1
|
Silver LW, McLennan EA, Beaman J, da Silva KB, Timms P, Hogg CJ, Belov K. Using bioinformatics to investigate functional diversity: a case study of MHC diversity in koalas. Immunogenetics 2024; 76:381-395. [PMID: 39367971 PMCID: PMC11496358 DOI: 10.1007/s00251-024-01356-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/15/2024] [Indexed: 10/07/2024]
Abstract
Conservation genomics can greatly improve conservation outcomes of threatened populations, including those impacted by disease. Understanding diversity within immune gene families, including the major histocompatibility complex (MHC) and toll-like receptors (TLR), is important due to the role they play in disease resilience and susceptibility. With recent advancements in sequencing technologies and bioinformatic tools, the cost of generating high-quality sequence data has significantly decreased and made it possible to investigate diversity across entire gene families in large numbers of individuals compared to investigating only a few genes or a few populations previously. Here, we use the koala as a case study for investigating functional diversity across populations. We utilised previous target enrichment data and 438 whole genomes to firstly, determine the level of sequencing depth required to investigate MHC diversity and, secondly, determine the current level of diversity in MHC genes in koala populations. We determined for low complexity, conserved genes such as TLR genes 10 × sequencing depth is sufficient to reliably genotype more than 90% of variants, whereas for complex genes such as the MHC greater than 20 × and preferably 30 × sequencing depth is required. We used whole genome data to identify 270 biallelic SNPs across 24 MHC genes as well as copy number variation (CNV) within class I and class II genes and conduct supertype analysis. Overall, we have provided a bioinformatic workflow for investigating variation in a complex immune gene family from whole genome sequencing data and determined current levels of diversity within koala MHC genes.
Collapse
Affiliation(s)
- Luke W Silver
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Elspeth A McLennan
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Julian Beaman
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5001, Australia
| | - Karen Burke da Silva
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5001, Australia
| | - Peter Timms
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Sydney, Camperdown, NSW, 2006, Australia.
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Sydney, Camperdown, NSW, 2006, Australia
| |
Collapse
|
2
|
McDougall FK, Boardman WS, Speight N, Stephenson T, Funnell O, Smith I, Graham PL, Power ML. Carriage of antibiotic resistance genes to treatments for chlamydial disease in koalas ( Phascolarctos cinereus): A comparison of occurrence before and during catastrophic wildfires. One Health 2023; 17:100652. [PMID: 38024267 PMCID: PMC10665209 DOI: 10.1016/j.onehlt.2023.100652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
Growing reports of diverse antibiotic resistance genes in wildlife species around the world symbolises the extent of this global One Health issue. The health of wildlife is threatened by antimicrobial resistance in situations where wildlife species develop disease and require antibiotics. Chlamydial disease is a key threat for koalas in Australia, with infected koalas frequently entering wildlife hospitals and requiring antibiotic therapy, typically with chloramphenicol or doxycycline. This study investigated the occurrence and diversity of target chloramphenicol and doxycycline resistance genes (cat and tet respectively) in koala urogenital and faecal microbiomes. DNA was extracted from 394 urogenital swabs and 91 faecal swabs collected from koalas in mainland Australia and on Kangaroo Island (KI) located 14 km off the mainland, before (n = 145) and during (n = 340) the 2019-2020 wildfires. PCR screening and DNA sequencing determined 9.9% of samples (95%CI: 7.5% to 12.9%) carried cat and/or tet genes, with the highest frequency in fire-affected KI koalas (16.8%) and the lowest in wild KI koalas sampled prior to fires (6.5%). The diversity of cat and tet was greater in fire-affected koalas (seven variants detected), compared to pre-fire koalas (two variants detected). Fire-affected koalas in care that received antibiotics had a significantly higher proportion (p < 0.05) of cat and/or tet genes (37.5%) compared to koalas that did not receive antibiotics (9.8%). Of the cat and/or tet positive mainland koalas, 50.0% were Chlamydia-positive by qPCR test. Chloramphenicol and doxycycline resistance genes in koala microbiomes may contribute to negative treatment outcomes for koalas receiving anti-chlamydial antibiotics. Thus a secondary outcome of wildfires is increased risk of acquisition of cat and tet genes in fire-affected koalas that enter care, potentially exacerbating the already significant threat of chlamydial disease on Australia's koalas. This study highlights the importance of considering impacts to wildlife health within the One Health approach to AMR and identifies a need for greater understanding of AMR ecology in wildlife.
