1
|
Kosmas CE, Bousvarou MD, Papakonstantinou EJ, Zoumi EA, Rallidis LS. Lipoprotein (a) and cerebrovascular disease. J Int Med Res 2024; 52:3000605241264182. [PMID: 39082245 PMCID: PMC11295242 DOI: 10.1177/03000605241264182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/04/2024] [Indexed: 08/02/2024] Open
Abstract
The role of lipoprotein (a) [Lp(a)] in cerebrovascular disease is a topic of importance. In this narrative review, pertinent studies have been leveraged to comprehensively examine this relationship from diverse perspectives.Lp(a) shares structural traits with low-density lipoprotein cholesterol. Lp(a) is synthesized by hepatocytes, and its plasma levels are genetically determined by the LPA gene, which produces apolipoprotein (a).Numerous epidemiological studies have confirmed the positive correlation between elevated serum Lp(a) levels and the occurrence or recurrence of cerebrovascular events, especially ischemic strokes, in adults. It should be noted that the correlation strength varies among studies and is marginal in Mendelian randomization studies.Regarding pediatric patients, screening is currently limited to those with a relevant medical history. Lp(a) seems to play a significant role in the pathogenesis of arterial ischemic stroke in children because environmental thrombotic and atherogenic factors are generally not present.Phase 3 trials of novel Lp(a) targeting agents, such as pelacarsen and olpasiran, are anticipated to demonstrate their efficacy in reducing the incidence of stroke. Given the richness of the literature, new guidelines regarding Lp(a) screening and management in targeted populations are warranted to provide more effective primary and secondary prevention.
Collapse
Affiliation(s)
- Constantine E. Kosmas
- 2nd Department of Cardiology, National & Kapodistrian University of Athens, Athens, Greece
| | | | | | | | - Loukianos S. Rallidis
- 2nd Department of Cardiology, National & Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Sosnowska B, Stepinska J, Mitkowski P, Bielecka-Dabrowa A, Bobrowska B, Budzianowski J, Burchardt P, Chlebus K, Dobrowolski P, Gasior M, Jankowski P, Kubica J, Mickiewicz A, Mysliwiec M, Osadnik T, Prejbisz A, Rajtar-Salwa R, Wita K, Witkowski A, Gil R, Banach M. Recommendations of the Experts of the Polish Cardiac Society (PCS) and the Polish Lipid Association (PoLA) on the diagnosis and management of elevated lipoprotein(a) levels. Arch Med Sci 2024; 20:8-27. [PMID: 38414479 PMCID: PMC10895977 DOI: 10.5114/aoms/183522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/29/2024] Open
Abstract
Lipoprotein(a) [Lp(a)] is made up of a low-density lipoprotein (LDL) particle and a specific apolipoprotein(a). The blood concentration of Lp(a) is approximately 90% genetically determined, and the main genetic factor determining Lp(a) levels is the size of the apo(a) isoform, which is determined by the number of KIV2 domain repeats. The size of the apo(a) isoform is inversely proportional to the blood concentration of Lp(a). Lp(a) is a strong and independent cardiovascular risk factor. Elevated Lp(a) levels ≥ 50 mg/dl (≥ 125 nmol/l) are estimated to occur in more than 1.5 billion people worldwide. However, determination of Lp(a) levels is performed far too rarely, including Poland, where, in fact, it is only since the 2021 guidelines of the Polish Lipid Association (PoLA) and five other scientific societies that Lp(a) measurements have begun to be performed. Determination of Lp(a) concentrations is not easy due to, among other things, the different sizes of the apo(a) isoforms; however, the currently available certified tests make it possible to distinguish between people with low and high cardiovascular risk with a high degree of precision. In 2022, the first guidelines for the management of patients with elevated lipoprotein(a) levels were published by the European Atherosclerosis Society (EAS) and the American Heart Association (AHA). The first Polish guidelines are the result of the work of experts from the two scientific societies and their aim is to provide clear, practical recommendations for the determination and management of elevated Lp(a) levels.
