1
|
Abstract
Studies of rare human genetic disorders of mitochondrial phospholipid metabolism have highlighted the crucial role that membrane phospholipids play in mitochondrial bioenergetics and human health. The phospholipid composition of mitochondrial membranes is highly conserved from yeast to humans, with each class of phospholipid performing a specific function in the assembly and activity of various mitochondrial membrane proteins, including the oxidative phosphorylation complexes. Recent studies have uncovered novel roles of cardiolipin and phosphatidylethanolamine, two crucial mitochondrial phospholipids, in organismal physiology. Studies on inter-organellar and intramitochondrial phospholipid transport have significantly advanced our understanding of the mechanisms that maintain mitochondrial phospholipid homeostasis. Here, we discuss these recent advances in the function and transport of mitochondrial phospholipids while describing their biochemical and biophysical properties and biosynthetic pathways. Additionally, we highlight the roles of mitochondrial phospholipids in human health by describing the various genetic diseases caused by disruptions in their biosynthesis and discuss advances in therapeutic strategies for Barth syndrome, the best-studied disorder of mitochondrial phospholipid metabolism.
Collapse
Affiliation(s)
- Alaumy Joshi
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Travis H. Richard
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Vishal M. Gohil
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
2
|
Phenotypic Characterization of Male Tafazzin-Knockout Mice at 3, 6, and 12 Months of Age. Biomedicines 2023; 11:biomedicines11020638. [PMID: 36831174 PMCID: PMC9953241 DOI: 10.3390/biomedicines11020638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Barth syndrome (BTHS) is an X-linked mitochondrial disease caused by mutations in the gene encoding for tafazzin (TAZ), a key enzyme in the remodeling of cardiolipin. Mice with a germline deficiency in Taz have been generated (Taz-KO) but not yet fully characterized. We performed physiological assessments of 3-, 6-, and 12-month-old male Taz-KO mice, including measures of perinatal survival, growth, lifespan, gross anatomy, whole-body energy and substrate metabolism, glucose homeostasis, and exercise capacity. Taz-KO mice displayed reduced viability, with lower-than-expected numbers of mice recorded at 4 weeks of age, and a shortened lifespan due to disease progression. At all ages, Taz-KO mice had lower body weights compared with wild-type (Wt) littermates despite similar absolute food intakes. This finding was attributed to reduced adiposity and diminutive organs and tissues, including heart and skeletal muscles. Although there were no differences in basal levels of locomotion between age-matched genotypes, indirect calorimetry studies showed higher energy expenditure measures and respiratory exchange ratios in Taz-KO mice. At the youngest age, Taz-KO mice had comparable glucose tolerance and insulin action to Wt mice, but while these measures indicated metabolic impairments in Wt mice with advancing age that were likely associated with increasing adiposity, Taz-KO mice were protected. Comparisons across the three age-cohorts revealed a significant and more severe deterioration of exercise capacity in Taz-KO mice than in their Wt littermate controls. The Taz-KO mouse model faithfully recapitulates important aspects of BTHS, and thus provides an important new tool to investigate pathophysiological mechanisms and potential therapies.