Collapse
Affiliation(s)
- Fiona K. McDougall
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Wayne S.J. Boardman
- School of Animal and Veterinary Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Roseworthy, SA 5371, Australia
| | - Natasha Speight
- School of Animal and Veterinary Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Roseworthy, SA 5371, Australia
| | - Tamsyn Stephenson
- School of Animal and Veterinary Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Roseworthy, SA 5371, Australia
| | - Oliver Funnell
- Zoos South Australia, Frome Rd, Adelaide, SA 5001, Australia
| | - Ian Smith
- School of Animal and Veterinary Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Roseworthy, SA 5371, Australia
- Zoos South Australia, Frome Rd, Adelaide, SA 5001, Australia
| | - Petra L. Graham
- School of Mathematical and Physical Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Michelle L. Power
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
3
|
Bowater RO, Horwood PF, Picard J, Huisman I, Hayes L, Mackie T, Taylor JD. A novel alphaherpesvirus and concurrent respiratory cryptococcosis in a captive koala (
Phascolarctos cinereus
). Aust Vet J 2022; 100:329-335. [PMID: 35490398 PMCID: PMC9544133 DOI: 10.1111/avj.13164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/29/2022] [Accepted: 04/10/2022] [Indexed: 11/30/2022]
Abstract
A novel alphaherpesvirus was detected in a captive adult, lactating, female koala (Phascolarctos cinereus) admitted to James Cook University Veterinary Emergency Teaching & Clinical Hospital in March 2019, showing signs of anorexia and severe respiratory disease. Postmortem examination revealed gross pathology indicative of pneumonia. Histopathology demonstrated a chronic interstitial pneumonia, multifocal necrotising adrenalitis and hepatitis. Intranuclear inclusion bodies were detected by light microscopy in the respiratory epithelium of the bronchi, bronchioles, alveoli, and hepatocytes, biliary epithelium and adrenal gland associated with foci of necrosis. Cryptococcus gattii was isolated from fresh lung on necropsy, positively identified by PCR, and detected histologically by light microscopy, only in the lung tissue. A universal viral family‐level PCR indicated that the virus was a member of the Herpesviruses. Sequence analysis in comparison to other known and published herpesviruses, indicated the virus was a novel alphaherpesvirus, with 97% nucleotide identity to macropodid alphaherpesvirus 1. We provisionally name the novel virus phascolarctid alphaherpesvirus 3 (PhaHV‐3). Further research is needed to determine the distribution of this novel alphaherpesvirus in koala populations and establish associations with disease in this host species.
Collapse
Affiliation(s)
- RO Bowater
- College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health & Medicine James Cook University Townsville Queensland Australia
| | - PF Horwood
- College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health & Medicine James Cook University Townsville Queensland Australia
| | - J Picard
- College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health & Medicine James Cook University Townsville Queensland Australia
| | - I Huisman
- Melrose Veterinary Hospital Wodonga Victoria Australia
| | - L Hayes
- College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health & Medicine James Cook University Townsville Queensland Australia
| | - T Mackie
- College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health & Medicine James Cook University Townsville Queensland Australia
| | - JD Taylor
- College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health & Medicine James Cook University Townsville Queensland Australia
| |
Collapse
|
4
|
TESTIS ABNORMALITIES IN A POPULATION OF SOUTH AUSTRALIAN KOALAS (PHASCOLARCTOS CINEREUS). J Wildl Dis 2021; 58:158-167. [PMID: 34797903 DOI: 10.7589/jwd-d-21-00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/20/2021] [Indexed: 11/20/2022]
Abstract
Testis asymmetry, in which the testes in an individual differ in size, has recently been reported in koalas (Phascolarctos cinereus) in the Mount Lofty Ranges population of South Australia. We describe the morphology and histology of both testes from affected individuals in this population (n=56) and the parameters of koalas with normal-sized testes based on age and breeding season (n=56). Morphologic measurements included testis weight, length, width, and volume; histologic parameters included seminiferous tubule diameter, seminiferous epithelial height, and seminiferous tubule (interstitial tissue ratio and presence or absence of spermatozoa). Of the 56 koalas with intraindividual variation in testes size, 47 were classified as asymmetric and nine as microtestes. For koalas with asymmetric testes, all morphologic parameters were significantly decreased in the smaller testes compared with normal-sized testes, but for the histologic parameters, only seminiferous tubule diameter was significantly less. Histopathologic examination of the asymmetric testes showed 38 with normal parenchyma histologically indistinguishable between intraindividual testes, four with degeneration and atrophy, and three with hypoplasia, whereas examination of microtestes showed degeneration and atrophy in seven, hypoplasia in one, and aplasia in one. No association of testis size difference with Chlamydia pecorum infection was found in a subset of animals. For the 56 koalas with normal-sized testes, morphologic parameters were found to increase with age, and juvenile and young adults were found to have smaller seminiferous tubule diameters than adults. No differences were found between testes of koalas in the breeding and nonbreeding season. Overall, these findings indicate that testis asymmetry in koalas from the Mount Lofty Ranges population is common but not associated with decreased function, except where testis malformations such as hypoplasia or aplasia occur or when parenchyma has been disrupted by acquired disease.
Collapse
|
5
|
Phillips S, Timms P, Jelocnik M. Is Chlamydia to Blame for Koala Reproductive Cysts? Pathogens 2021; 10:pathogens10091140. [PMID: 34578173 PMCID: PMC8467779 DOI: 10.3390/pathogens10091140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
A significant threat to koala populations is infection from Chlamydia, which results in disease and death. Wild koalas with Chlamydia infections are admitted to wildlife hospitals and treated with antibiotics; however, up to 50% of koalas that present to wildlife hospitals do not survive. A major contributor to high mortality is the development of reproductive cysts, resulting in female infertility and euthanasia. However, the diagnosis of reproductive disease is limited to ultrasound with no further investigations. This communication highlights reports of histological and microbiological findings, the accuracy of ultrasound to necropsy reports and other possible causes for reproductive cyst development previously reported in other hosts. Our conclusions identify a significant knowledge gap in the aetiology of koala reproductive cysts and highlight the urgent need for future investigations.
