1
|
MORBIDITY AND MORTALITY OF HAWAIIAN GEESE (BRANTA SANDVICENSIS) AND LAYSAN ALBATROSS (PHOEBASTRIA IMMUTABILIS) ASSOCIATED WITH RETICULOENDOTHELIOSIS VIRUS. J Wildl Dis 2022; 58:756-768. [PMID: 35917401 DOI: 10.7589/jwd-d-21-00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/04/2022] [Indexed: 12/04/2022]
Abstract
Only one virus, Avipox, has been documented previously in wild birds in Hawaii. Using immunohistochemistry and PCR, we found that two native threatened Hawaiian Geese (Branta sandvicensis), one with multicentric histiocytoma and the other with toxoplasmosis, and one Laysan Albatross (Phoebastria immutabilis) with avian pox were infected with reticuloendotheliosis virus (REV). The virus was isolated from one of the geese by cell culture. Surveys of other Hawaiian geese with various pathologies, avian pox cases, and pox viral isolates using PCR failed to reveal REV, suggesting that the virus is uncommon, at least in samples examined. The full genome of the Gag, Pol, and Env genes were sequenced for all three infected birds and revealed geographic divergence of the Pol gene, suggesting it to be under strong selective pressure. Our finding of REV in Hawaii makes this only the second virus documented in native Hawaiian birds associated with pathology. Moreover, the presence of REV in a pelagic seabird is unusual. Future surveys should seek the reservoir of the virus in efforts to trace its origins.
Collapse
|
2
|
Hofmeister E, Georgousi F, Lund M, Ferro PJ, Flanagan J, Haefele H, Morrow M. Genetic Sequencing of Attwater's Prairie Chicken Avian Poxvirus and Evaluation of Its Potential Role in Reticuloendotheliosis Virus Outbreaks. Avian Dis 2021; 65:414-418. [PMID: 34427416 DOI: 10.1637/0005-2086-65.3.414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/21/2021] [Indexed: 11/05/2022]
Abstract
Efforts to breed Attwater's prairie chickens (APC; Tympanuchus cupido attwateri) in captivity to supplement wild populations of this endangered bird have been negatively affected by infections with Avipoxvirus and reticuloendotheliosis virus (REV). Because REV can be integrated into the genome of fowlpox virus (FPV) and may be transmitted in that manner, identifying the source of avipox disease in APC is important to mitigate the impact of this virus. Tissue samples from APC were collected from breeding programs in Texas from 2016 to 2020. These samples consisted of 11 skin lesions and three internal organs from a total of 14 different birds that died of unknown causes or were euthanized. Avipoxvirus was detected by PCR and isolation in embryonating chicken eggs in all skin lesion samples but was not detected in internal organs. Using sequence analysis of FPV polymerase and 4b genes, we determined that 10 out of 11 Avipoxvirus detections resided within the fowlpox clade and a single sample resided within the canarypox clade. REV sequences were detected in all FPV positive samples and in all internal organ tissues but were not detected in the sample matching the canarypox clade. Analysis of REV sequences and PCR detection showed the REV infecting APC was consistent with REV-A and had little variability on analysis of the U3 region of the long terminal repeat. The results of this study indicate control of REV in APC breeding colonies may benefit by a vaccination program targeting FPV and REV. However, a commercially available vaccine for REV is not available at this time.
Collapse
Affiliation(s)
- Erik Hofmeister
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI 53711,
| | - Fiona Georgousi
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI 53711
| | - Melissa Lund
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI 53711
| | - Pamela J Ferro
- Texas A&M Veterinary Medical Diagnostics Laboratory, College Station, TX 77843
| | | | | | - Michael Morrow
- U.S. Fish and Wildlife Service, Attwater Prairie Chicken National Wildlife Refuge, Eagle Lake, TX 77434
| |
Collapse
|
3
|
Yang D, Zhao C, Zhang M, Zhang S, Zhai J, Gao X, Liu C, Lv X, Zheng S. Changes in oxidation-antioxidation function on the thymus of chickens infected with reticuloendotheliosis virus. BMC Vet Res 2020; 16:483. [PMID: 33308224 PMCID: PMC7731740 DOI: 10.1186/s12917-020-02708-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 12/02/2020] [Indexed: 12/25/2022] Open
Abstract
Background Reticuloendotheliosis virus (REV) is a retrovirus that causes severe immunosuppression in poultry. Animals grow slowly under conditions of oxidative stress. In addition, long-term oxidative stress can impair immune function, as well as accelerate aging and death. This study aimed to elucidate the pathogenesis of REV from the perspective of changes in oxidative-antioxidative function following REV infection. Methods A total of 80 one-day-old specific pathogen free (SPF) chickens were randomly divided into a control group (Group C) and an REV-infected group (Group I). The chickens in Group I received intraperitoneal injections of REV with 104.62/0.1 mL TCID50. Thymus was collected on day 1, 3, 7, 14, 21, 28, 35, and 49 for histopathology and assessed the status of oxidative stress. Results In chickens infected with REV, the levels of H2O2 and MDA in the thymus increased, the levels of TAC, SOD, CAT, and GPx1 decreased, and there was a reduction in CAT and Gpx1 mRNA expression compared with the control group. The thymus index was also significantly reduced. Morphological analysis showed that REV infection caused an increase in the thymic reticular endothelial cells, inflammatory cell infiltration, mitochondrial swelling, and nuclear damage. Conclusions These results indicate that an increase in oxidative stress enhanced lipid peroxidation, markedly decreased antioxidant function, caused thymus atrophy, and immunosuppression in REV-infected chickens.