Collapse
|
3
|
Elkes M, Andonovski M, Vidal D, Farago M, Modafferi R, Claypool SM, LeBlanc PJ. The Influence of Supplemental Dietary Linoleic Acid on Skeletal Muscle Contractile Function in a Rodent Model of Barth Syndrome. Front Physiol 2021; 12:731961. [PMID: 34489741 PMCID: PMC8416984 DOI: 10.3389/fphys.2021.731961] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Barth syndrome is a rare and incurable X-linked (male-specific) genetic disease that affects the protein tafazzin (Taz). Taz is an important enzyme responsible for synthesizing biologically relevant cardiolipin (for heart and skeletal muscle, cardiolipin rich in linoleic acid), a critical phospholipid of mitochondrial form and function. Mutations to Taz cause dysfunctional mitochondria, resulting in exercise intolerance due to skeletal muscle weakness. To date, there has been limited research on improving skeletal muscle function, with interventions focused on endurance and resistance exercise. Previous cell culture research has shown therapeutic potential for the addition of exogenous linoleic acid in improving Taz-deficient mitochondrial function but has not been examined in vivo. The purpose of this study was to examine the influence of supplemental dietary linoleic acid on skeletal muscle function in a rodent model of Barth syndrome, the inducible Taz knockdown (TazKD) mouse. One of the main findings was that TazKD soleus demonstrated an impaired contractile phenotype (slower force development and rates of relaxation) in vitro compared to their WT littermates. Interestingly, this impaired contractile phenotype seen in vitro did not translate to altered muscle function in vivo at the whole-body level. Also, supplemental linoleic acid attenuated, to some degree, in vitro impaired contractile phenotype in TazKD soleus, and these findings appear to be partially mediated by improvements in cardiolipin content and resulting mitochondrial supercomplex formation. Future research will further examine alternative mechanisms of dietary supplemental LA on improving skeletal muscle contractile dysfunction in TazKD mice.
Collapse
Affiliation(s)
- Mario Elkes
- Faculty of Applied Health Sciences, Center for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Martin Andonovski
- Faculty of Applied Health Sciences, Center for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Daislyn Vidal
- Faculty of Applied Health Sciences, Center for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Madison Farago
- Faculty of Applied Health Sciences, Center for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Ryan Modafferi
- Faculty of Applied Health Sciences, Center for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Paul J LeBlanc
- Faculty of Applied Health Sciences, Center for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
4
|
Barth syndrome: cardiolipin, cellular pathophysiology, management, and novel therapeutic targets. Mol Cell Biochem 2021; 476:1605-1629. [PMID: 33415565 DOI: 10.1007/s11010-020-04021-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022]
Abstract
Barth syndrome is a rare X-linked genetic disease classically characterized by cardiomyopathy, skeletal myopathy, growth retardation, neutropenia, and 3-methylglutaconic aciduria. It is caused by mutations in the tafazzin gene localized to chromosome Xq28.12. Mutations in tafazzin may result in alterations in the level and molecular composition of the mitochondrial phospholipid cardiolipin and result in large elevations in the lysophospholipid monolysocardiolipin. The increased monolysocardiolipin:cardiolipin ratio in blood is diagnostic for the disease, and it leads to disruption in mitochondrial bioenergetics. In this review, we discuss cardiolipin structure, synthesis, and function and provide an overview of the clinical and cellular pathophysiology of Barth Syndrome. We highlight known pharmacological management for treatment of the major pathological features associated with the disease. In addition, we discuss non-pharmacological management. Finally, we highlight the most recent promising therapeutic options for this rare mitochondrial disease including lipid replacement therapy, peroxisome proliferator-activated receptor agonists, tafazzin gene replacement therapy, induced pluripotent stem cells, mitochondria-targeted antioxidants and peptides, and the polyphenolic compound resveratrol.
Collapse
|
5
|
Fox CA, Ryan RO. Dye binding assay reveals doxorubicin preference for DNA versus cardiolipin. Anal Biochem 2020; 594:113617. [PMID: 32045568 DOI: 10.1016/j.ab.2020.113617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 11/25/2022]
Abstract
Doxorubicin (DOX) is a potent anticancer agent that binds both DNA and cardiolipin (CL). To investigate DOX binding to CL versus DNA, aqueous soluble, CL-enriched nanoparticles, termed nanodisks (ND), were employed. Upon incubation with CL-ND, but not with phosphatidylcholine ND, DOX binding was detected. DOX binding to CL-ND was sensitive to buffer pH and ionic strength. To investigate if a DOX binding preference for DNA versus CL-ND exists, an agarose gel-based dye binding assay was developed. Under conditions wherein the commercial fluorescent dye, GelRed, detects a 636 bp DNA template following electrophoresis, DOX staining failed to visualize this DNA band. Incubation of the template DNA with DOX prior to electrophoresis resulted in a DOX concentration-dependent attenuation of GelRed staining intensity. When the template DNA was pre-incubated with equivalent amounts of free DOX or DOX-CL-ND, no differences in the extent of GelRed staining intensity attenuation were noted. When DOX was incubated with DNA alone, or a mixture of DNA and CL-ND, the extent of DOX-induced GelRed staining intensity attenuation was equivalent. Thus, DOX has a binding preference for DNA versus CL and, moreover, DOX-CL-ND offer a potential strategy to prevent DOX-induced cardiotoxicity while not affecting its affinity for DNA.