Collapse
|
6
|
REFERENCE INTERVALS FOR ACUTE PHASE PROTEINS FOR KOALAS ( PHASCOLARCTOS CINEREUS) AT THE SAN DIEGO ZOO. J Zoo Wildl Med 2021; 50:735-738. [PMID: 33517648 DOI: 10.1638/2018-0227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2019] [Indexed: 11/21/2022] Open
Abstract
The synthesis and circulating concentrations of acute phase proteins (APPs) are regulated in response to inflammation, infection, trauma, and neoplasia in many domestic and nondomestic species. The APP response is species specific; thus, assays must be validated, and reference intervals must be determined for each species. Koalas (Phascolarctos cinereus) are a vulnerable species, threatened by infectious and inflammatory diseases both under human care and in the wild. The ability to diagnose, treat, and provide prognosis for common koala health problems is challenged by the paucity of sensitive diagnostic tests. Assays for C-reactive protein, serum amyloid A, and haptoglobin were validated for use in koalas. Reference intervals were established using the robust method recommended by the American Society for Veterinary Clinical Pathology based on serum samples from 26 healthy koalas at the San Diego Zoo. The reference intervals are as follows: C-reactive protein, 3.2-24.1 mg/L; serum amyloid A, 0.10-0.45 mg/L; haptoglobin, 0.10-0.64 mg/ml.
Collapse
|
7
|
Quigley BL, Timms P. Helping koalas battle disease - Recent advances in Chlamydia and koala retrovirus (KoRV) disease understanding and treatment in koalas. FEMS Microbiol Rev 2020; 44:583-605. [PMID: 32556174 PMCID: PMC8600735 DOI: 10.1093/femsre/fuaa024] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/14/2020] [Indexed: 12/31/2022] Open
Abstract
The iconic Australian marsupial, the koala (Phascolarctos cinereus), has suffered dramatic population declines as a result of habitat loss and fragmentation, disease, vehicle collision mortality, dog attacks, bushfires and climate change. In 2012, koalas were officially declared vulnerable by the Australian government and listed as a threatened species. In response, research into diseases affecting koalas has expanded rapidly. The two major pathogens affecting koalas are Chlamydia pecorum, leading to chlamydial disease and koala retrovirus (KoRV). In the last eight years, these pathogens and their diseases have received focused study regarding their sources, genetics, prevalence, disease presentation and transmission. This has led to vast improvements in pathogen detection and treatment, including the ongoing development of vaccines for each as a management and control strategy. This review will summarize and highlight the important advances made in understanding and combating C. pecorum and KoRV in koalas, since they were declared a threatened species. With complementary advances having also been made from the koala genome sequence and in our understanding of the koala immune system, we are primed to make a significant positive impact on koala health into the future.
Collapse
Affiliation(s)
- Bonnie L Quigley
- Genecology Research Centre, University of the Sunshine Coast,
90 Sippy Downs Drive, Sippy Downs, Queensland, 4556, Australia
| | - Peter Timms
- Genecology Research Centre, University of the Sunshine Coast,
90 Sippy Downs Drive, Sippy Downs, Queensland, 4556, Australia
| |
Collapse
|
8
|
Schultz AJ, Cristescu RH, Hanger J, Loader J, de Villiers D, Frère CH. Inbreeding and disease avoidance in a free-ranging koala population. Mol Ecol 2020; 29:2416-2430. [PMID: 32470998 DOI: 10.1111/mec.15488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 05/11/2020] [Indexed: 11/30/2022]
Abstract
Habitat destruction and fragmentation are increasing globally, forcing surviving species into small, isolated populations. Isolated populations typically experience heightened inbreeding risk and associated inbreeding depression and population decline; although individuals in these populations may mitigate these risks through inbreeding avoidance strategies. For koalas, as dietary specialists already under threat in the northern parts of their range, increased habitat fragmentation and associated inbreeding costs are of great conservation concern. Koalas are known to display passive inbreeding avoidance through sex-biased dispersal, although population isolation will reduce dispersal pathways. We tested whether free-ranging koalas display active inbreeding avoidance behaviours. We used VHF tracking data, parentage reconstruction, and veterinary examination results to test whether free-ranging female koalas avoid mating with (a) more closely related males; and (b) males infected with sexually transmitted Chlamydia pecorum. We found no evidence that female koalas avoid mating with relatively more related available mates. In fact, as the relatedness of potential mates increases, so did inbreeding events. We also found no evidence that female koalas can avoid mating with males infected with C. pecorum. The absence of active inbreeding avoidance mechanisms in koalas is concerning from a conservation perspective, as small, isolated populations may be at even higher risk of inbreeding depression than expected. At risk koala populations may require urgent conservation interventions to augment gene flow and reduce inbreeding risks. Similarly, if koalas are not avoiding mating with individuals with chlamydial disease, populations may be at higher risk from disease than anticipated, further impacting population viability.
