1
|
Ziqubu K, Dludla PV, Moetlediwa MT, Nyawo TA, Pheiffer C, Jack BU, Nkambule B, Mazibuko-Mbeje SE. Disease progression promotes changes in adipose tissue signatures in type 2 diabetic (db/db) mice: The potential pathophysiological role of batokines. Life Sci 2023; 313:121273. [PMID: 36521548 DOI: 10.1016/j.lfs.2022.121273] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/03/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
Unlike the white adipose tissue (WAT) which mainly stores excess energy as fat, brown adipose tissue (BAT) has become physiologically important and therapeutically relevant for its prominent role in regulating energy metabolism. The current study makes use of an established animal model of type 2 diabetes (T2D) db/db mice to determine the effect of the disease progression on adipose tissue morphology and gene regulatory signatures. Results showed that WAT and BAT from db/db mice display a hypertrophied phenotype that is consistent with increased expression of the pro-inflammatory cytokine, tumor necrosis factor-alpha (Tnf-α). Moreover, BAT from both db/db and non-diabetic db/+ control mice displayed an age-related impairment in glucose homeostasis, inflammatory profile, and thermogenic regulation, as demonstrated by reduced expression of genes like glucose transporter (Glut-4), adiponectin (AdipoQ), and uncoupling protein 1 (Ucp-1). Importantly, gene expression of the batokines regulating sympathetic neurite outgrowth and vascularization, including bone morphogenic protein 8b (Bmp8b), fibroblast growth factor 21 (Fgf-21), neuregulin 4 (Nrg-4) were altered in BAT from db/db mice. Likewise, gene expression of meteorin-like (Metrnl), growth differentiation factor 15 (Gdt-15), and C-X-C motif chemokine-14 (Cxcl-14) regulating pro- and anti-inflammation were altered. This data provides some new insights into the pathophysiological mechanisms involved in BAT hypertrophy (or whitening) and the disturbances of batokines during the development and progression of T2D. However, these are only preliminary results as additional experiments are necessary to confirm these findings in other experimental models of T2D.
Collapse
Affiliation(s)
- Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Marakiya T Moetlediwa
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa; Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Thembeka A Nyawo
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, University of Stellenbosch, Tygerberg 7505, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, University of Stellenbosch, Tygerberg 7505, South Africa; Department of Obstetrics and Gynaecology, Faculty of Health Science, University of Pretoria, Pretoria 0001, South Africa
| | - Babalwa U Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Bongani Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | | |
Collapse
|