Collapse
Affiliation(s)
- Dahan Yang
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine Harbin, 150030, Harbin, People's Republic of China
| | - Chenhui Zhao
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine Harbin, 150030, Harbin, People's Republic of China
| | - Meixi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China.,WuXi AppTec (Suzhou)Co., Ltd, 215000, Suzhou, People's Republic of China
| | - Shujun Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine Harbin, 150030, Harbin, People's Republic of China
| | - Jie Zhai
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine Harbin, 150030, Harbin, People's Republic of China
| | - XueLi Gao
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine Harbin, 150030, Harbin, People's Republic of China
| | - Chaonan Liu
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine Harbin, 150030, Harbin, People's Republic of China
| | - Xiaoping Lv
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine Harbin, 150030, Harbin, People's Republic of China
| | - Shimin Zheng
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China. .,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine Harbin, 150030, Harbin, People's Republic of China.
| |
Collapse
|
4
|
Chacón RD, Astolfi-Ferreira CS, De la Torre DI, de Sá LRM, Piantino Ferreira AJ. An atypical clinicopathological manifestation of fowlpox virus associated with reticuloendotheliosis virus in commercial laying hen flocks in Brazil. Transbound Emerg Dis 2020; 67:2923-2935. [PMID: 32519513 DOI: 10.1111/tbed.13668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/08/2020] [Accepted: 05/13/2020] [Indexed: 01/27/2023]
Abstract
Fowlpox (FP) is a common epitheliotropic disease in chickens that is usually controlled by live attenuated vaccines. However, there have been some reports of outbreaks of FP in recent years, even in vaccinated flocks, presenting as atypical lesions and feathering abnormalities in chickens. These findings can be associated with fowlpox virus (FPV) with the reticuloendotheliosis virus (REV) integrated into its genome. In the present study, outbreaks of atypical FP were explored in vaccinated commercial laying hen flocks to determine the nature of the causative agent by histopathologic and molecular approaches. FPV and REV were detected and classified into subclade A1 of the genus Avipoxvirus and subtype 3 of REV (REV3), respectively. Additionally, heterogeneous populations of FPV with partial (containing only a remnant long terminal repeat-LTR) or total (all functional genes) integration of REV were identified by heterologous PCRs and detected considering reference integration sites. These results indicate the mechanism of chimeric genome FPV-REV associated with outbreaks and atypical clinicopathological manifestations in commercial laying hens for the first time in Brazil and in South America. In addition, this study demonstrates the emergence of REV integrated in the FPV genome in Brazilian chicken flocks.
Collapse
Affiliation(s)
- Ruy D Chacón
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil.,Inter-units Program in Biotechnology, University of São Paulo, São Paulo, Brazil
| | | | - David I De la Torre
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Lilian R M de Sá
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
5
|
Niedringhaus KD, Nemeth NM, Sellers HS, Brown JD, Fenton HMA. Multicentric Round Cell Neoplasms and Their Viral Associations in Wild Turkeys ( Meleagris gallopavo) in the Southeastern United States. Vet Pathol 2019; 56:915-920. [PMID: 31345138 DOI: 10.1177/0300985819864306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multiple oncogenic viruses, including lymphoproliferative disease virus (LPDV) and reticuloendotheliosis virus (REV), have been detected in wild turkeys (Meleagris gallopavo). The prevalence of infection with these viruses appears to be more common than overt disease; thus, data on the manifestation of associated disease in wild turkeys are scarce. Diagnostic records from wild turkeys submitted to the Southeastern Cooperative Wildlife Disease Study from 1980 to 2017 were reviewed to identify cases of neoplasia. Neoplasia was reported in 59 of 851 (6.9%) wild turkeys submitted. Of the cases of neoplasia tested by polymerase chain reaction, LPDV was detected in 34 of 58 (59%), REV in 10 of 39 (26%), both viruses in 3 of 39 (8%), and no retroviruses detected in 5 of 39 (13%) turkeys. The most common gross lesions observed among turkeys with neoplasms were emaciation (30/40; 75%); nodules in the skin (26/59; 44%), liver (17/59; 29%), or spleen (9/59; 15%); and splenomegaly (14/59; 24%). Microscopically, nodules were composed of pleomorphic round cells with large eccentric nuclei and prominent nucleoli resembling lymphocytes or lymphoblasts (57/59; 97%) except for 2 cases, one of myeloid cell origin and the other with primarily spindloid cells. This study indicates the need to characterize the pathogenesis and potential health threat posed by REV and LPDV to wild turkeys. Experimental infection studies and the development of additional diagnostic tests to confirm the role of retroviruses in lymphoproliferative disease are warranted.
Collapse
Affiliation(s)
- Kevin D Niedringhaus
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Nicole M Nemeth
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Holly S Sellers
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Justin D Brown
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Heather M A Fenton
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Government of The Northwest Territories, Department of Environment and Natural Resources, Northwest Territories, Yellowknife, Canada
| |
Collapse
|
6
|
Thontiravong A, Wannaratana S, Sasipreeyajan J. Genetic characterization of reticuloendotheliosis virus in chickens in Thailand. Poult Sci 2019; 98:2432-2438. [PMID: 30668827 DOI: 10.3382/ps/pez025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/09/2019] [Indexed: 11/20/2022] Open
Abstract
Reticuloendotheliosis virus (REV) causes an immunosuppressive, runting, and oncogenic disease in poultry, posing a significant threat to the poultry industry. In Thailand, an unidentified disease associated with runting-stunting syndrome and neoplasia, resembling REV infection, has been continuously observed in several chicken farms. However, REV infection in Thailand has never been reported. In this study, we investigated the occurrence and genetic characteristics of REVs in chickens in Thailand from 2013 to 2016. Of the 130 clinical samples obtained from 29 chicken farms from 9 provinces located in the major chicken-raising regions of Thailand, including the central, eastern, northern, and northeastern parts of Thailand, 51 samples (39.23%) and 21 farms (72.41%) were REV-positive. REV-positive samples were detected in all 9 provinces tested. Our results demonstrated that REV was extensively distributed in the major chicken-raising regions of Thailand. Phylogenetic analysis of the whole genome sequence showed that Thai REV was most closely related to Chinese, Taiwanese, and the US REV strains isolated from different avian species and clustered into REV subtype III. This finding indicates that REV subtype III was predominantly circulated in Thai chicken flocks. This study is the first report on REV infection in chickens in Thailand. Our findings raise the awareness of REV as another causative agent of runting and oncogenic disease in chickens in Thailand and highlight the wide distribution of REV infection among chickens worldwide.