Collapse
Affiliation(s)
- Anthony J Schultz
- Global Change Ecology Research Group, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Romane H Cristescu
- Global Change Ecology Research Group, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Jon Hanger
- Endeavour Veterinary Ecology Pty Ltd, Toorbul, QLD, Australia
| | - Jo Loader
- Endeavour Veterinary Ecology Pty Ltd, Toorbul, QLD, Australia
| | | | - Celine H Frère
- Global Change Ecology Research Group, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| |
Collapse
|
9
|
Fabijan J, Sarker N, Speight N, Owen H, Meers J, Simmons G, Seddon J, Emes RD, Tarlinton R, Hemmatzadeh F, Woolford L, Trott DJ. Pathological Findings in Koala Retrovirus-positive Koalas (Phascolarctos cinereus) from Northern and Southern Australia. J Comp Pathol 2020; 176:50-66. [PMID: 32359636 DOI: 10.1016/j.jcpa.2020.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/29/2020] [Accepted: 02/06/2020] [Indexed: 01/05/2023]
Abstract
Koala retrovirus (KoRV) infection shows differences in prevalence and load between northern and southern Australian koala populations; however, the effect of this on diseases such as lymphoma and chlamydial disease is unclear. This study compared clinicopathological findings, haematology and splenic lymphoid area of KoRV-positive koalas from northern (Queensland [Qld], n = 67) and southern (South Australia [SA], n = 92) populations in order to provide further insight into KoRV pathogenesis. Blood was collected for routine haematology and for measurement of KoRV proviral load by quantitative polymerase chain reaction (qPCR). Plasma samples were assessed for KoRV viral load by reverse transcriptase qPCR and conjunctival and cloacal swabs were collected for measurement of the load of Chlamydia pecorum (qPCR). During necropsy examination, spleen was collected for lymphoid area analysis. Lymphoma was morphologically similar between the populations and occurred in koalas with the highest KoRV proviral and viral loads. Severe ocular chlamydial disease was observed in both populations, but urinary tract disease was more severe in Qld, despite similar C. pecorum loads. No associations between KoRV and chlamydial disease severity or load were observed, except in SA where viral load correlated positively with chlamydial disease severity. In both populations, proviral and viral loads correlated positively with lymphocyte and metarubricyte counts and correlated negatively with erythrocyte and neutrophil counts. Splenic lymphoid area was correlated positively with viral load. This study has shown further evidence for KoRV-induced oncogenesis and highlighted that lymphocytes and splenic lymphoid tissue may be key sites for KoRV replication. However, KoRV infection appears to be highly complex and continued investigation is required to fully understand its pathogenesis.
Collapse
Affiliation(s)
- J Fabijan
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia.
| | - N Sarker
- School of Veterinary Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - N Speight
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - H Owen
- School of Veterinary Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - J Meers
- School of Veterinary Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - G Simmons
- School of Veterinary Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - J Seddon
- School of Veterinary Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - R D Emes
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, UK
| | - R Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, UK
| | - F Hemmatzadeh
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - L Woolford
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - D J Trott
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| |
Collapse
|
10
|
Fabijan J, Speight N, Boardman W, Hemmatzadeh F, Trott DJ, Woolford L. Haematological reference intervals of wild southern Australian koalas (Phascolarctos cinereus). Aust Vet J 2020; 98:207-215. [PMID: 32037511 DOI: 10.1111/avj.12923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/21/2019] [Accepted: 01/06/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Current haematology reference intervals (RIs) for koalas were developed in northern Australian koalas, using low numbers and/or individuals of unknown Chlamydia pecorum and koala retrovirus (KoRV) status. This study developed haematological RIs for wild, clinically healthy southern Australian koalas of known C. pecorum and KoRV infection status and investigated the effects of population, age and sex. METHODS Haematological RIs were determined for 138 clinically healthy South Australian koalas (Mount Lofty Ranges [MLR], n = 68; Kangaroo Island, n = 70) examined in April 2016 and February 2017, respectively. C. pecorum and KoRV status were determined by PCR. RESULTS RIs for southern koala haematological parameters were established for all koalas based on the finding that there were limited differences in haematological values in koalas with subclinical C. pecorum or KoRV infections (P > 0.05), except KoRV-infected koalas had a lower haematocrit than noninfected koalas. MLR koalas had significantly lower erythrocyte mass and leucocyte counts than Kangaroo Island koalas. Young koalas had significantly lower haemoglobin, haematocrit and higher mean cellular haemoglobin concentration and lymphocyte counts than adult koalas. MLR male koalas had elevated erythrocyte, leucocyte and neutrophil counts compared with MLR females. CONCLUSION The haematological RIs developed in this study are based on a large number of clinically healthy koalas, where subclinical C. pecorum and KoRV infections had no effect on haematological values and will be a valuable tool during clinical examination and disease investigation by veterinarians and researchers Australia-wide.