Collapse
Affiliation(s)
- Bożena Sosnowska
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland
| | | | - Przemyslaw Mitkowski
- 1 Department of Cardiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Agata Bielecka-Dabrowa
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland
- Department of Cardiology and Adult Congenital Defects, Polish Mother’s Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Beata Bobrowska
- Department of Clinical Cardiology and Cardiovascular Interventions, University Hospital in Krakow, Krakow, Poland
| | - Jan Budzianowski
- Department of Interventional Cardiology and Cardiac Surgery, University of Zielona Gora, Collegium Medicum, Zielona Gora, Poland
- Multidisciplinary Hospital, Nowa Sol, Poland
| | - Pawel Burchardt
- Department of Cardiology, J. Strus Hospital, Poznan, Poland
- Department of Hypertension, Angiology and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Krzysztof Chlebus
- National Center for Familial Hypercholesterolemia, 1 Chair and Department of Cardiology, Medical University of Gdansk, Gdansk, Poland
| | - Piotr Dobrowolski
- Department of Epidemiology, Cardiovascular Disease Prevention and Health Promotion, National Institute of Cardiology, Warsaw, Poland
| | - Mariusz Gasior
- 3 Department of Cardiology, Silesian Centre for Heart Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Zabrze, Poland
| | - Piotr Jankowski
- Department of Internal Medicine and Geriatric Cardiology, Medical Centre for Postgraduate Education, Warsaw, Poland
| | - Jacek Kubica
- Department of Cardiology and Internal Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Agnieszka Mickiewicz
- Lipoprotein Apheresis Laboratory, 1 Department of Cardiology, Medical University of Gdansk, Gdansk, Poland
| | - Malgorzata Mysliwiec
- Department of Paediatrics, Diabetology and Endocrinology, Medical University of Gdansk, Gdansk, Poland
| | - Tadeusz Osadnik
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Aleksander Prejbisz
- Department of Epidemiology, Cardiovascular Disease Prevention and Health Promotion, National Institute of Cardiology, Warsaw, Poland
| | - Renata Rajtar-Salwa
- Department of Clinical Cardiology and Cardiovascular Interventions, University Hospital in Krakow, Krakow, Poland
| | - Kristian Wita
- 1 Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Adam Witkowski
- Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warsaw, Poland
| | - Robert Gil
- Department of Cardiology, National Medical Institute of the Ministry of Internal Affairs and Administration, Warsaw, Poland
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland
- Department of Cardiology and Adult Congenital Defects, Polish Mother’s Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
- Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
3
|
Dong W, Zhong X, Yuan K, Miao M, Zhai Y, Che B, Xu T, Xu X, Zhong C. Lipoprotein(a) and functional outcome of acute ischemic stroke when discordant with low-density lipoprotein cholesterol. Postgrad Med J 2023; 99:1160-1166. [PMID: 37624118 DOI: 10.1093/postmj/qgad070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Several studies have indicated that residual cardiovascular risk might be associated with elevated lipoprotein(a) [Lp(a)] even in the setting of controlled low-density lipoprotein cholesterol (LDL-C). We aimed to prospectively examine the association between Lp(a) and unfavorable functional outcome among patients with acute ischemic stroke when Lp(a) and LDL-C were discordant. METHODS Based on samples from the Infectious Factors, Inflammatory Markers and Prognosis of Acute Ischemic Stroke study, 973 patients with baseline plasma Lp(a) levels were included. The primary outcome was the composite outcome of death or major disability (modified Rankin Scale score of 3-6) at 6 months. Logistic regression models were used to estimate the risk for the primary outcome. Discordance analyses were performed, using difference in percentile units (>10 units), to detect the relative risk when Lp(a) and LDL-C were discordant. RESULTS In total, 201 (20.7%) participants experienced major disability or death at 6 months. The multivariable-adjusted odds ratio (OR) for the highest quartile was 1.88 [95% confidence interval (CI): 1.16-3.04] compared with the lowest quartile. Each 1-SD higher log-Lp(a) was associated with a 23% increased risk (95% CI: 2%-47%) for the primary outcome. Compared with the concordant group, the high Lp(a)/low LDL-C discordant group was associated with increased risk for the primary outcome (adjusted OR: 1.59, 95% CI: 1.01-2.52). CONCLUSIONS Elevated plasma Lp(a) levels were associated with increased risk of major disability and death at 6 months. Discordantly high Lp(a)/low LDL-C was associated with an unfavorable functional outcome, supporting the predictive potential of plasma Lp(a) after ischemic stroke, especially when discordant with LDL-C. Key messages What is already known on this topic Previous studies have indicated that a positive association between increased lipoprotein(a) [Lp(a)] and cardiovascular disease risk remained even in patients who achieved controlled low-density lipoprotein cholesterol (LDL-C) levels. The findings of studies exploring the association between Lp(a) and unfavorable clinical outcomes of stroke were inconsistent, and whether Lp(a) can predict the risk of unfavorable functional outcome in stroke patients when Lp(a) and LDL-C levels are discordant remains unknown. What this study adds Elevated plasma Lp(a) levels were associated with increased risk of major disability and death at 6 months beyond LDL-C levels in acute ischemic stroke patients. How this study might affect research, practice, or policy The combination of LDL-C-lowering therapies and Lp(a)-lowering therapies may have better clinical efficacy for patients with ischemic stroke, and it is of great clinical interest to further explore this possibility in dedicated randomized trials.
