1
|
Zhao XN, Ding HM, Ma YY, Wang L, Zhou P. Ling-Gui-Zhu-Gan decoction inhibits cardiomyocyte pyroptosis via the NLRP3/Caspase-1 signaling pathway. Tissue Cell 2024; 91:102588. [PMID: 39442311 DOI: 10.1016/j.tice.2024.102588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE The objective of this study was to investigate the protective mechanism of Ling-Gui-Zhu-Gan decoction (LGZGD) against LPS-ATP-induced pyroptosis in H9c2 cells. METHODS LPS and ATP were used to induce pyroptosis in the H9c2 cell, and the cells were divided into the control, model and LGZGD groups. LDH level was detected using a colorimetric assay. ELISA was used to detect the expressions of IL-1β. Flow cytometry was utilized to observe apoptosis, while Hoechst/PI staining was used to detect pyroptosis. Immunofluorescence was employed to observe the expression levels of NLRP3 in cardiomyocytes, and RT-PCR was used to detect NLRP3, Caspase-1, GSDMD, and ASC mRNA expression. The cells were separated into seven groups: control, model, LGZGD, MCC950, LGZGD+MCC950, Nigericin and LGZGD+Nigericin. The mRNA and protein expressions were determined by RT-PCR and Western blot. RESULTS LPS (10 μg/mL) for 12 h and ATP (8 mM) for 2 h were used as modeling condition. LGZGD demonstrated a significant reduction in LDH, and IL-1β levels (P<0.05, P<0.01). LGZGD dramatically reduced apoptosis rate, inhibited pyroptosis, decreased the fluorescence expressions of NLRP3, and reduced the mRNA expressions of NLRP3, ASC, Caspase-1, and GSDMD (P<0.01). Further mechanism studies showed that NLRP3, ASC, Caspase-1, and GSDMD decreased significantly when combined with NLRP3 inhibitor MCC950. Furthermore, LGZGD was able to effectively reverse the upregulation of protein and gene expression of Nigericin group (P<0.01). CONCLUSION LGZGD inhibits LPS-ATP-induced pyroptosis in H9c2 cell via the NLRP3/Caspase-1 signaling pathway.
Collapse
Affiliation(s)
- Xiao-Ni Zhao
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Hui-Min Ding
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Yao-Yao Ma
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Liang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China.
| | - Peng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China.
| |
Collapse
|
2
|
Song L, Qiu Q, Ju F, Zheng C. Mechanisms of doxorubicin-induced cardiac inflammation and fibrosis; therapeutic targets and approaches. Arch Biochem Biophys 2024; 761:110140. [PMID: 39243924 DOI: 10.1016/j.abb.2024.110140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Doxorubicin plays a pivotal role in the treatment of various malignancies. Despite its efficacy, the cardiotoxicity associated with doxorubicin limits its clinical utility. The cardiotoxic nature of doxorubicin is attributed to several mechanisms, including its interference with mitochondrial function, the generation of reactive oxygen species (ROS), and the subsequent damage to cardiomyocyte DNA, proteins, and lipids. Furthermore, doxorubicin disrupts the homeostasis of cardiac-specific transcription factors and signaling pathways, exacerbating cardiac dysfunction. Oxidative stress, cell death, and other severe changes, such as mitochondrial dysfunction, activation of pro-oxidant enzymes, the renin-angiotensin system (RAS), endoplasmic reticulum (ER) stress, and infiltration of immune cells in the heart after treatment with doxorubicin, may cause inflammatory and fibrotic responses. Fibrosis and inflammation can lead to a range of disorders in the heart, resulting in potential cardiac dysfunction and disease. Various adjuvants have shown potential in preclinical studies to mitigate these challenges associated with cardiac inflammation and fibrosis. Antioxidants, plant-based products, specific inhibitors, and cardioprotective drugs may be recommended to alleviate cardiotoxicity. This review explores the complex mechanisms of doxorubicin-induced heart inflammation and fibrosis, identifies possible cellular and molecular targets, and investigates potential substances that could help reduce these harmful effects.