Collapse
Affiliation(s)
- Aunyaratana Thontiravong
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.,Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals (CUEIDAs), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suwarak Wannaratana
- Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-Ok, Chonburi 20110, Thailand
| | - Jiroj Sasipreeyajan
- Avian Health Research Unit, Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
7
|
Song H, Bae Y, Park S, Kwon H, Lee H, Joh S. Loop-mediated isothermal amplification assay for detection of four immunosuppressive viruses in chicken. J Virol Methods 2018; 256:6-11. [PMID: 29476761 DOI: 10.1016/j.jviromet.2018.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 01/31/2018] [Accepted: 02/19/2018] [Indexed: 11/28/2022]
Abstract
Loop-mediated isothermal amplification (LAMP) methods to detect chicken infectious anemia virus (CIAV), reticuloendotheliosis virus (REV), and Marek's disease virus (MDV), and a reverse transcription (RT)-LAMP assay to detect infectious bursal disease virus (IBDV), were developed. The CIAV-LAMP, REV-LAMP, MDV-LAMP, and IBDV-RT-LAMP methods were performed using four sets of six primers targeting the VP1 gene of CIAV, the gp90 gene of REV, the Meq gene of MDV, and the VP2 gene of IBDV. The results (a change in color) were observed visually. The methods showed high specificity and sensitivity. The detection limits were 50 genomic copies of CIAV, 16 genomic copies of REV, 20 genomic copies of MDV, and 250 genomic copies of IBDV. When used to test clinical samples, the results of the LAMP assays were in 100% agreement with a previously described PCR. Therefore, the LAMP assays are simple, rapid, highly sensitive, and specific methods for detecting four immune-suppressive viruses.
Collapse
Affiliation(s)
- HyeSoon Song
- Avian Disease Division, Animal and Plant Quarantine Agency, HyukSin 8-ro, GimCheon, Republic of Korea
| | - YouChan Bae
- Avian Disease Division, Animal and Plant Quarantine Agency, HyukSin 8-ro, GimCheon, Republic of Korea
| | - SeokChan Park
- Avian Disease Division, Animal and Plant Quarantine Agency, HyukSin 8-ro, GimCheon, Republic of Korea
| | - HyukMan Kwon
- Avian Disease Division, Animal and Plant Quarantine Agency, HyukSin 8-ro, GimCheon, Republic of Korea
| | - HeeSoo Lee
- Avian Disease Division, Animal and Plant Quarantine Agency, HyukSin 8-ro, GimCheon, Republic of Korea
| | - SeongJoon Joh
- Avian Disease Division, Animal and Plant Quarantine Agency, HyukSin 8-ro, GimCheon, Republic of Korea.
| |
Collapse
|
8
|
Wild Birds, a Source of Reticuloendotheliosis Virus Infection for the Endangered Attwater's Prairie-Chicken (Tympanuchus cupido attwateri)? J Wildl Dis 2017; 53:586-590. [DOI: 10.7589/2016-07-169] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Abstract
To better understand the potential avian diseases in Greater Sage-grouse ( Centrocercus urophasianus ) in the Great Basin in Nevada, US, we collected 31 blood samples March-April 2014 and tested for antibodies to eight viruses and two bacteria. Specifically, sera were tested for antibodies to avian leukosis virus type A, B, and J (ALV-A, ALV-B, and ALV-J, respectively), infectious bursal disease virus, infectious bronchitis virus, reticuloendothelial virus, avian influenza virus (AIV), West Nile virus, Pasteurella multocida (PM), and Salmonella enterica serovar Pullorum. Serum antibodies against ALV-A and -B (1/31, 3%), ALV-J (5/31, 16%), PM (1/31, 3%), and AIV (2/31, 6%) were detected by enzyme-linked immunosorbent assay (ELISA). While ELISA tests used have only been validated in domestic poultry, the serologic data should be used as a potential indicator of the range of bacterial and viral infectious agents that can infect the Greater Sage-grouse.
Collapse
|
10
|
Emergence of reticuloendotheliosis virus in pigeons in Guangdong Province, Southern China. Arch Virol 2016; 161:2007-11. [DOI: 10.1007/s00705-016-2870-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 04/20/2016] [Indexed: 11/26/2022]
|
11
|
Minias P, Bateson ZW, Whittingham LA, Johnson JA, Oyler-McCance S, Dunn PO. Contrasting evolutionary histories of MHC class I and class II loci in grouse--effects of selection and gene conversion. Heredity (Edinb) 2016; 116:466-76. [PMID: 26860199 DOI: 10.1038/hdy.2016.6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/18/2015] [Indexed: 11/09/2022] Open
Abstract
Genes of the major histocompatibility complex (MHC) encode receptor molecules that are responsible for recognition of intracellular and extracellular pathogens (class I and class II genes, respectively) in vertebrates. Given the different roles of class I and II MHC genes, one might expect the strength of selection to differ between these two classes. Different selective pressures may also promote different rates of gene conversion at each class. Despite these predictions, surprisingly few studies have looked at differences between class I and II genes in terms of both selection and gene conversion. Here, we investigated the molecular evolution of MHC class I and II genes in five closely related species of prairie grouse (Centrocercus and Tympanuchus) that possess one class I and two class II loci. We found striking differences in the strength of balancing selection acting on MHC class I versus class II genes. More than half of the putative antigen-binding sites (ABS) of class II were under positive or episodic diversifying selection, compared with only 10% at class I. We also found that gene conversion had a stronger role in shaping the evolution of MHC class II than class I. Overall, the combination of strong positive (balancing) selection and frequent gene conversion has maintained higher diversity of MHC class II than class I in prairie grouse. This is one of the first studies clearly demonstrating that macroevolutionary mechanisms can act differently on genes involved in the immune response against intracellular and extracellular pathogens.