Collapse
Affiliation(s)
- Wenjing Dong
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Xiaoyan Zhong
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Ke Yuan
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Mengyuan Miao
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Yujia Zhai
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Bizhong Che
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Tan Xu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Xiang Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Chongke Zhong
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| |
Collapse
|
4
|
Chang YC, Hsu LA, Ko YL. Exploring PCSK9 Genetic Impact on Lipoprotein(a) via Dual Approaches: Association and Mendelian Randomization. Int J Mol Sci 2023; 24:14668. [PMID: 37834124 PMCID: PMC10572552 DOI: 10.3390/ijms241914668] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Previous investigations have suggested an association between the PCSK9 common polymorphism E670G and Lipoprotein(a) (Lp(a)) levels, as well as a link between plasma PCSK9 levels and Lp(a) concentrations. However, the causal relationship between plasma PCSK9 and Lp(a) levels remains uncertain. In this study, we explored the association between PCSK9 E670G polymorphism and Lp(a) levels in 614 healthy Taiwanese individuals. Employing a two-sample Mendelian randomization (MR) analysis using openly accessible PCSK9 and Lp(a) summary statistics from the genome-wide association studies (GWAS) and UK Biobank, we aimed to determine if a causal link exists between plasma PCSK9 levels and Lp(a) concentrations. Our findings reveal that the E670G G allele is independently associated with a decreased likelihood of developing elevated Lp(a) levels. This association persists even after adjusting for common cardiovascular risk factors and irrespective of lipid profile variations. The MR analysis, utilizing six PCSK9 GWAS-associated variants as instrumental variables to predict plasma PCSK9 levels, provides compelling evidence of a causal relationship between plasma PCSK9 levels and Lp(a) concentration. In conclusion, our study not only replicates the association between the PCSK9 E670G polymorphism and Lp(a) levels but also confirms a causative relationship between PCSK9 levels and Lp(a) concentrations through MR analysis.
Collapse
Affiliation(s)
- Ya-Ching Chang
- Department of Dermatology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Tao-Yuan 33305, Taiwan;
| | - Lung-An Hsu
- Cardiovascular Division, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Tao-Yuan 33305, Taiwan
| | - Yu-Lin Ko
- Department of Research, Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan;
| |
Collapse
|
5
|
Kosmas CE, Bousvarou MD, Papakonstantinou EJ, Tsamoulis D, Koulopoulos A, Echavarria Uceta R, Guzman E, Rallidis LS. Novel Pharmacological Therapies for the Management of Hyperlipoproteinemia(a). Int J Mol Sci 2023; 24:13622. [PMID: 37686428 PMCID: PMC10487774 DOI: 10.3390/ijms241713622] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Lipoprotein(a) [Lp(a)] is a well-established risk factor for cardiovascular disease, predisposing to major cardiovascular events, including coronary heart disease, stroke, aortic valve calcification and abdominal aortic aneurysm. Lp(a) is differentiated from other lipoprotein molecules through apolipoprotein(a), which possesses atherogenic and antithrombolytic properties attributed to its structure. Lp(a) levels are mostly genetically predetermined and influenced by the size of LPA gene variants, with smaller isoforms resulting in a greater synthesis rate of apo(a) and, ultimately, elevated Lp(a) levels. As a result, serum Lp(a) levels may highly vary from extremely low to extremely high. Hyperlipoproteinemia(a) is defined as Lp(a) levels > 30 mg/dL in the US and >50 mg/dL in Europe. Because of its association with CVD, Lp(a) levels should be measured at least once a lifetime in adults. The ultimate goal is to identify individuals with increased risk of CVD and intervene accordingly. Traditional pharmacological interventions like niacin, statins, ezetimibe, aspirin, PCSK-9 inhibitors, mipomersen, estrogens and CETP inhibitors have not yet yielded satisfactory results. The mean Lp(a) reduction, if any, is barely 50% for all agents, with statins increasing Lp(a) levels, whereas a reduction of 80-90% appears to be required to achieve a significant decrease in major cardiovascular events. Novel RNA-interfering agents that specifically target hepatocytes are aimed in this direction. Pelacarsen is an antisense oligonucleotide, while olpasiran, LY3819469 and SLN360 are small interfering RNAs, all conjugated with a N-acetylgalactosamine molecule. Their ultimate objective is to genetically silence LPA, reduce apo(a) production and lower serum Lp(a) levels. Evidence thus so far demonstrates that monthly subcutaneous administration of a single dose yields optimal results with persisting substantial reductions in Lp(a) levels, potentially enhancing CVD risk reduction. The Lp(a) reduction achieved with novel RNA agents may exceed 95%. The results of ongoing and future clinical trials are eagerly anticipated, and it is hoped that guidelines for the tailored management of Lp(a) levels with these novel agents may not be far off.