Collapse
Affiliation(s)
- J Fabijan
- School of Animal and Veterinary Sciences, the University of Adelaide, Roseworthy, South Australia, Australia
| | - N Speight
- School of Animal and Veterinary Sciences, the University of Adelaide, Roseworthy, South Australia, Australia
| | - Wsj Boardman
- School of Animal and Veterinary Sciences, the University of Adelaide, Roseworthy, South Australia, Australia
| | - F Hemmatzadeh
- School of Animal and Veterinary Sciences, the University of Adelaide, Roseworthy, South Australia, Australia
| | - D J Trott
- School of Animal and Veterinary Sciences, the University of Adelaide, Roseworthy, South Australia, Australia
| | - L Woolford
- School of Animal and Veterinary Sciences, the University of Adelaide, Roseworthy, South Australia, Australia
| |
Collapse
|
11
|
CHANGES IN ANTIOXIDANT CAPACITY OF KOALAS ( PHASCOLARCTOS CINEREUS) BASED ON HEALTH STATUS AND MEASUREMENT OF THE ANTIOXIDANT ASCORBATE IN EUCALYPT LEAVES. J Zoo Wildl Med 2020; 50:861-867. [PMID: 31926516 DOI: 10.1638/2018-0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2019] [Indexed: 11/21/2022] Open
Abstract
Antioxidants have a crucial role in protecting the body from oxidative stress, which would otherwise result in cellular damage and possibly predispose animals to disease. The antioxidant capacity of koalas (Phascolarctos cinereus) and its association with health or disease status is currently unknown. Ascorbate, a dietary antioxidant, has previously been identified in a few eucalypt species eaten by koalas. This study aimed to determine 1) differences between the antioxidant capacity of healthy and diseased koalas, and 2) concentration of the antioxidant ascorbate in Eucalyptus spp. leaves eaten by koalas. To determine differences in antioxidant capacity of koalas, plasma samples from clinically healthy koalas in Kangaroo Island, South Australia (SA) (n = 23), euthanized koalas with oxalate nephrosis from Mount Lofty Ranges, SA (n = 11), and euthanized koalas with chlamydiosis from Moggill, Queensland (n = 11) were analyzed for the three antioxidants α-tocopherol, ascorbate, and retinol and for two measures of antioxidant capacity, ferric reducing ability of plasma (FRAP), and trolox equivalent antioxidant capacity (TEAC). The thiobarbituric acid reactive substance (TBARS) measured formation of oxidants, and an oxidative stress index (OSI) was calculated by TBARS/(TEAC + FRAP). Ascorbate concentration was measured in dietary eucalypt leaves from Mount Lofty Ranges and Moggill. Results showed that in diseased Mount Lofty Ranges and Moggill koalas, plasma α-tocopherol concentrations were significantly lower, and ascorbate, TBARS, and OSI was significantly higher compared with clinically healthy koalas from Kangaroo Island. Ascorbate was high in eucalypt leaves, particularly young leaves from the Mount Lofty Ranges. This study showed that disease was associated with some measures of poor antioxidant capacity in koalas and also found that ascorbate is high in the dietary eucalypts of koalas.
Collapse
|
12
|
Koala retrovirus viral load and disease burden in distinct northern and southern koala populations. Sci Rep 2020; 10:263. [PMID: 31937823 PMCID: PMC6959342 DOI: 10.1038/s41598-019-56546-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/13/2019] [Indexed: 11/09/2022] Open
Abstract
Koala retrovirus (KoRV) displays features of both an endogenous and exogenous virus and is linked to neoplasia and immunosuppression in koalas. This study explores the apparent differences in the nature and impact of KoRV infection between geographically and genetically separated "northern" and "southern" koala populations, by investigating the disease status, completeness of the KoRV genome and the proviral (DNA) and viral (RNA) loads of 71 northern and 97 southern koalas. All northern animals were positive for all KoRV genes (gag, pro-pol and env) in both DNA and RNA forms, whereas many southern animals were missing one or more KoRV genes. There was a significant relationship between the completeness of the KoRV genome and clinical status in this population. The proviral and viral loads of the northern population were significantly higher than those of the southern population (P < 0.0001), and many provirus-positive southern animals failed to express any detectable KoRV RNA. Across both populations there was a positive association between proviral load and neoplasia (P = 0.009). Potential reasons for the differences in the nature of KoRV infection between the two populations are discussed.
Collapse
|
13
|
EPIDEMIOLOGY OF CHLAMYDIA-INDUCED REPRODUCTIVE DISEASE IN MALE KOALAS (PHASCOLARCTOS CINEREUS) FROM SOUTHEAST QUEENSLAND, AUSTRALIA AS ASSESSED FROM PENILE URETHRAL SWABS AND SEMEN. J Wildl Dis 2020. [DOI: 10.7589/2019-03-062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
A Necropsy Study of Disease and Comorbidity Trends in Morbidity and Mortality in the Koala (Phascolarctos cinereus) in South-East Queensland, Australia. Sci Rep 2019; 9:17494. [PMID: 31767897 PMCID: PMC6877607 DOI: 10.1038/s41598-019-53970-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022] Open
Abstract
Koalas are an iconic Australian marsupial undergoing precipitous population reduction in South-East Queensland from complex interacting threats. To investigate the causes of death and the interaction of comorbidities with demography in South-East Queensland koalas, a large scale, high-throughput prospective necropsy survey was conducted spanning 2013–2016. During this period, 519 necropsies were conducted in 155 young/subadult koalas, 235 mature, 119 old koalas and 10 of unknown age. Similar numbers of males and females were assessed. Trauma and infectious disease at were the most common single diagnoses. However, comorbidity was frequent, including multicentric infection or infectious disease in combination with trauma or senescence. Female koalas had proportionally more reproductive chlamydiosis compared to males in which the ocular and urinary systems were more commonly affected. Comorbidity and disease were strongly associated with poor body condition, and trauma was associated with good body condition. Animals affected by motor vehicle trauma were often in better body condition than those affected by animal attack, tree fall or other causes of trauma. This study identified a higher frequency of infections and comorbidity then previously reported, confirming the complex nature of interacting threats to the koala population.