Collapse
Affiliation(s)
- P Minias
- Department of Teacher Training and Biodiversity Studies, University of Łódź, Łódź, Poland.,Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Z W Bateson
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - L A Whittingham
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - J A Johnson
- Department of Biological Sciences, Institute of Applied Sciences, University of North Texas, Denton, TX, USA
| | - S Oyler-McCance
- Fort Collins Science Center, US Geological Survey, Fort Collins, CO, USA
| | - P O Dunn
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
12
|
Apa AD, Wiechman LA. Captive-rearing of Gunnison sage-grouse from egg collection to adulthood to foster proactive conservation and recovery of a conservation-reliant species. Zoo Biol 2015; 34:438-52. [DOI: 10.1002/zoo.21228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 05/26/2015] [Accepted: 06/01/2015] [Indexed: 11/06/2022]
Affiliation(s)
| | - Lief A. Wiechman
- Department of Fish, Wildlife, and Conservation Biology; Colorado State University; Colorado
| |
Collapse
|
13
|
Thomas JM, Allison AB, Holmes EC, Phillips JE, Bunting EM, Yabsley MJ, Brown JD. Molecular Surveillance for Lymphoproliferative Disease Virus in Wild Turkeys (Meleagris gallopavo) from the Eastern United States. PLoS One 2015; 10:e0122644. [PMID: 25897755 PMCID: PMC4405500 DOI: 10.1371/journal.pone.0122644] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/23/2015] [Indexed: 11/18/2022] Open
Abstract
Lymphoproliferative disease virus (LPDV) is a poorly understood, oncogenic avian retrovirus of domestic turkeys that has historically been restricted to Europe and Israel. However, a recent study reported LPDV in multiple wild turkey diagnostic cases from throughout the eastern United States of America (USA). To better understand the distribution of LPDV in the eastern USA, we surveyed 1,164 reportedly asymptomatic hunter-harvested wild turkeys from 17 states for the presence of LPDV proviral DNA by PCR. In total, 564/1,164 (47%) turkeys were positive for LPDV. Wild turkeys from each state had a relatively high prevalence of LPDV, although statewide prevalence varied from 26 to 83%. Phylogenetic analysis revealed two major clades of LPDV in the USA, although one was at a low frequency suggesting restricted transmission, as well as significant clustering by state of isolation. To determine the best tissue to target for diagnostic purposes, liver, spleen, and bone marrow were tested from a subset of 15 hunter-harvested wild turkeys and 20 wild turkey diagnostic cases. Overall, bone marrow provided the highest level of detection for both hunter-harvested turkeys and diagnostic cases. The sensitivity of LPDV detection between tissues was not significantly different for diagnostic cases, but was for hunter-harvested birds. These results indicate that LPDV infection is common and widespread in wild turkey populations throughout the eastern USA, even without overt signs of disease.
Collapse
Affiliation(s)
- Jesse M. Thomas
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, 589 D.W. Brooks Drive, Wildlife Health Building, College of Veterinary Medicine, The University of Georgia, Athens, Georgia, United States of America
- Daniel B. Warnell School of Forestry and Natural Resources, The University of Georgia, Athens, Georgia, United States of America
| | - Andrew B. Allison
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Edward C. Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Jamie E. Phillips
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, 589 D.W. Brooks Drive, Wildlife Health Building, College of Veterinary Medicine, The University of Georgia, Athens, Georgia, United States of America
| | - Elizabeth M. Bunting
- Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Michael J. Yabsley
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, 589 D.W. Brooks Drive, Wildlife Health Building, College of Veterinary Medicine, The University of Georgia, Athens, Georgia, United States of America
- Daniel B. Warnell School of Forestry and Natural Resources, The University of Georgia, Athens, Georgia, United States of America
| | - Justin D. Brown
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, 589 D.W. Brooks Drive, Wildlife Health Building, College of Veterinary Medicine, The University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
14
|
Jiang L, Deng X, Gao Y, Li K, Chai H, Fan Z, Ren X, Wang Q, Zhang L, Yun B, Yin C, Chen Y, Qin L, Gao H, Wang Y, Hua Y, Wang X. First isolation of reticuloendotheliosis virus from mallards in China. Arch Virol 2014; 159:2051-7. [PMID: 24643331 DOI: 10.1007/s00705-013-1821-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/04/2013] [Indexed: 11/26/2022]
Abstract
Reticuloendotheliosis virus (REV) causes an oncogenic, immunosuppressive and runting syndrome in many avian hosts worldwide. REV infection has never been reported in mallard ducks, however. To identify REV infection in mallards, we collected 40 mallard duck samples from Jilin Province of China. In this study, the REV strain, DBYR1102, was first isolated from a mallard in China and identified by PCR, indirect immunofluorescence assay and electron microscopy. The gp90 gene and complete LTR of DBYR1102 were amplified and sequenced. Phylogenetic analysis based on gp90 genes of REV indicated that the REV strain DBYR1102 is closely related to strain HLJR0901 from northeastern China, the prairie chicken isolate APC-566, and REV subtype III, represented by chick syncytial virus. This new strain is distantly related to two other subtypes of REV, 170A and SNV. Phylogenetic analysis based on the LTR yielded information similar to that obtained with the gp90 genes. The results of this study not only expand our epidemiological understanding of REV in the wild birds of China but also demonstrate the potential role of wild waterfowl in REV transmission.
Collapse
Affiliation(s)
- Lili Jiang
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Niewiadomska AM, Gifford RJ. The extraordinary evolutionary history of the reticuloendotheliosis viruses. PLoS Biol 2013; 11:e1001642. [PMID: 24013706 PMCID: PMC3754887 DOI: 10.1371/journal.pbio.1001642] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 07/19/2013] [Indexed: 11/18/2022] Open
Abstract
The reticuloendotheliosis viruses (REVs) comprise several closely related amphotropic retroviruses isolated from birds. These viruses exhibit several highly unusual characteristics that have not so far been adequately explained, including their extremely close relationship to mammalian retroviruses, and their presence as endogenous sequences within the genomes of certain large DNA viruses. We present evidence for an iatrogenic origin of REVs that accounts for these phenomena. Firstly, we identify endogenous retroviral fossils in mammalian genomes that share a unique recombinant structure with REVs-unequivocally demonstrating that REVs derive directly from mammalian retroviruses. Secondly, through sequencing of archived REV isolates, we confirm that contaminated Plasmodium lophurae stocks have been the source of multiple REV outbreaks in experimentally infected birds. Finally, we show that both phylogenetic and historical evidence support a scenario wherein REVs originated as mammalian retroviruses that were accidentally introduced into avian hosts in the late 1930s, during experimental studies of P. lophurae, and subsequently integrated into the fowlpox virus (FWPV) and gallid herpesvirus type 2 (GHV-2) genomes, generating recombinant DNA viruses that now circulate in wild birds and poultry. Our findings provide a novel perspective on the origin and evolution of REV, and indicate that horizontal gene transfer between virus families can expand the impact of iatrogenic transmission events.