Collapse
Affiliation(s)
- Linghua Song
- Department of Pharmacy, Yantai Mountain Hospital, Yantai City, Shandong Province, 264001, China
| | - Qingzhuo Qiu
- Medical Imaging Department of Qingdao Women and Children's Hospital, 266000, China
| | - Fei Ju
- Department of Critical Care, Medicine East Hospital of Qingdao Municipal Hospital, 266000, China
| | - Chunyan Zheng
- Cadre Health Office of Zibo Central Hospital in Shandong Province, 255000, China.
| |
Collapse
|
3
|
Voronkov NS, Maslov LN, Vyshlov EV, Mukhomedzyanov AV, Ryabov VV, Derkachev IA, Kan A, Gusakova SV, Gombozhapova AE, Panteleev OO. Do platelets protect the heart against ischemia/reperfusion injury or exacerbate cardiac ischemia/reperfusion injury? The role of PDGF, VEGF, and PAF. Life Sci 2024; 347:122617. [PMID: 38608835 DOI: 10.1016/j.lfs.2024.122617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/15/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Acute myocardial infarction (AMI) is one of the main causes of death. It is quite obvious that there is an urgent need to develop new approaches for treatment of AMI. OBJECTIVE This review analyzes data on the role of platelets in the regulation of cardiac tolerance to ischemia/reperfusion (I/R). METHODS It was performed a search of topical articles using PubMed databases. FINDINGS Platelets activated by a cholesterol-enriched diet, thrombin, and myocardial ischemia exacerbate I/R injury of the heart. The P2Y12 receptor antagonists, remote ischemic postconditioning and conditioning alter the properties of platelets. Platelets acquire the ability to increase cardiac tolerance to I/R. Platelet-derived growth factors (PDGFs) increase tolerance of cardiomyocytes and endothelial cells to I/R. PDGF receptors (PDGFRs) were found in cardiomyocytes and endothelial cells. PDGFs decrease infarct size and partially abrogate adverse postinfarction remodeling. Protein kinase C, phosphoinositide 3-kinase, and Akt involved in the cytoprotective effect of PDGFs. Vascular endothelial growth factor increased cardiac tolerance to I/R and alleviated adverse postinfarction remodeling. The platelet-activating factor (PAF) receptor inhibitors increase cardiac tolerance to I/R in vivo. PAF enhances cardiac tolerance to I/R in vitro. It is possible that PAF receptor inhibitors could protect the heart by blocking PAF receptor localized outside the heart. PAF protects the heart through activation of PAF receptor localized in cardiomyocytes or endothelial cells. Reactive oxygen species and kinases are involved in the cardioprotective effect of PAF. CONCLUSION Platelets play an important role in the regulation of cardiac tolerance to I/R.
Collapse
Affiliation(s)
- Nikita S Voronkov
- Department of Emergency Cardiology and Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Leonid N Maslov
- Department of Emergency Cardiology and Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia.