Collapse
|
15
|
Jelocnik M. Chlamydiae from Down Under: The Curious Cases of Chlamydial Infections in Australia. Microorganisms 2019; 7:microorganisms7120602. [PMID: 31766703 PMCID: PMC6955670 DOI: 10.3390/microorganisms7120602] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/16/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
In Australia, the most researched and perhaps the most successful chlamydial species are the human pathogen Chlamydia trachomatis, animal pathogens Chlamydia pecorum and Chlamydia psittaci. C. trachomatis remains the leading cause of sexually transmitted infections in Australians and trachoma in Australian Indigenous populations. C. pecorum is globally recognised as the infamous koala and widespread livestock pathogen, whilst the avian C. psittaci is emerging as a horse pathogen posing zoonotic risks to humans. Certainly not innocuous, the human infections with Chlamydia pneumoniae seem to be less prevalent that other human chlamydial pathogens (namely C. trachomatis). Interestingly, the complete host range for C. pecorum and C. psittaci remains unknown, and infections by other chlamydial organisms in Australian domesticated and wildlife animals are understudied. Considering that chlamydial organisms can be encountered by either host at the human/animal interface, I review the most recent findings of chlamydial organisms infecting Australians, domesticated animals and native wildlife. Furthermore, I also provide commentary from leading Australian Chlamydia experts on challenges and future directions in the Chlamydia research field.
Collapse
Affiliation(s)
- Martina Jelocnik
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs 4557, Australia
| |
Collapse
|
16
|
Longitudinal study of wild koalas (Phascolarctos cinereus) reveals chlamydial disease progression in two thirds of infected animals. Sci Rep 2019; 9:13194. [PMID: 31519969 PMCID: PMC6744427 DOI: 10.1038/s41598-019-49382-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/23/2019] [Indexed: 01/12/2023] Open
Abstract
Chlamydial disease threatens many of Australia’s koala populations, and yet our understanding of chlamydial epidemiology and disease dynamics in koalas is limited by a lack of comprehensive, longitudinal population studies. To address this, we utilised longitudinal samples from a large-scale population study of wild koalas in south-east Queensland, to follow chlamydial infections over time and to investigate some of the drivers of disease progression. Our findings show, firstly, that almost two thirds of chlamydial infections progressed to disease, challenging the notion that chlamydial infections in koalas commonly remain chronic and asymptomatic. Secondly, disease progression at the urogenital tract site was associated with infection load, and urogenital tract shedding was significantly higher when koalas acquired a new infection. Thirdly, chronic chlamydial exposure was not necessary for pathogenic sequelae to develop, such as infertility and mortality. Fourthly, ompA-characterised strain sub-types may reflect tissue tropisms and pathogenicity, and the chlamydial status of some chronically infected koalas may be explained by reinfections with novel genotypes. Finally, successful antimicrobial treatment provided only short-term protection against reinfection and disease progression in susceptible koalas. These findings highlight the importance of identifying and preventing chlamydial infections in koalas, informing new population management strategies and research priorities.
Collapse
|
17
|
Altered immune parameters associated with Koala Retrovirus (KoRV) and Chlamydial infection in free ranging Victorian koalas (Phascolarctos cinereus). Sci Rep 2019; 9:11170. [PMID: 31371797 PMCID: PMC6673689 DOI: 10.1038/s41598-019-47666-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 07/18/2019] [Indexed: 01/29/2023] Open
Abstract
Koala Retrovirus (KoRV) has been widely speculated to cause immune suppression in koalas (Phascolarctos cinereus) and to underlie the koala's susceptibility to infectious disease, however evidence for immunomodulation is limited. The aim of this study is to determine whether immunophenotypic changes are associated with KoRV infection in free ranging Victorian koalas. qPCR was used to examine mRNA expression for Th1 (IFNγ), Th2-promoting (IL6, IL10) and Th17 (IL17A) cytokines, along with CD4 and CD8 in whole blood of koalas (n = 74) from Mt Eccles and Raymond Island in Victoria, Australia, with and without natural chlamydial infection. KoRV positive koalas had significantly lower levels of IL17A (p`0.023) and IFNγ (p = 0.044) gene expression along with a decreased CD4:CD8 gene expression ratio (p = 0.025) compared to negative koalas. No effect of chlamydial infection or combined effect of KoRV and chlamydial infection was detected in these populations. The decreased expression of IFNγ could make KoRV infected koalas more susceptible to persistent chlamydial infection, and a decrease in IL17A could make them more susceptible to gram negative bacterial, fungal and mycobacterial infection; but more tolerant of chlamydial infection.
Collapse
|
18
|
Fabijan J, Caraguel C, Jelocnik M, Polkinghorne A, Boardman WSJ, Nishimoto E, Johnsson G, Molsher R, Woolford L, Timms P, Simmons G, Hemmatzadeh F, Trott DJ, Speight N. Chlamydia pecorum prevalence in South Australian koala (Phascolarctos cinereus) populations: Identification and modelling of a population free from infection. Sci Rep 2019; 9:6261. [PMID: 31000763 PMCID: PMC6472425 DOI: 10.1038/s41598-019-42702-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/02/2019] [Indexed: 11/21/2022] Open
Abstract
Chlamydia pecorum is an established and prevalent infection that produces severe clinical disease in many koala populations, contributing to dramatic population declines. In wild South Australian koala populations, C. pecorum occurrence and distribution is unknown. Here, C. pecorum-specific real-time quantitative PCR (qPCR) was applied to ocular and urogenital swabs from targeted surveys of wild koalas from the mainland Mount Lofty Ranges (MLR) (n = 75) and Kangaroo Island (KI) (n = 170) populations. Historical data from 13,081 KI koalas (1997–2018) provided additional evidence for assessing the absence of C. pecorum infection. In the MLR population, 46.7% (CI: 35.1–58.6%) of koalas were C. pecorum positive by qPCR but only 4% had grade 3 clinical disease. MLR koala fertility was significantly reduced by C. pecorum infection; all reproductively active females (n = 16) were C. pecorum negative, whereas 85.2% of inactive females (n = 23) were positive (P < 0.001). KI koalas were C. pecorum negative and the population was demonstrated to be free of C. pecorum infection with 95% confidence. C. pecorum is a real threat for the sustainability of the koala and KI is possibly the last isolated, large C. pecorum-free population remaining in Australia. These koalas could provide a safeguard against this serious disease threat to an iconic Australian species.