Collapse
Affiliation(s)
| | - Robert J. Gifford
- Aaron Diamond AIDS Research Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
16
|
A DNA vaccine expressing ENV and GAG offers partial protection against reticuloendotheliosis virus in the prairie chicken (Tympanicus cupido). J Zoo Wildl Med 2013; 44:251-61. [PMID: 23805542 DOI: 10.1638/2011-0229r1.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recurring infection of reticuloendotheliosis virus (REV), an avian oncogenic gammaretrovirus, has been a major obstacle in attempts to breed and release the endangered Attwater's prairie chicken (Tympanicus cupido attwateri). The aim of this study was to develop a DNA vaccine that protects the birds against REV infection. A plasmid was constructed expressing fusion proteins of REV envelope (env) and VP22 of Gallid herpesvirus 2 or REV gag and VP22. Birds vaccinated with these recombinant plasmids developed neutralizing antibodies; showed delayed replication of virus; and had significantly less infection of lymphocytes, specifically CD4+ lymphocytes. Although the vaccine did not prevent infection, it offered partial protection. Birds in field conditions and breeding facilities could potentially benefit from increased immunity when vaccinated.
Collapse
|
17
|
Wang G, Wang Y, Yu L, Jiang Y, Liu J, Cheng Z. New pathogenetic characters of reticuloendotheliosis virus isolated from Chinese partridge in specific-pathogen-free chickens. Microb Pathog 2012; 53:57-63. [PMID: 22579709 DOI: 10.1016/j.micpath.2012.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/30/2012] [Accepted: 04/06/2012] [Indexed: 10/28/2022]
Abstract
Avian reticuloendotheliosis virus (REV) infection can induce a runting syndrome, immunosuppression, acute reticulum cell neoplasia and lymphomas in a variety of domestic and wild birds. To evaluate the pathogenicity and oncogenicity of REV-JX0927 that isolated from Chinese partridge, experimental inoculated day-old specific-pathogen-free (SPF) White Leghorn chickens were examined at regular intervals. The examination procedures included hematology, serology and histopathology; also including immunohistochemistry and apoptosis assay. Body weight, relative immune organs weight and apoptosis assay results revealed that the immunosuppression of infected birds is associated with apoptosis of lymphocytes in lymphoid tissues, especially in thymus induced by REV-JX0927. Hematology and apoptosis assay results showed that the 7th week of post-infection is a critical time point for lymphocytes to be transformed into tumor cells. Histopathology evidences demonstrated that REV-JX0927 induced reticuloendotheliosis at early stage (1 week), and lymphosarcomas at middle stage (after 7 weeks). In addition, squamous-cell carcinoma, adenocarcinoma and aneurysm were found in infected birds. Arteritis was associated with concentration of serum protein and fat. REV antigen expression was observed in infected birds through the experimental period. REV has high tropism for proventriculus, kidney, liver, lymphoid tissues, pancreas, lymphosarcoma cells and blood vessels. Data from this study showed that several new pathogenitic characters caused by REV-JX0927 were observed. It indicated that REV-JX0927 is a multipotential oncogenic retrovirus.
Collapse
Affiliation(s)
- Guihua Wang
- Department of Fundamental Veterinary, College of Veterinary Medicine, Shandong Agricultural University, Daizong ST, Tai'an, China
| | | | | | | | | | | |
Collapse
|
18
|
Li K, Gao H, Gao L, Qi X, Qin L, Gao Y, Xu Y, Wang X. Development of TaqMan real-time PCR assay for detection and quantitation of reticuloendotheliosis virus. J Virol Methods 2012; 179:402-8. [DOI: 10.1016/j.jviromet.2011.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 11/30/2011] [Accepted: 12/02/2011] [Indexed: 10/14/2022]
|
19
|
Sun F, Ferro PJ, Lupiani B, Kahl J, Morrow ME, Flanagan JP, Estevez C, Clavijo A. A duplex real-time polymerase chain reaction assay for the simultaneous detection of long terminal repeat regions and envelope protein gene sequences of Reticuloendotheliosis virus in avian blood samples. J Vet Diagn Invest 2011; 23:937-41. [DOI: 10.1177/1040638711416631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The Reticuloendotheliosis virus (REV) group of retroviruses infects a wide range of avian species, including chickens, turkeys, ducks, geese, quail, and prairie chickens. The objective of the present study was to develop a highly sensitive and specific diagnostic test for the detection of REV in whole blood samples. In order to increase the diagnostic sensitivity, a duplex real-time polymerase chain reaction (PCR) that detects both the envelope protein gene ( env) and the long terminal repeat (LTR) region of REV was designed. This assay demonstrated greater analytical and diagnostic sensitivity than the gel-based PCR assay when using DNA extracted from whole blood by both phenol-chloroform and magnetic bead methods. In general, threshold cycle values in the duplex real-time PCR assay were lower from DNA extracted using the magnetic bead system compared to DNA extracted by the phenol-chloroform method. Data presented herein show the successful development of a rapid and accurate test procedure, with high-throughput capability, for the diagnosis of REV infection using avian blood samples.