Collapse
Affiliation(s)
- Constantine E. Kosmas
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Bronx, NY 10467, USA;
- Cardiology Clinic, Cardiology Unlimited, PC, New York, NY 10033, USA;
| | - Maria D. Bousvarou
- School of Medicine, University of Crete, 710 03 Heraklion, Greece; (M.D.B.); (A.K.)
| | | | - Donatos Tsamoulis
- First Department of Internal Medicine, Thriasio General Hospital of Eleusis, 196 00 Athens, Greece;
| | - Andreas Koulopoulos
- School of Medicine, University of Crete, 710 03 Heraklion, Greece; (M.D.B.); (A.K.)
| | | | - Eliscer Guzman
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Bronx, NY 10467, USA;
- Cardiology Clinic, Cardiology Unlimited, PC, New York, NY 10033, USA;
| | - Loukianos S. Rallidis
- 2nd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, University General Hospital ATTIKON, 124 62 Athens, Greece;
| |
Collapse
|
6
|
Tabibi H, Yari Z. Hyperlipoproteinemia (a) and Phytoestrogen Therapy in Dialysis Patients: A Review. Clin Ther 2023; 45:e171-e175. [PMID: 37442657 DOI: 10.1016/j.clinthera.2023.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023]
Abstract
PURPOSE Hyperlipoproteinemia (a) is a prevalent complication in dialysis patients, with no valid treatment strategy. The aim of this narrative review was to investigate the clinical significance of hyperlipoproteinemia (a) and phytoestrogen therapy in dialysis patients. METHODS A comprehensive literature search of the published data was performed regarding the effects of phytoestrogen therapy on hyperlipoproteinemia (a) in dialysis patients. FINDINGS Hyperlipoproteinemia (a) occurs in dialysis patients due to decreased catabolism and increased synthesis of lipoprotein (a) [Lp(a)]. A few clinical trials have studied the effects of phytoestrogens on serum Lp(a). All studies of dialysis patients or nonuremic individuals with hyperlipoproteinemia (a), except one, showed that phytoestrogens could significantly reduce serum Lp(a) levels. However, all investigations of phytoestrogen therapy in individuals with normal serum Lp(a) levels showed that it had no effect on serum Lp(a). Phytoestrogens seem to have effects similar to those of estrogen in lowering Lp(a) concentrations. IMPLICATIONS Considering the high prevalence of hyperlipoproteinemia (a) in dialysis patients, phytoestrogen therapy is a reasonable approach for reducing serum Lp(a) levels and its complications in these patients.
Collapse
Affiliation(s)
- Hadi Tabibi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Yari
- Department of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Yari Z. Review of Isoflavones and Their Potential Clinical Impacts on Cardiovascular and Bone Metabolism Markers in Peritoneal Dialysis Patients. Prev Nutr Food Sci 2022; 27:347-353. [PMID: 36721750 PMCID: PMC9843715 DOI: 10.3746/pnf.2022.27.4.347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 01/03/2023] Open
Abstract
Cardiovascular disease is the most important cause of mortality in patients with chronic kidney disease, including patients undergoing peritoneal dialysis. Oxidative stress, systemic and vascular inflammation, and lipid abnormalities are important causes of cardiovascular disease in these patients. Bone disorders are also a common complication in dialysis patients and can lead to bone fractures, decreased quality of life, vascular calcification, cardiovascular disease, and increased mortality. Studies in non-uremic populations have shown that soy isoflavones have beneficial effects on oxidative stress, inflammation, lipid abnormalities, and markers of bone metabolism; however, very few studies in this field have been conducted with peritoneal dialysis patients. This paper reviews the key data regarding the effects of soy isoflavones on cardiovascular disease and bone markers and discusses the role of this nutraceutical in preventing and managing the complications of peritoneal dialysis.