Collapse
Affiliation(s)
- Jessica Fabijan
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, 5371, South Australia, Australia.
| | - Charles Caraguel
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, 5371, South Australia, Australia
| | - Martina Jelocnik
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, 4558, Queensland, Australia
| | - Adam Polkinghorne
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, 4558, Queensland, Australia
| | - Wayne S J Boardman
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, 5371, South Australia, Australia
| | - Elisa Nishimoto
- Kangaroo Island Veterinary Clinic, Kingscote, 5223, South Australia, Australia
| | - Greg Johnsson
- Kangaroo Island Veterinary Clinic, Kingscote, 5223, South Australia, Australia
| | - Robyn Molsher
- Department for Environment and Water, Adelaide, 5000, South Australia, Australia
| | - Lucy Woolford
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, 5371, South Australia, Australia
| | - Peter Timms
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, 4558, Queensland, Australia
| | - Greg Simmons
- School of Veterinary Sciences, The University of Queensland, Gatton, 4343, Queensland, Australia
| | - Farhid Hemmatzadeh
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, 5371, South Australia, Australia
| | - Darren J Trott
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, 5371, South Australia, Australia
| | - Natasha Speight
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, 5371, South Australia, Australia
| |
Collapse
|
19
|
Harvey E, Madden D, Polkinghorne A, Holmes EC. Identification of A Novel Picorna-Like Virus, Burpengary Virus, that is Negatively Associated with Chlamydial Disease in the Koala. Viruses 2019; 11:E211. [PMID: 30832350 PMCID: PMC6466430 DOI: 10.3390/v11030211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 02/05/2023] Open
Abstract
Koalas (Phascolarctos cinereus) are native Australian marsupials whose populations are in decline from a range of threats. Infectious diseases caused by the bacterium Chlamydia pecorum and other pathogens are of particular concern. We analysed 26 poly-A selected RNA-sequencing libraries from a data set designed to study the immune response of koalas to ocular chlamydial infection. Using virus discovery techniques, we identified the coding-complete genome sequence of a novel picorna-like virus, denoted Burpengary virus, that was most common in south-east Queensland. Notably, abundance measurements of the virus across all 26 libraries revealed an inverse relationship between abundance and ocular disease in koalas, suggesting that the co-infection of Burpengary virus and Chlamydia pecorum is inhibited.
Collapse
Affiliation(s)
- Erin Harvey
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Danielle Madden
- Animal Research Centre, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia.
| | - Adam Polkinghorne
- Animal Research Centre, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia.
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
20
|
Speight KN, Hicks P, Graham C, Boardman W, Breed WG, Manthorpe E, Funnell O, Woolford L. Necropsy findings of koalas from the Mount Lofty Ranges population in South Australia. Aust Vet J 2018; 96:188-192. [PMID: 29691854 DOI: 10.1111/avj.12690] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 08/03/2017] [Accepted: 08/22/2017] [Indexed: 11/29/2022]
Abstract
OBJECTIVE This study reports necropsy findings of koalas from the Mount Lofty Ranges region in order to identify health threats to this mainland South Australian population. METHODS Koalas from the Mount Lofty Ranges region (n = 85) that had died or been euthanased on welfare grounds were examined at necropsy during 2012-13 at the School of Animal and Veterinary Sciences, University of Adelaide. Disease findings, approximate age, sex and body condition of koalas were recorded. Histopathological examination was undertaken on gross lesions and in suspect cases, skin scrapings taken for microscopy and PCR performed for Chlamydia pecorum detection. RESULTS Traumatic injury was the most common necropsy finding (48/85; 57%), caused by motor vehicle accidents (35/48; 73%), canine attacks (11/48; 23%) or bushfire burns (2/48; 4%). Oxalate nephrosis (27/85; 32%) was also more common than other conditions. Infectious diseases included chlamydiosis (10/85; 12%) and sarcoptic mange (7/85; 8%). Marked testis asymmetry was evident in 11% (6/56) of males, with histopathology suggestive of atrophic change in four animals. Other pathological conditions included gastrointestinal disease (7/85; 8%) and respiratory disease (3/85; 4%). Almost half of the koalas (38/85; 45%) were found to have two or more abnormalities at necropsy. CONCLUSION This study found trauma, mainly from motor vehicle accidents, and oxalate nephrosis to be the predominant causes of death and/or disease in koalas from the Mount Lofty Ranges region. Recent emergence of both clinical chlamydiosis and sarcoptic mange has also occurred, providing insight into the health status and causes of disease or injury in this South Australian mainland koala population.