Collapse
Affiliation(s)
- Feng Sun
- Texas Veterinary Medical Diagnostic Laboratory, College Station, TX (Sun, Kahl, Estevez, Clavijo)
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX (Ferro, Lupiani)
- Attwater Prairie Chicken National Wildlife Refuge, Eagle Lake, TX (Morrow)
- Houston Zoo Inc., Houston, TX (Flanagan)
| | - Pamela J. Ferro
- Texas Veterinary Medical Diagnostic Laboratory, College Station, TX (Sun, Kahl, Estevez, Clavijo)
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX (Ferro, Lupiani)
- Attwater Prairie Chicken National Wildlife Refuge, Eagle Lake, TX (Morrow)
- Houston Zoo Inc., Houston, TX (Flanagan)
| | - Blanca Lupiani
- Texas Veterinary Medical Diagnostic Laboratory, College Station, TX (Sun, Kahl, Estevez, Clavijo)
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX (Ferro, Lupiani)
- Attwater Prairie Chicken National Wildlife Refuge, Eagle Lake, TX (Morrow)
- Houston Zoo Inc., Houston, TX (Flanagan)
| | - Janell Kahl
- Texas Veterinary Medical Diagnostic Laboratory, College Station, TX (Sun, Kahl, Estevez, Clavijo)
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX (Ferro, Lupiani)
- Attwater Prairie Chicken National Wildlife Refuge, Eagle Lake, TX (Morrow)
- Houston Zoo Inc., Houston, TX (Flanagan)
| | - Michael E. Morrow
- Texas Veterinary Medical Diagnostic Laboratory, College Station, TX (Sun, Kahl, Estevez, Clavijo)
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX (Ferro, Lupiani)
- Attwater Prairie Chicken National Wildlife Refuge, Eagle Lake, TX (Morrow)
- Houston Zoo Inc., Houston, TX (Flanagan)
| | - Joseph P. Flanagan
- Texas Veterinary Medical Diagnostic Laboratory, College Station, TX (Sun, Kahl, Estevez, Clavijo)
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX (Ferro, Lupiani)
- Attwater Prairie Chicken National Wildlife Refuge, Eagle Lake, TX (Morrow)
- Houston Zoo Inc., Houston, TX (Flanagan)
| | - Carlos Estevez
- Texas Veterinary Medical Diagnostic Laboratory, College Station, TX (Sun, Kahl, Estevez, Clavijo)
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX (Ferro, Lupiani)
- Attwater Prairie Chicken National Wildlife Refuge, Eagle Lake, TX (Morrow)
- Houston Zoo Inc., Houston, TX (Flanagan)
| | - Alfonso Clavijo
- Texas Veterinary Medical Diagnostic Laboratory, College Station, TX (Sun, Kahl, Estevez, Clavijo)
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX (Ferro, Lupiani)
- Attwater Prairie Chicken National Wildlife Refuge, Eagle Lake, TX (Morrow)
- Houston Zoo Inc., Houston, TX (Flanagan)
| |
Collapse
|
20
|
Mays JK, Silva RF, Lee LF, Fadly AM. Characterization of reticuloendotheliosis virus isolates obtained from broiler breeders, turkeys, and prairie chickens located in various geographical regions in the United States. Avian Pathol 2010; 39:383-9. [DOI: 10.1080/03079457.2010.510828] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Abstract
Until recently, cancer in wildlife was not considered to be a conservation concern. However, with the identification of Tasmanian devil facial tumour disease, sea turtle fibropapillomatosis and sea lion genital carcinoma, it has become apparent that neoplasia can be highly prevalent and have considerable effects on some species. It is also clear that anthropogenic activities contribute to the development of neoplasia in wildlife species, such as beluga whales and bottom-dwelling fish, making them sensitive sentinels of disturbed environments.
Collapse
Affiliation(s)
- Denise McAloose
- Pathology and Disease Investigation, Global Health Program, Wildlife Conservation Society, 2300 Southern Boulevard, Bronx, New York, New York 10460, USA.
| | | |
Collapse
|
22
|
Drechsler Y, Bohls RL, Smith R, Silvy N, Lillehoj H, Collisson EW. An avian, oncogenic retrovirus replicates in vivo in more than 50% of CD4+ and CD8+ T lymphocytes from an endangered grouse. Virology 2009; 386:380-6. [PMID: 19237181 DOI: 10.1016/j.virol.2009.01.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 12/15/2008] [Accepted: 01/12/2009] [Indexed: 11/18/2022]
Abstract
Reoccurring infection of reticuloendotheliosis virus (REV), an avian oncogenic retrovirus, has been a major obstacle in attempts to breed and release an endangered grouse, the Attwater's prairie chicken (Tympanicus cupido attwateri). REV infection of these birds in breeding facilities was found to result in significant decreases in the CD4(+) and increases in the CD8(+) lymphocyte populations, although experimental infection of birds resulted in only increases in the CD8(+) lymphocytes. Because our indirect immunofluorescent assay readily detected infection of both CD4(+) and CD8(+) lymphocytes, a triple labeling flow cytometric procedure was developed to quantify the individual lymphocytes infected in vivo with REV. Lymphocytes were gated with a biotinylated pan-leukocyte marker bound to streptavidin R-PE-Cy5. Chicken CD4 or CD8 specific mouse MAb directly labeled with R-PE identified the phenotype and with permeabilizing of cells, infection was indirectly labeled with rabbit IgG specific for the REV gag polypeptide and FITC conjugated goat anti-rabbit antibody. More than 50% of the total lymphocytes and of the total CD4(+) or CD8(+) lymphocytes supported in vivo viral expression in all infected birds examined. Remarkably, this level of infection was detected in the absence of visible clinical signs of illness.