Collapse
Affiliation(s)
- Colin A Fox
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, 89557, USA
| | - Robert O Ryan
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, 89557, USA.
| |
Collapse
|
6
|
Garlid AO, Schaffer CT, Kim J, Bhatt H, Guevara-Gonzalez V, Ping P. TAZ encodes tafazzin, a transacylase essential for cardiolipin formation and central to the etiology of Barth syndrome. Gene 2019; 726:144148. [PMID: 31647997 DOI: 10.1016/j.gene.2019.144148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/12/2019] [Accepted: 09/27/2019] [Indexed: 12/31/2022]
Abstract
Tafazzin, which is encoded by the TAZ gene, catalyzes transacylation to form mature cardiolipin and shows preference for the transfer of a linoleic acid (LA) group from phosphatidylcholine (PC) to monolysocardiolipin (MLCL) with influence from mitochondrial membrane curvature. The protein contains domains and motifs involved in targeting, anchoring, and an active site for transacylase activity. Tafazzin activity affects many aspects of mitochondrial structure and function, including that of the electron transport chain, fission-fusion, as well as apoptotic signaling. TAZ mutations are implicated in Barth syndrome, an underdiagnosed and devastating disease that primarily affects male pediatric patients with a broad spectrum of disease pathologies that impact the cardiovascular, neuromuscular, metabolic, and hematologic systems.
Collapse
Affiliation(s)
- Anders O Garlid
- Cardiovascular Data Science Training Program at UCLA, University of California at Los Angeles, CA 90095, USA; Department of Physiology, University of California at Los Angeles, CA 90095, USA.
| | - Calvin T Schaffer
- Cardiovascular Data Science Training Program at UCLA, University of California at Los Angeles, CA 90095, USA; Department of Physiology, University of California at Los Angeles, CA 90095, USA
| | - Jaewoo Kim
- Cardiovascular Data Science Training Program at UCLA, University of California at Los Angeles, CA 90095, USA; Department of Physiology, University of California at Los Angeles, CA 90095, USA
| | - Hirsh Bhatt
- Cardiovascular Data Science Training Program at UCLA, University of California at Los Angeles, CA 90095, USA; Department of Physiology, University of California at Los Angeles, CA 90095, USA
| | - Vladimir Guevara-Gonzalez
- Cardiovascular Data Science Training Program at UCLA, University of California at Los Angeles, CA 90095, USA; Department of Mathematics, University of California at Los Angeles, CA 90095, USA
| | - Peipei Ping
- Cardiovascular Data Science Training Program at UCLA, University of California at Los Angeles, CA 90095, USA; Department of Physiology, University of California at Los Angeles, CA 90095, USA; Department of Medicine/Cardiology, University of California at Los Angeles, CA 90095, USA; Department of Bioinformatics, University of California at Los Angeles, CA 90095, USA; Scalable Analytics Institute (ScAi), University of California at Los Angeles, CA 90095, USA.