Collapse
Affiliation(s)
- Zahra Yari
- Department of Nutrition Research, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran,
Correspondence to Zahra Yari, E-mail:
| |
Collapse
|
8
|
Wang L, Liu L, Zhao Y, Chu M, Teng J. Lipoprotein(a) and residual vascular risk in statin-treated patients with first acute ischemic stroke: A prospective cohort study. Front Neurol 2022; 13:1004264. [PMID: 36408516 PMCID: PMC9671150 DOI: 10.3389/fneur.2022.1004264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/17/2022] [Indexed: 08/26/2023] Open
Abstract
OBJECTIVES Statins either barely affect or increase lipoprotein(a) [Lp(a)] levels. This study aimed to explore the factors correlated to the change of Lp(a) levels as well as the relationship between Lp(a) and the recurrent vascular events in statin-treated patients with first acute ischemic stroke (AIS). METHODS Patients who were admitted to the hospital with first AIS from October 2018 to September 2020 were eligible for inclusion. Correlation between the change of Lp(a) levels and potential influencing factors was assessed by linear regression analysis. Cox proportional regression models were used to estimate the association between Lp(a) and recurrent vascular events including AIS, transient ischemic attack, myocardial infarction and coronary revascularization. RESULTS In total, 303 patients, 69.6% males with mean age 64.26 ± 11.38 years, completed the follow-up. During the follow-up period, Lp(a) levels increased in 50.5% of statin-treated patients and the mean percent change of Lp(a) levels were 14.48% (95% CI 6.35-22.61%). Creatinine (β = 0.152, 95% CI 0.125-0.791, P = 0.007) and aspartate aminotransferase (AST) (β = 0.160, 95% CI 0.175-0.949, P = 0.005) were positively associated with the percent change of Lp(a) levels. During a median follow-up of 26 months, 66 (21.8%) patients had a recurrent vascular event. The median time period between AIS onset and vascular events recurrence was 9.5 months (IQR 2.0-16.3 months). The on-statin Lp(a) level ≥70 mg/dL (HR 2.539, 95% CI 1.076-5.990, P = 0.033) and the change of Lp(a) levels (HR 1.003, 95% CI 1.000-1.005, P = 0.033) were associated with the recurrent vascular events in statin-treated patients with first AIS. Furthermore, the on-statin Lp(a) levels ≥70 mg/dL (HR 3.612, 95% CI 1.018-12.815, P = 0.047) increased the risk of recurrent vascular events in patients with low-density lipoprotein cholesterol (LDL-C) levels < 1.8 mmol/L. CONCLUSIONS Lp(a) levels increased in half of statin-treated patients with first AIS. Creatinine and AST were positively associated with the percent change of Lp(a) levels. Lp(a) is a determinant of residual vascular risk and the change of Lp(a) is positively associated with the risk of recurrent vascular events in these patients.
Collapse
Affiliation(s)
- Lanjing Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Lijun Liu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yanhong Zhao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Min Chu
- Department of Neurology, Minhang Hospital, Fudan University, Qingdao, China
| | - Jijun Teng
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Shaikh RF, Ali MT, Mohsin AA, Hiware SD, Ahmad A, Daimi SRH, Moizuddin K, Shaikh SA, Siddiqui FB. A Comparative Study on Clinical Evaluation of the Hypolipidemic Effects of Allium sativum, Trigonella foenum-graecum, Commiphora mukul, Picrorhiza kurroa, and Piper nigrum: A Pilot Study. Cureus 2022; 14:e26597. [PMID: 35936152 PMCID: PMC9354914 DOI: 10.7759/cureus.26597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/05/2022] [Indexed: 12/01/2022] Open
Abstract
Background Cardiovascular disease is a leading cause of morbidity and mortality. Therefore, it is essential to prevent cardiovascular diseases by correcting modifiable risk factors such as lowering lipid levels, lowering blood pressure, improving eating habits, giving up smoking, etc. The present study assessed the efficacy of herbal preparation containing Allium sativum (A. sativum), Commiphora mukul (C. mukul), and Trigonella foenum-graecum (T. foenum-graecum) in patients with hyperlipidemia. Methodology Patients were given extracts of A. sativum 350 mg, T. foenum-graecum 350 mg, C. mukul 200 mg, Picrorhiza kurroa (P. kurroa) 200 mg, and Piper nigrum (P. nigrum) 5 mg. Unichem Laboratories, Mumbai, provided placebo tablets similar in shape and size to herbal tablets. Patients were assessed for compliance, and a complete lipid profile was done at DO, D15, D46, D76, and D106. In addition, total cholesterol and high-density lipoprotein-cholesterol (HDL-C) serum triglyceride were estimated by the respective methods throughout the study. Results The weight of the patients remained stable, the mean weight before being 65.42 ± 8.35 kg and after completion of the study being 65.42 ± 8.35 kg. There were no changes in the ECG during or after the drug therapy in any of the patients. Group A comprised nine patients, and group B had ten patients. Serum creatinine (mg %) was 0.94 and 0.95, fasting blood sugar mg (%) was 111.05 and 99.63, and postprandial blood sugar (mg %) was 150.89 and 147.94 on pre-treatment and post-treatment, respectively. The mean serum triglyceride levels in group A were 271.11, 261.11, 293.89, 167.22, and 128.89, and serum HDL- C levels were 46.11, 46.11, 54.44, 52.22, and 54.44. Serum triglyceride levels in group B were 268, 268.5, 202, 171, and 116, and serum HDL- C levels were 48.5, 48, 50, 50, and 53.5 on day 0, 15, 46, 76, and 106, respectively. A significant reduction in total cholesterol levels was observed on D46, D76, and D106, with a maximum reduction on D76 (25.36%). Similarly, a reduction in serum triglyceride was also observed on D46, D76, and D106, with a maximum reduction on D106 (52.02%). A significant difference was observed (P <0.05). There was also a significant reduction of low-density lipoprotein cholesterol (LDL-C) on D46, D76, and D106, with the maximum reduction on D76 (28.79%). There was a significant rise of HDL-C on D46 and D106, with a maximum rise on D106 (15.41%). A significant difference was observed (P <0.05). Conclusion The study drugs are safe and efficacious in reducing the total cholesterol, serum triglycerides, LDL-C levels, and increasing HDL-C levels.