| | - Evgeniy V Vyshlov
- Department of Emergency Cardiology and Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Alexander V Mukhomedzyanov
- Department of Emergency Cardiology and Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Vyacheslav V Ryabov
- Department of Emergency Cardiology and Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Ivan A Derkachev
- Department of Emergency Cardiology and Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Artur Kan
- Department of Emergency Cardiology and Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Svetlana V Gusakova
- Department of Biophysics and Functional Diagnostics, Siberian State Medical University, 634050 Tomsk, Russia
| | - Alexandra E Gombozhapova
- Department of Emergency Cardiology and Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Oleg O Panteleev
- Department of Emergency Cardiology and Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| |
Collapse
|
4
|
Derkachev IA, Popov SV, Maslov LN, Mukhomedzyanov AV, Naryzhnaya NV, Gorbunov AS, Kan A, Krylatov AV, Podoksenov YK, Stepanov IV, Gusakova SV, Fu F, Pei JM. Angiotensin 1-7 increases cardiac tolerance to ischemia/reperfusion and mitigates adverse remodeling of the heart-The signaling mechanism. Fundam Clin Pharmacol 2024; 38:489-501. [PMID: 38311344 DOI: 10.1111/fcp.12983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/06/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND The high mortality rate of patients with acute myocardial infarction (AMI) remains the most pressing issue of modern cardiology. Over the past 10 years, there has been no significant reduction in mortality among patients with AMI. It is quite obvious that there is an urgent need to develop fundamentally new drugs for the treatment of AMI. Angiotensin 1-7 has some promise in this regard. OBJECTIVE The objective of this article is analysis of published data on the cardioprotective properties of angiotensin 1-7. METHODS PubMed, Scopus, Science Direct, and Google Scholar were used to search articles for this study. RESULTS Angiotensin 1-7 increases cardiac tolerance to ischemia/reperfusion and mitigates adverse remodeling of the heart. Angiotensin 1-7 can prevent not only ischemic but also reperfusion cardiac injury. The activation of the Mas receptor plays a key role in these effects of angiotensin 1-7. Angiotensin 1-7 alleviates Ca2+ overload of cardiomyocytes and reactive oxygen species production in ischemia/reperfusion (I/R) of the myocardium. It is possible that both effects are involved in angiotensin 1-7-triggered cardiac tolerance to I/R. Furthermore, angiotensin 1-7 inhibits apoptosis of cardiomyocytes and stimulates autophagy of cells. There is also indirect evidence suggesting that angiotensin 1-7 inhibits ferroptosis in cardiomyocytes. Moreover, angiotensin 1-7 possesses anti-inflammatory properties, possibly achieved through NF-kB activity inhibition. Phosphoinositide 3-kinase, Akt, and NO synthase are involved in the infarct-reducing effect of angiotensin 1-7. However, the specific end-effector of the cardioprotective impact of angiotensin 1-7 remains unknown. CONCLUSION The molecular nature of the end-effector of the infarct-limiting effect of angiotensin 1-7 has not been elucidated. Perhaps, this end-effector is the sarcolemmal KATP channel or the mitochondrial KATP channel.
Collapse
Affiliation(s)
- Ivan A Derkachev
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | - Sergey V Popov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | - Leonid N Maslov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | | | - Natalia V Naryzhnaya
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | - Alexander S Gorbunov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | - Artur Kan
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | - Andrey V Krylatov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | - Yuri K Podoksenov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | - Ivan V Stepanov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | - Svetlana V Gusakova
- Department of Biophysics and Functional Diagnostics, Siberian State Medical University, Tomsk, Russia
| | - Feng Fu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Jian-Ming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
5
|
Li H, Pu J, Yang D, Liu L, Hu Y, Yang S, Wang B. GSDMD protects intestinal epithelial cells against bacterial infections through its N-terminal activity impacting intestinal immune homeostasis. J Biomed Res 2024; 38:1-12. [PMID: 38807373 PMCID: PMC11629157 DOI: 10.7555/jbr.38.20240041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/07/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
The intestinal mucosal barrier serves as a vital guardian for gut health, maintaining a delicate equilibrium between gut microbiota and host immune homeostasis. Recent studies have found the intricate roles of Gasdermin D (GSDMD), a key executioner of pyroptosis downstream of the inflammasome, within the intestine, including controlling colitis in intestinal macrophage and the regulatory function in goblet cell mucus secretion. Thus, the exact role and nature of GSDMD's regulatory function in maintaining intestinal immune homeostasis and defending against pathogens remain elucidation. Here, we uncover that GSDMD plays a key role in defending against intestinal Citrobacter rodentium infection, with high expression in intestinal epithelial and lamina propria myeloid cells. Our results show that GSDMD specifically acts in intestinal epithelial cells to fight the infection, independently of its effects on antimicrobial peptides or mucin secretion. Instead, the resistance is mediated through GSDMD's N-terminal fragments, highlighting its importance in intestinal immunity. However, the specific underlying mechanism of GSDMD N-terminal activity in protection against intestinal bacterial infections still needs further study to clarify in the future.