Collapse
Affiliation(s)
- Yvonne Drechsler
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| | | | | | | | | | | |
Collapse
|
23
|
Zavala G, Cheng S, Barbosa T, Haefele H. Enzootic reticuloendotheliosis in the endangered Attwater's and greater prairie chickens. Avian Dis 2007; 50:520-5. [PMID: 17274288 DOI: 10.1637/7655-052806r.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Reticuloendotheliosis (RE) in captive greater prairie chickens (GPC, Tympanuchus cupido pinnatus) and Attwater's prairie chickens (APC, Tympanuchus cupido attwateri) was first reported in 1998. RE is caused by avian reticuloendotheliosis virus (REV), an oncogenic and immunosuppressive retrovirus infecting multiple species of wild and domestic birds. During August 2004 through May 2006 a captive population of prairie chickens was affected simultaneously with a neoplastic condition and also avian pox, the latter being detected in 7.4% (2 of 27) of all birds submitted for histopathology. A survey for REV was conducted in order to examine its possible role in mortality observed primarily in juvenile and adult specimens of prairie chickens. The investigative procedures included postmortem examinations, histopathology, molecular detection, and virus isolation. In total, 57 Attwater's prairie chickens and two greater prairie chickens were included in the study. REV infection was diagnosed using virus isolation or polymerase chain reaction (PCR) or both in 59.5% (28 of 47) of blood samples and/or tumors from suspect birds. Lymphosarcomas were detected in the tissues of 37% (10 of 27) of the birds submitted for histopathology. Such lymphosarcomas suggestive of RE represented the most frequent morphologic diagnosis on histopathology among 27 separate submissions of naturally dead prairie chickens. Overall, REV was detected or RE diagnosed in 34 of 59 prairie chickens (57.62%). The average death age of all birds diagnosed with lymphosarcomas on histopathology was 2.2 yr, ranging from <1 to 4 yr. Although deaths associated with neoplasia occurred in males and females in equal proportions based on submissions, overall more males were diagnosed as REV infected or RE affected (16 males vs. 7 females, and 11 birds of undetermined gender). Reticuloendotheliosis virus was confirmed as a significant cause of mortality in captive prairie chickens.
Collapse
Affiliation(s)
- Guillermo Zavala
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
24
|
Barbosa T, Zavala G, Cheng S, Villegas P. Pathogenicity and Transmission of Reticuloendotheliosis Virus Isolated from Endangered Prairie Chickens. Avian Dis 2007; 51:33-9. [PMID: 17461264 DOI: 10.1637/0005-2086(2007)051[0033:patorv]2.0.co;2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The pathogenicity and transmission of a field isolate of reticuloendotheliosis virus (REV) was studied using an experimental model in Japanese quail. Oncogenicity was also evaluated after inoculations in chickens and turkeys. The original REV (designated APC-566) was isolated from Attwater's prairie chickens (Tympanuchus cupido attwateri), an endangered wild avian species of the southern United States. The transmissibility of the REV isolate was studied in young naive Japanese quail in contact with experimentally infected quail. Vertical transmission was not detected by virus isolation and indirect immunofluorescence. Seroconversion was detected in few contact quails, suggesting horizontal transmission. The APC-566 isolate induced tumors beginning at 6 wk of age in quails infected as embryos. Most of the tumors detected in Japanese quail were lymphosarcomas, and 81% of these neoplasias contained CD3+ cells by immunoperoxidase. REV APC-566 was also oncogenic in chickens and turkeys infected at 1 day of age, with tumors appearing as early as 58 days after infection in chickens and at 13 wk of age in turkeys. This study was conducted in part as an attempt to understand the potential for pathogenicity and transmission of REV isolated from endangered avian species.
Collapse
Affiliation(s)
- Taylor Barbosa
- Poultry Diagnostic and Research Center, Department of Population Health, University of Georgia, 953 College Station Road, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
25
|
CHENG Z, SHI Y, ZHAN L, ZHU G, DIAO X, CUI Z. Occurrence of Reticuloendotheliosis in Chinese Partridge. J Vet Med Sci 2007; 69:1295-8. [DOI: 10.1292/jvms.69.1295] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Ziqiang CHENG
- Laboratory of Veterinary Pathology, College of Animal Husbandry and Medicine, Shandong Agricultural University
| | - Youfei SHI
- Laboratory of Veterinary Pathology, College of Animal Husbandry and Medicine, Shandong Agricultural University
| | - Li ZHAN
- Laboratory of Veterinary Pathology, College of Animal Husbandry and Medicine, Shandong Agricultural University
| | - Guo ZHU
- Laboratory of Veterinary Pathology, College of Animal Husbandry and Medicine, Shandong Agricultural University
| | - Xiuguo DIAO
- Laboratory of Veterinary Pathology, College of Animal Husbandry and Medicine, Shandong Agricultural University
| | - Zhizhong CUI
- Laboratory of Veterinary Pathology, College of Animal Husbandry and Medicine, Shandong Agricultural University
| |
Collapse
|
26
|
Bohls RL, Collisson EW, Gross SL, Silvy NJ, Phalen DN. Experimental Infection of Attwater's/Greater Prairie Chicken Hybrids with the Reticuloendotheliosis Virus. Avian Dis 2006; 50:613-9. [PMID: 17274303 DOI: 10.1637/7517-021306r.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Reticuloendotheliosis virus (REV), a common pathogen of poultry, has been associated with runting and neoplasia in an endangered subspecies of grouse, the Attwater's prairie chicken. The pathogenesis of REV infection was examined in experimentally infected prairie chickens. Three groups of four Attwater's/greater prairie chicken hybrids were infected intravenously with varying doses (tissue culture infective dose [TCID50], 200, 1000, and 5000) of a prairie chicken-isolated REV. A fourth group of four birds was not infected. Blood was collected prior to infection, and at various times up to 37 wk following infection. Peripheral blood mononuclear cells were examined for integrated proviral DNA by a single-amplification polymerase chain reaction (PCR) and nested PCR of a region within the pol gene. The nested PCR identified REV proviral DNA in all REV-inoculated birds by 2 wk postinfection and confirmed chronic infection throughout the study. With the exception of a bird that died from bacterial pneumonia 8 wk postinfection, neoplasia, resembling that seen in naturally occurring infections, was observed in all birds, even those receiving as little as 200 TCID50 of virus.