Collapse
|
10
|
The Association of Lipoprotein(a) and Circulating Monocyte Subsets with Severe Coronary Atherosclerosis. J Cardiovasc Dev Dis 2021; 8:jcdd8060063. [PMID: 34206012 PMCID: PMC8228191 DOI: 10.3390/jcdd8060063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 01/02/2023] Open
Abstract
Background and aims: Chronic inflammation associated with the uncontrolled activation of innate and acquired immunity plays a fundamental role in all stages of atherogenesis. Monocytes are a heterogeneous population and each subset contributes differently to the inflammatory process. A high level of lipoprotein(a) (Lp(a)) is a proven cardiovascular risk factor. The aim of the study was to investigate the association between the increased concentration of Lp(a) and monocyte subpopulations in patients with a different severity of coronary atherosclerosis. Methods: 150 patients (124 males) with a median age of 60 years undergoing a coronary angiography were enrolled. Lipids, Lp(a), autoantibodies, blood cell counts and monocyte subpopulations (classical, intermediate, non-classical) were analyzed. Results: The patients were divided into two groups depending on the Lp(a) concentration: normal Lp(a) < 30 mg/dL (n = 82) and hyperLp(a) ≥ 30 mg/dL (n = 68). Patients of both groups were comparable by risk factors, autoantibody levels and blood cell counts. In patients with hyperlipoproteinemia(a) the content (absolute and relative) of non-classical monocytes was higher (71.0 (56.6; 105.7) vs. 62.2 (45.7; 82.4) 103/mL and 17.7 (13.0; 23.3) vs. 15.1 (11.4; 19.4) %, respectively, p < 0.05). The association of the relative content of non-classical monocytes with the Lp(a) concentration retained a statistical significance when adjusted for gender and age (r = 0.18, p = 0.03). The severity of coronary atherosclerosis was associated with the Lp(a) concentration as well as the relative and absolute (p < 0.05) content of classical monocytes. The high content of non-classical monocytes (OR = 3.5, 95% CI 1.2–10.8) as well as intermediate monocytes (OR = 8.7, 2.5–30.6) in patients with hyperlipoproteinemia(a) were associated with triple-vessel coronary disease compared with patients with a normal Lp(a) level and a low content of monocytes. Conclusion: Hyperlipoproteinemia(a) and a decreased quantity of classical monocytes were associated with the severity of coronary atherosclerosis. The expansion of CD16+ monocytes (intermediate and non-classical) in the presence of hyperlipoproteinemia(a) significantly increased the risk of triple-vessel coronary disease.
Collapse
|
11
|
Ma N, Fan L, Dong Y, Xu X, Yu C, Chen J, Ren J. New PCSK9 inhibitor miR-552-3p reduces LDL-C via enhancing LDLR in high fat diet-fed mice. Pharmacol Res 2021; 167:105562. [PMID: 33737240 DOI: 10.1016/j.phrs.2021.105562] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/31/2022]
Abstract
PCSK9 has emerged as a promising new therapeutic target for hyperlipidemia. The efficacy of PCSK9 siRNA in clinic trials clues the feasibility of exploring more PCSK9 inhibitors based on genetic inhibition in the treatment of hyperlipidemia. MicroRNAs (miRNAs) as a class of endogenous non-coding small RNAs can regulate genes at transcriptional and/or translational level. Here, we screened miRNAs from the prediction of TargetScan database with possible inhibitory activities in PCSK9 protein level via AlphaLISA and Western blotting, in which miR-552-3p was selected out for its strongest inhibitory effect. MiR-552-3p could bind to the 3' untranslated region (3'-UTR) of PCSK9 to inhibit translation and interact with the promoter of PCSK9 to suppress transcription. Further in vitro and in vivo experiments proved the effects of miR-552-3p on PCSK9 and downstream effectors: it could increase LDLR protein level, promote LDL-C uptake in HepG2 cells and lower serum LDL-C in high fat diet (HFD)-fed mice. In conclusion, our findings firstly identified miR-552-3p as a new PCSK9 inhibitor with the dual-inhibition mechanism, which suggested the possible application of miR-552-3p in the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Ningning Ma
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing 100049, China
| | - Lei Fan
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing 100049, China
| | - Yunxia Dong
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing 100049, China
| | - Xiaoding Xu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing 100049, China
| | - Chuwei Yu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing 100049, China
| | - Jing Chen
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing 100049, China.