Collapse
Affiliation(s)
- Honghui Li
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Gusu School, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jie Pu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Dongxue Yang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Gusu School, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Lu Liu
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Gusu School, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yingchao Hu
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Gusu School, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Shuo Yang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Gusu School, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Bingwei Wang
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| |
Collapse
|
6
|
Boshchenko AA, Maslov LN, Mukhomedzyanov AV, Zhuravleva OA, Slidnevskaya AS, Naryzhnaya NV, Zinovieva AS, Ilinykh PA. Peptides Are Cardioprotective Drugs of the Future: The Receptor and Signaling Mechanisms of the Cardioprotective Effect of Glucagon-like Peptide-1 Receptor Agonists. Int J Mol Sci 2024; 25:4900. [PMID: 38732142 PMCID: PMC11084666 DOI: 10.3390/ijms25094900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 05/13/2024] Open
Abstract
The high mortality rate among patients with acute myocardial infarction (AMI) is one of the main problems of modern cardiology. It is quite obvious that there is an urgent need to create more effective drugs for the treatment of AMI than those currently used in the clinic. Such drugs could be enzyme-resistant peptide analogs of glucagon-like peptide-1 (GLP-1). GLP-1 receptor (GLP1R) agonists can prevent ischemia/reperfusion (I/R) cardiac injury. In addition, chronic administration of GLP1R agonists can alleviate the development of adverse cardiac remodeling in myocardial infarction, hypertension, and diabetes mellitus. GLP1R agonists can protect the heart against oxidative stress and reduce proinflammatory cytokine (IL-1β, TNF-α, IL-6, and MCP-1) expression in the myocardium. GLP1R stimulation inhibits apoptosis, necroptosis, pyroptosis, and ferroptosis of cardiomyocytes. The activation of the GLP1R augments autophagy and mitophagy in the myocardium. GLP1R agonists downregulate reactive species generation through the activation of Epac and the GLP1R/PI3K/Akt/survivin pathway. The GLP1R, kinases (PKCε, PKA, Akt, AMPK, PI3K, ERK1/2, mTOR, GSK-3β, PKG, MEK1/2, and MKK3), enzymes (HO-1 and eNOS), transcription factors (STAT3, CREB, Nrf2, and FoxO3), KATP channel opening, and MPT pore closing are involved in the cardioprotective effect of GLP1R agonists.
Collapse
Affiliation(s)
- Alla A. Boshchenko
- Department of Atherosclerosis and Chronic Coronary Heart Disease, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Leonid N. Maslov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Alexander V. Mukhomedzyanov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Olga A. Zhuravleva
- Department of Atherosclerosis and Chronic Coronary Heart Disease, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Alisa S. Slidnevskaya
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Natalia V. Naryzhnaya
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Arina S. Zinovieva
- Department of Atherosclerosis and Chronic Coronary Heart Disease, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Philipp A. Ilinykh
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
7
|
Xiong C, Yu Q, Gao F, Liu S, Zhang J, Ma T, Liu S. Prognostic significance of IL-18 in acute coronary syndrome patients. Clin Cardiol 2024; 47:e24229. [PMID: 38402570 PMCID: PMC10823553 DOI: 10.1002/clc.24229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND After acute coronary syndrome (ACS), inflammation aids healing but may harm the heart. Interleukin (IL)-18 and IL-1β are pivotal proinflammatory cytokines released during pyroptosis, a process that initiates and sustains inflammation. This study aimed to evaluate the levels of circulating IL-18 and IL-1β during the progression of ACS and to determine their association with subsequent clinical events in ACS patients. HYPOTHESIS Circulating