| |
Collapse
|
7
|
Ren M, Miller PC, Schlame M, Phoon CKL. A critical appraisal of the tafazzin knockdown mouse model of Barth syndrome: what have we learned about pathogenesis and potential treatments? Am J Physiol Heart Circ Physiol 2019; 317:H1183-H1193. [PMID: 31603701 DOI: 10.1152/ajpheart.00504.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pediatric heart failure remains poorly understood, distinct in many aspects from adult heart failure. Limited data point to roles of altered mitochondrial functioning and, in particular, changes in mitochondrial lipids, especially cardiolipin. Barth syndrome is a mitochondrial disorder caused by tafazzin mutations that lead to abnormal cardiolipin profiles. Patients are afflicted by cardiomyopathy, skeletal myopathy, neutropenia, and growth delay. A mouse model of Barth syndrome was developed a decade ago, which relies on a doxycycline-inducible short hairpin RNA to knock down expression of tafazzin mRNA (TAZKD). Our objective was to review published data from the TAZKD mouse to determine its contributions to our pathogenetic understanding of, and potential treatment strategies for, Barth syndrome. In regard to the clinical syndrome, the reported physiological, biochemical, and ultrastructural abnormalities of the mouse model mirror those in Barth patients. Using this model, the peroxisome proliferator-activated receptor pan-agonist bezafibrate has been suggested as potential therapy because it ameliorated the cardiomyopathy in TAZKD mice, while increasing mitochondrial biogenesis. A clinical trial is now underway to test bezafibrate in Barth syndrome patients. Thus the TAZKD mouse model of Barth syndrome has led to important insights into disease pathogenesis and therapeutic targets, which can potentially translate to pediatric heart failure.
Collapse
Affiliation(s)
- Mindong Ren
- Department of Anesthesiology, New York University School of Medicine, New York, New York.,Department of Cell Biology, New York University School of Medicine, New York, New York
| | - Paighton C Miller
- Department of Pediatrics, Division of Pediatric Cardiology, New York University School of Medicine, New York, New York
| | - Michael Schlame
- Department of Anesthesiology, New York University School of Medicine, New York, New York.,Department of Cell Biology, New York University School of Medicine, New York, New York
| | - Colin K L Phoon
- Department of Pediatrics, Division of Pediatric Cardiology, New York University School of Medicine, New York, New York
| |
Collapse
|
8
|
Finsterer J. Barth syndrome: mechanisms and management. APPLICATION OF CLINICAL GENETICS 2019; 12:95-106. [PMID: 31239752 PMCID: PMC6558240 DOI: 10.2147/tacg.s171481] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/04/2019] [Indexed: 12/21/2022]
Abstract
Objectives: Barth syndrome is an ultra-rare, infantile-onset, X-linked recessive mitochondrial disorder, primarily affecting males, due to variants in TAZ encoding for the cardiolipin transacylase tafazzin. This review aimed to summarize and discuss recent and earlier findings concerning the etiology, pathogenesis, clinical presentation, diagnosis, treatment, and outcome of Barth syndrome. Method: A literature review was undertaken through a MEDLINE search. Results: The phenotype of Barth syndrome is highly variable but most frequently patients present with hypertrophic/dilated/non-compaction cardiomyopathy, fibroelastosis, arrhythmias, neutropenia, mitochondrial myopathy, growth retardation, dysmorphism, cognitive impairment, and other, rarer features. Lactic acid and creatine kinase, and blood and urine organic acids, particularly 3-methylglutaconic acid and monolysocardiolipin, are often elevated. Cardiolipin is decreased. Biochemical investigations may show decreased activity of various respiratory chain complexes. The diagnosis is confirmed by documentation of a causative TAZ variant. Treatment is symptomatic and directed toward treating heart failure, arrhythmias, neutropenia, and mitochondrial myopathy. Conclusions: Although Barth syndrome is still an orphan disease, with fewer than 200 cases described so far, there is extensive ongoing research with regard to its pathomechanism and new therapeutic approaches. Although most of these approaches are still experimental, it can be expected that causative strategies will be developed in the near future.
Collapse
Affiliation(s)
- Josef Finsterer
- Krankenanstalt Rudolfstiftung, Messerli Institute, Vienna, Austria
| |
Collapse
|