| | - Jin Ren
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
12
|
Kosmas CE, Skavdis A, Sourlas A, Papakonstantinou EJ, Peña Genao E, Echavarria Uceta R, Guzman E. Safety and Tolerability of PCSK9 Inhibitors: Current Insights. Clin Pharmacol 2020; 12:191-202. [PMID: 33335431 PMCID: PMC7737942 DOI: 10.2147/cpaa.s288831] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
The current era of preventive cardiology continues to emphasize on low-density lipoprotein cholesterol (LDL-C) reduction to alleviate the burden of atherosclerotic cardiovascular disease (ASCVD). In this regard, the pharmacological inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) enzyme via monoclonal antibodies has emerged as a novel lipid-lowering therapy, leading to a marked reduction in circulating LDL-C levels and subsequent improvement of cardiovascular outcomes. As these agents are increasingly used in current clinical practice, mounting scientific and clinical evidence supports that PCSK9 inhibitors offer an excellent safety and tolerability profile with a low incidence of adverse events. Notably, the most frequently reported side effects are injection-site reactions. In contrast to statins, PCSK9 inhibitors do not appear to exert a detrimental effect on glycemic control or to increase the incidence of new-onset diabetes mellitus. Accumulating evidence also indicates that PCSK9 inhibitors are a safe, well-tolerated and effective therapeutic strategy for patients with statin intolerance. On the other hand, as PCSK9 inhibitors reduce LDL-C to unprecedented low levels, a large body of current research has examined the effects of their long-term administration on neurocognition and on levels of vitamin E and other fat-soluble vitamins, providing encouraging results. This review aims to present and discuss the current clinical and scientific evidence pertaining to the safety and tolerability of PCSK9 inhibitors.
Collapse
Affiliation(s)
- Constantine E Kosmas
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | | | | | | | | | | | - Eliscer Guzman
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
13
|
Increased cardiovascular risk associated with hyperlipoproteinemia (a) and the challenges of current and future therapeutic possibilities. Anatol J Cardiol 2020; 23:60-69. [PMID: 32011323 PMCID: PMC7040869 DOI: 10.14744/anatoljcardiol.2019.56068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Population, genetic, and clinical studies demonstrated a causative and continuous, from other plasma lipoproteins independent relationship between elevated plasma lipoprotein (a) [Lp(a)] concentration and the development of cardiovascular disease (CVD), mainly those related to athe-rosclerotic CVD, and calcific aortic stenosis. Currently, a strong international consensus is still lacking regarding the single value which would be commonly used to define hyperlipoproteinemia (a). Its prevalence in the general population is estimated to be in the range of 10%–35% in accordance with the most commonly used threshold levels (>30 or >50 mg/dL). Since elevated Lp(a) can be of special importance in patients with some genetic disorders, as well as in individuals with otherwise controlled major risk factors, the identification and establishment of the proper therapeutic interventions that would lower Lp(a) levels and lead to CVD risk reduction could be very important. The majority of the classical lipid-lowering agents (statins, ezetimibe, and fibrates), as well as nutraceuticals (CoQ10 and garlic), appear to have no significant effect on its plasma levels, whereas for the drugs with the demonstrated Lp(a)-lowering effects (aspirin, niacin, and estrogens), their clinical efficacy in reducing cardiovascular (CV) events has not been unequivocally proven yet. Both Lp(a) apheresis and proprotein convertase subtilisin/kexin type 9 inhibitors can reduce the plasma Lp(a) by approximately 20%–30% on average, in parallel with much larger reduction of low-density lipoprotein cholesterol (up to 70%), what puts us in a difficulty to conclude about the true contribution of lowered Lp(a) to the reduction of CV events. The most recent advancement in the field is the introduction of the novel apolipoprotein (a) [apo(a)] antisense oligonucleotide therapy targeting apo(a), which has already proven itself as being very effective in decreasing plasma Lp(a) (by even >90%), but should be further tested in clinical trials. The aim of this review was to present some of the most important accessible scientific data, as well as dilemmas related to the currently and potentially in the near future more widely available therapeutic options for the management of hyperlipoproteinemia (a).