levels of IL-18 and IL-1β are associated with subsequent clinical events in ACS patients. METHODS Employing immunoassays, we examined plasma levels of IL-1β and IL-18 in 159 ACS patients and matched them with 159 healthy controls. The primary composite endpoint included recurrent unstable angina, myocardial infarction, heart failure exacerbation, stroke, or cardiovascular death. RESULTS ACS patients exhibited a significant increase in plasma IL-18 levels, measuring 6.36 [4.46-9.88] × 102 pg/mL, in contrast to the control group with levels at 4.04 [3.21-4.94] × 102 pg/mL (p < 0.001). Conversely, plasma levels of IL-1β remained unchanged compared to the control group. Following a 25-month follow-up, IL-18 levels exceeding the median remained an important prognostic factor for adverse clinical events in ACS patients (hazard ratio = 2.37, 95% confidence interval: 1.14-4.91, p = 0.021). Besides, IL-18 displayed a nonlinear association with adverse clinical events (p nonlinear = 0.044). Subgroup analysis revealed that the correlation between IL-18 and the risk of adverse clinical events was not significantly affected by factors such as age, sex, history of diabetes, smoking, Gensini score, or ACS type (all p interaction >0.05). CONCLUSION IL-18 appears to hold potential as a predictive marker for anticipating clinical outcomes in patients with ACS.
Collapse
Affiliation(s)
- Chenchun Xiong
- Department of Cardiology, School of Medicine, Zhongshan Hospital of Xiamen UniversityXiamen UniversityXiamenFujianChina
| | - Qiaoting Yu
- Shengli Clinical Medical CollegeFujian Medical UniversityFuzhouFujianChina
| | - Feng Gao
- Department of Cardiology, School of Medicine, Zhongshan Hospital of Xiamen UniversityXiamen UniversityXiamenFujianChina
- Shengli Clinical Medical CollegeFujian Medical UniversityFuzhouFujianChina
| | - Song Liu
- Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Jianhui Zhang
- Department of Cardiology, School of Medicine, Zhongshan Hospital of Xiamen UniversityXiamen UniversityXiamenFujianChina
| | - Tianyi Ma
- Department of Cardiology, School of Medicine, Zhongshan Hospital of Xiamen UniversityXiamen UniversityXiamenFujianChina
| | - Suifeng Liu
- Department of Cardiology, School of Medicine, Zhongshan Hospital of Xiamen UniversityXiamen UniversityXiamenFujianChina
| |
Collapse
|
8
|
Maslov LN, Popov SV, Naryzhnaya NV, Mukhomedzyanov AV, Kurbatov BK, Derkachev IA, Boshchenko AA, Prasad NR, Ma H, Zhang Y, Sufianova GZ, Fu F, Pei JM. K ATP channels are regulators of programmed cell death and targets for the creation of novel drugs against ischemia/reperfusion cardiac injury. Fundam Clin Pharmacol 2023; 37:1020-1049. [PMID: 37218378 DOI: 10.1111/fcp.12924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/29/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND The use of percutaneous coronary intervention (PCI) in patients with ST-segment elevation myocardial infarction (STEMI) is associated with a mortality rate of 5%-7%. It is clear that there is an urgent need to develop new drugs that can effectively prevent cardiac reperfusion injury. ATP-sensitive K+ (KATP ) channel openers (KCOs) can be classified as such drugs. RESULTS KCOs prevent irreversible ischemia and reperfusion injury of the heart. KATP channel opening promotes inhibition of apoptosis, necroptosis, pyroptosis, and stimulation of autophagy. KCOs prevent the development of cardiac adverse remodeling and improve cardiac contractility in reperfusion. KCOs exhibit antiarrhythmic properties and prevent the appearance of the no-reflow phenomenon in animals with coronary artery occlusion and reperfusion. Diabetes mellitus and a cholesterol-enriched diet abolish the cardioprotective effect of KCOs. Nicorandil, a KCO, attenuates major adverse cardiovascular event and the no-reflow phenomenon, reduces infarct size, and decreases the incidence of ventricular arrhythmias in patients with acute myocardial infarction. CONCLUSION The cardioprotective effect of KCOs is mediated by the opening of mitochondrial KATP (mitoKATP ) and sarcolemmal KATP (sarcKATP ) channels, triggered free radicals' production, and kinase activation.