Collapse
Affiliation(s)
- Ryan L Bohls
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | |
Collapse
|
27
|
Barbosa T, Zavala G, Cheng S, Lourenço T, Villegas P. Effects of Reticuloendotheliosis Virus on the Viability and Reproductive Performance of Japanese Quail. J APPL POULTRY RES 2006. [DOI: 10.1093/japr/15.4.558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
Barbosa T, Zavala G, Cheng S, Villegas P. Full genome sequence and some biological properties of reticuloendotheliosis virus strain APC-566 isolated from endangered Attwater's prairie chickens. Virus Res 2006; 124:68-77. [PMID: 17098316 DOI: 10.1016/j.virusres.2006.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2006] [Revised: 10/07/2006] [Accepted: 10/11/2006] [Indexed: 10/23/2022]
Abstract
Reticuloendotheliosis virus (REV) causes runting, high mortality, immunosuppression, and chronic neoplasia associated with T and/or B cell lymphomas in a variety of domestic and wild birds, including Attwater's prairie chickens (APC) (Tympanuchus cupido attwateri). The complete proviral sequence of a recent REV isolate from APC (REV APC-566) was determined. This virus was isolated from an APC maintained in captivity in a reproduction program intended to avoid its extinction. REV APC-566 was determined to be oncogenic in Japanese quail (Coturnix coturnix japonica), chickens (Gallus gallus) and turkeys (Meleagris gallopavo). Immune responses against bacteria and viruses were significantly reduced in turkeys infected with REV APC-566. The proviral genome is 8286 nucleotides in length and exhibits a genetic organization characteristic of replication-competent gammaretroviruses. The REV APC-566 provirus contains two identical long terminal repeats (LTR) and a complete set of genes including gag, gag-pol and env. As previously reported, alignments with other REV sequences showed high similarity with sequences found in the gag and pol genes from other REVs. The REV APC-566 env gene showed high nucleotide sequence homology with REV sequences inserted in fowl poxvirus (99.8%), and with spleen necrosis virus (SNV) (95.1%). Sequences coding for a previously reported immunosuppressive peptide contained in the transmembrane region of the env gene are well conserved among all REV sequences analyzed. The LTR was the most divergent region, exhibiting various deletions and insertions. REV APC-566 has a unique insertion of 23 bp in U3 and shares deletions of 19 and 5 bp with chicken syncytial virus and REV inserts in fowlpox virus.
Collapse
Affiliation(s)
- Taylor Barbosa
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-4875, USA
| | | | | | | |
Collapse
|
29
|
Bohls RL, Linares JA, Gross SL, Ferro PJ, Silvy NJ, Collisson EW. Phylogenetic analyses indicate little variation among reticuloendotheliosis viruses infecting avian species, including the endangered Attwater's prairie chicken. Virus Res 2006; 119:187-94. [PMID: 16497405 DOI: 10.1016/j.virusres.2006.01.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 01/04/2006] [Accepted: 01/10/2006] [Indexed: 11/15/2022]
Abstract
Reticuloendotheliosis virus infection, which typically causes systemic lymphomas and high mortality in the endangered Attwater's prairie chicken, has been described as a major obstacle in repopulation efforts of captive breeding facilities in Texas. Although antigenic relationships among reticuloendotheliosis virus (REV) strains have been previously determined, phylogenetic relationships have not been reported. The pol and env of REV proviral DNA from prairie chickens (PC-R92 and PC-2404), from poxvirus lesions in domestic chickens, the prototype poultry derived REV-A and chick syncytial virus (CSV), and duck derived spleen necrosis virus (SNV) were PCR amplified and sequenced. The 5032bp, that included the pol and most of env genes, of the PC-R92 and REV-A were 98% identical, and nucleotide sequence identities of smaller regions within the pol and env from REV strains examined ranged from 95 to 99% and 93 to 99%, respectively. The putative amino acid sequences were 97-99% identical in the polymerase and 90-98% in the envelope. Phylogenetic analyses of the nucleotide and amino acid sequences indicated the closest relationship among the recent fowl pox-associated chicken isolates, the prairie chicken isolates and the prototype CSV while only the SNV appeared to be distinctly divergent. While the origin of the naturally occurring viruses is not known, the avian poxvirus may be a critical component of transmission of these ubiquitous oncogenic viruses.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- DNA, Viral/chemistry
- DNA, Viral/genetics
- Galliformes/virology
- Genes, env
- Genes, pol
- Molecular Sequence Data
- Phylogeny
- Polymerase Chain Reaction
- Proviruses/genetics
- Reticuloendotheliosis Viruses, Avian/classification
- Reticuloendotheliosis Viruses, Avian/genetics
- Reticuloendotheliosis Viruses, Avian/isolation & purification
- Retroviridae Infections/veterinary
- Retroviridae Infections/virology
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Tumor Virus Infections/veterinary
- Tumor Virus Infections/virology
- United States
Collapse
Affiliation(s)
- Ryan L Bohls
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843-4467, USA
| | | | | | | | | | | |
Collapse
|
30
|
Kelly TR, Vennen KM, Duncan R, Sleeman JM. Lymphoproliferative Disorder in a Great Horned Owl (Bubo virginianus). J Avian Med Surg 2004. [DOI: 10.1647/2002-016] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
|
32
|
Robel RJ, Walker TL, Hagen CA, Ridley RK, Kemp KE, Applegate RD. Helminth parasites of lesser prairie-chickenTympanuchus pallidicinctusin southwestern Kansas: incidence, burdens and effects. WILDLIFE BIOLOGY 2003. [DOI: 10.2981/wlb.2003.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Robert J. Robel
- Robert J. Robel, Thomas L. Walker, Jr. & Christian A. Hagen, Division of Biology, Kansas State University, Manhattan, Kansas, USA, 66506 - e-mail addresses: (Robert J. Robel); (Thomas L. Walker); (Christian A. Hagen)
| | - Thomas L. Walker
- Robert J. Robel, Thomas L. Walker, Jr. & Christian A. Hagen, Division of Biology, Kansas State University, Manhattan, Kansas, USA, 66506 - e-mail addresses: (Robert J. Robel); (Thomas L. Walker); (Christian A. Hagen)
| | - Christian A. Hagen
- Robert J. Robel, Thomas L. Walker, Jr. & Christian A. Hagen, Division of Biology, Kansas State University, Manhattan, Kansas, USA, 66506 - e-mail addresses: (Robert J. Robel); (Thomas L. Walker); (Christian A. Hagen)
| | - Robert K. Ridley
- Robert K. Ridley, Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA, 66506 -
| | - Kenneth E. Kemp
- Kenneth E. Kemp, Department of Statistics, Kansas State University, Manhattan, Kansas, USA, 66506 -
| | - Roger D. Applegate
- Roger D. Applegate, Research and Survey Office, Kansas Department of Wildlife and Parks, Emporia, Kansas, USA, 66801 -
| |
Collapse
|