Collapse
|
14
|
Yari Z, Tabibi H, Najafi I, Hedayati M, Movahedian M. Effects of soy isoflavones on serum lipids and lipoprotein (a) in peritoneal dialysis patients. Nutr Metab Cardiovasc Dis 2020; 30:1382-1388. [PMID: 32513581 DOI: 10.1016/j.numecd.2020.04.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIM Lipid abnormalities are common in peritoneal dialysis (PD) patients and no effective treatment to decrease serum lipoprotein (a) [Lp(a)] in dialysis patients is known so far. Therefore, this research was designed to investigate the effects of soy isoflavone supplement on serum lipids and Lp(a) in PD patients. METHODS & RESULTS In this randomized, double-blind, placebo-controlled trial, 40 PD patients were randomly assigned to either the isoflavone or the placebo group. The patients in the isoflavone group received 100 mg soy isoflavone daily for 8 weeks, whereas the placebo group received corresponding placebos. At baseline and the end of the 8th week, 7 mL of blood was obtained from each patient and serum triglycerides, total cholesterol, low density lipoprotein-cholesterol (LDL-C), high density lipoprotein-cholesterol (HDL-C), and Lp(a) were measured. Serum Lp(a) reduced significantly up to 10% in the isoflavone group at the end of week 8 compared to baseline (P < 0.05), and the reduction was significant in comparison with the placebo group (P < 0.05). Serum HDL-C increased significantly up to 11.5% in the isoflavone group at the end of week 8 compared to baseline (P = 0.05), and the increment was significant in comparison with the placebo group (P < 0.05). There were no significant differences between the two groups in mean changes of serum triglycerides, total cholesterol, and LDL-C. CONCLUSIONS This study indicates that daily administration of 100 mg soy isoflavones reduces serum Lp(a) and increases HDL-C concentration which are two determinants of cardiovascular disease in PD patients. CLINICALTRIALS.GOV: NCT03773029. REGISTRATION NUMBER AND DATE NCT03773029 - 2018.
Collapse
Affiliation(s)
- Zahra Yari
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Hadi Tabibi
- Department of Clinical Nutrition & Dietetics, National Nutrition and Food Technology Research Institute, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Iraj Najafi
- Department of Nephrology, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Mina Movahedian
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| |
Collapse
|
15
|
Lippi G, Favaloro EJ, Sanchis-Gomar F. Antisense lipoprotein[a] therapy: State-of-the-art and future perspectives. Eur J Intern Med 2020; 76:8-13. [PMID: 32336611 DOI: 10.1016/j.ejim.2020.04.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Several lines of evidence now attest that lipoprotein[a] (Lp[a]) is a significant risk factor for many cardiovascular disorders. This enigmatic lipoprotein, composed of a single copy of apolipoprotein B (apoB) and apolipoprotein[a] (apo [a]), expresses peculiar metabolism, virtually independent from lifestyle interventions. Several therapeutic options have hence been proposed for lowering elevated Lp[a] values, with or without concomitant effect on low density lipoprotein (LDL) particles, mostly encompassing statins, ezetimibe, nicotinic acid, lipoprotein apheresis, and anti-PCSK9 monoclonal antibodies. Since all these medical treatments have some technical and clinical drawbacks, a novel strategy is currently being proposed, based on the use of antisense apo[a] and/or apoB inhibitors. Although the role of these agents in hypercholesterolemic patients is now nearby entering clinical practice, the collection of information on Lp[a] is still underway. Preliminary evidence would suggest that apo[a] antisense therapy seems more appropriate in patients with isolated Lp[a] elevations, while apoB antisense therapy is perhaps more advisable in patients with isolated LDL elevations. In patients with concomitant elevations of Lp[a] and LDL, either combining the two apo[a] and apoB antisense therapies (a strategy which has never been tested), or the combination of well-known and relatively inexpensive drugs such as statins with antisense apo[a] inhibitors can be theoretically suggested. The results of an upcoming phase 3 study with antisense apo[a] inhibitors will hopefully provide definitive clues as to whether this approach may become the standard of care in patients with increased Lp[a] concentrations.
Collapse
Affiliation(s)
- Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy.
| | - Emmanuel J Favaloro
- Department of Haematology, Sydney Centres for Thrombosis and Haemostasis, Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Fabian Sanchis-Gomar
- Department of Physiology, Faculty of Medicine, University of Valencia and INCLIVA Biomedical Research Institute, Valencia, Spain
| |
Collapse
|