Collapse
Affiliation(s)
- Leonid N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Sergey V Popov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Natalia V Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Alexandr V Mukhomedzyanov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Boris K Kurbatov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Ivan A Derkachev
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Alla A Boshchenko
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - N Rajendra Prasad
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Galina Z Sufianova
- Department of Pharmacology, Tyumen State Medical University, Tyumen, Russia
| | - Feng Fu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jian-Ming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
9
|
Zheng X, Yin L, Song J, Chen J, Gu W, Shi M, Zhang H. ELABELA protects against diabetic kidney disease by activating high glucose-inhibited renal tubular autophagy. J Biomed Res 2023; 37:460-469. [PMID: 38018421 PMCID: PMC10687528 DOI: 10.7555/jbr.37.20220214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 11/30/2023] Open
Abstract
ELABELA (ELA), an endogenous ligand of the apelin receptor (also known as apelin peptide jejunum [APJ]), has been shown to decrease in the plasma of patients with diabetic kidney disease (DKD). In the current study, we explored the potential function as well as the underlying mechanisms of ELA in DKD. We first found that the ELA levels were decreased in the kidneys of DKD mice. Then, we found that ELA administration mitigated renal damage and downregulated the expression of fibronectin, collagen Ⅳ, and transforming growth factor-β1 in the db/db mice and the high glucose cultured HK-2 cells. Furthermore, the autophagy markers, Beclin-1 and LC3-Ⅱ/LC3-Ⅰ ratio, were significantly impaired in DKD, but the ELA treatment reversed these alterations. Mechanistically, the inhibitory effects of ELA on the secretion of fibrosis-associated proteins in high glucose conditions were blocked by pretreatment with 3-methyladenine (an autophagy inhibitor). In summary, these in vivo and in vitro results demonstrate that ELA effectively protects against DKD by activating high glucose-inhibited renal tubular autophagy, potentially serving as a novel therapeutic candidate for DKD.
Collapse
Affiliation(s)
- Xiyin Zheng
- Department of Endocrinology, the Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, China
| | - Lulu Yin
- Department of Endocrinology, the Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, China
| | - Jing Song
- Department of Endocrinology, the Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, China
| | - Juan Chen
- Department of Endocrinology, the Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, China
| | - Wensha Gu
- Department of Endocrinology, the Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, China
| | - Min Shi
- Department of Endocrinology, the Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, China
| | - Hong Zhang
- Department of Endocrinology, the Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, China
| |
Collapse
|
10
|
Bi M, Li D, Zhang J. Role of curcumin in ischemia and reperfusion injury. Front Pharmacol 2023; 14:1057144. [PMID: 37021057 PMCID: PMC10067738 DOI: 10.3389/fphar.2023.1057144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/23/2023] [Indexed: 03/22/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) is an inevitable pathological process after organic transplantations. Although traditional treatments restore the blood supply of ischemic organs, the damage caused by IRI is always ignored. Therefore, the ideal and effective therapeutic strategy to mitigate IRI is warrented. Curcumin is a type of polyphenols, processing such properties as anti-oxidative stress, anti-inflammation and anti-apoptosis. However, although many researches have been confirmed that curcumin can exert great effects on the mitigation of IRI, there are still some controversies about its underlying mechanisms among these researches. Thus, this review is to summarize the protective role of curcumin against IRI as well as the controversies of current researches, so as to clarify its underlying mechanisms clearly and provide clinicians a novel idea of the therapy for IRI.
Collapse
Affiliation(s)
- Minglei Bi
- Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Danyi Li
- Department of Ophthalmology, Jiading District Central Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jin Zhang
- Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- *Correspondence: Jin Zhang,
| |
Collapse
|