, Gupta S, Wyart C, Lehtinen MK. SCO-spondin knockout mice exhibit small brain ventricles and mild spine deformation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551512. [PMID: 37577601 PMCID: PMC10418289 DOI: 10.1101/2023.08.01.551512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Reissner's fiber (RF) is an extracellular polymer comprising the large monomeric protein SCO-spondin (SSPO) secreted by the subcommissural organ (SCO) that extends through cerebrospinal fluid (CSF)-filled ventricles into the central canal of the spinal cord. In zebrafish, RF and CSF-contacting neurons (CSF-cNs) form an axial sensory system that detects spinal curvature, instructs morphogenesis of the body axis, and enables proper alignment of the spine. In mammalian models, RF has been implicated in CSF circulation. However, challenges in manipulating Sspo , an exceptionally large gene of 15,719 nucleotides, with traditional approaches has limited progress. Here, we generated a Sspo knockout mouse model using CRISPR/Cas9-mediated genome-editing. Sspo knockout mice lacked RF-positive material in the SCO and fibrillar condensates in the brain ventricles. Remarkably, Sspo knockout brain ventricle sizes were reduced compared to littermate controls. Minor defects in thoracic spine curvature were detected in Sspo knockouts, which did not alter basic motor behaviors tested. Altogether, our work in mouse demonstrates that SSPO and RF regulate ventricle size during development but only moderately impact spine geometry.
Collapse
|