Collapse
Affiliation(s)
- K N Speight
- School of Animal and Veterinary Sciences, Faculty of Sciences, University of Adelaide, Roseworthy campus, Roseworthy, South, Australia 5371, Australia
| | - P Hicks
- School of Animal and Veterinary Sciences, Faculty of Sciences, University of Adelaide, Roseworthy campus, Roseworthy, South, Australia 5371, Australia
| | - C Graham
- School of Animal and Veterinary Sciences, Faculty of Sciences, University of Adelaide, Roseworthy campus, Roseworthy, South, Australia 5371, Australia
| | - W Boardman
- School of Animal and Veterinary Sciences, Faculty of Sciences, University of Adelaide, Roseworthy campus, Roseworthy, South, Australia 5371, Australia
| | - W G Breed
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
| | - E Manthorpe
- School of Animal and Veterinary Sciences, Faculty of Sciences, University of Adelaide, Roseworthy campus, Roseworthy, South, Australia 5371, Australia
| | - O Funnell
- School of Animal and Veterinary Sciences, Faculty of Sciences, University of Adelaide, Roseworthy campus, Roseworthy, South, Australia 5371, Australia
| | - L Woolford
- School of Animal and Veterinary Sciences, Faculty of Sciences, University of Adelaide, Roseworthy campus, Roseworthy, South, Australia 5371, Australia
| |
Collapse
|
21
|
Borel N, Polkinghorne A, Pospischil A. A Review on Chlamydial Diseases in Animals: Still a Challenge for Pathologists? Vet Pathol 2018; 55:374-390. [PMID: 29310550 DOI: 10.1177/0300985817751218] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chlamydiae have a worldwide distribution causing a wide range of diseases in human hosts, livestock, and companion animals as well as in wildlife and exotic species. Moreover, they can persist in their hosts as asymptomatic infections for extended periods of time. The introduction of molecular techniques has revolutionized the Chlamydia field by expanding the host range of known chlamydial species but also by discovering new species and even new families of bacteria in the broader order Chlamydiales. The wide range of hosts, diseases, and tissues affected by chlamydiae complicate the diagnosis such that standard diagnostic approaches for these bacteria are rare. Bacteria of the Chlamydiales order are small and their inclusions are difficult to detect by standard microscopy. With the exception of avian and ovine chlamydiosis, macroscopic and/or histologic changes might not be pathognomic or indicative for a chlamydial infection or even not present at all. Moreover, detection of chlamydial DNA in specimens in the absence of other methods or related pathological lesions questions the significance of such findings. The pathogenic potential of the majority of recently identified Chlamydia-related bacteria remains largely unknown and awaits investigation through experimental or natural infection models including histomorphological characterization of associated lesions. This review aims to summarize the historical background and the most important developments in the field of animal chlamydial research in the past 5 years with a special focus on pathology. It will summarize the current nomenclature, present critical thoughts about diagnostics, and give an update on chlamydial infections in domesticated animals such as livestock, companion animals and birds, as well as free-ranging and captive wild animals such as reptiles, fish, and marsupials.
Collapse
Affiliation(s)
- Nicole Borel
- 1 Department of Pathobiology, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Adam Polkinghorne
- 2 Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| | - Andreas Pospischil
- 1 Department of Pathobiology, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Wedrowicz F, Mosse J, Wright W, Hogan FE. Using non-invasive sampling methods to determine the prevalence and distribution of Chlamydia pecorum and koala retrovirus in a remnant koala population with conservation importance. WILDLIFE RESEARCH 2018. [DOI: 10.1071/wr17184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context Pathogenic infections are an important consideration for the conservation of native species, but obtaining such data from wild populations can be expensive and difficult. Two pathogens have been implicated in the decline of some koala (Phascolarctos cinereus) populations: urogenital infection with Chlamydia pecorum and koala retrovirus subgroup A (KoRV-A). Pathogen data for a wild koala population of conservation importance in South Gippsland, Victoria are essentially absent. Aims This study uses non-invasive sampling of koala scats to provide prevalence and genotype data for C. pecorum and KoRV-A in the South Gippsland koala population, and compares pathogen prevalence between wild koalas and koalas in rescue shelters. Methods C. pecorum and KoRV-A provirus were detected by PCR of DNA isolated from scats collected in the field. Pathogen genetic variation was investigated using DNA sequencing of the C. pecorum ompA and KoRV-A env genes. Key results C. pecorum and KoRV-A were detected in 61% and 27% of wild South Gippsland individuals tested, respectively. KoRV-A infection tended to be higher in shelter koalas compared with wild koalas. In contrast with other Victorian koala populations sampled, greater pathogen diversity was present in South Gippsland. Conclusions In the South Gippsland koala population, C. pecorum is widespread and common whereas KoRV appears less prevalent than previously thought. Further work exploring the dynamics of these pathogens in South Gippsland koalas is warranted and may help inform future conservation strategies for this important population. Implications Non-invasive genetic sampling from scats is a powerful method for obtaining data regarding pathogen prevalence and diversity in wildlife. The use of non-invasive methods for the study of pathogens may help fill research gaps in a way that would be difficult or expensive to achieve using traditional methods.
Collapse
|
23
|
Nyari S, Waugh CA, Dong J, Quigley BL, Hanger J, Loader J, Polkinghorne A, Timms P. Epidemiology of chlamydial infection and disease in a free-ranging koala (Phascolarctos cinereus) population. PLoS One 2017; 12:e0190114. [PMID: 29281731 PMCID: PMC5744985 DOI: 10.1371/journal.pone.0190114] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/10/2017] [Indexed: 12/01/2022] Open
Abstract
Chlamydial disease continues to be one of the main factors threatening the long-term survival of the koala (Phascolarctos cinereus). Despite this, large epidemiological studies of chlamydial infection and disease in wild koala populations are lacking. A better understanding of the prevalence, transmission and pathogenesis is needed to improve control measures, such as the development of vaccines. We investigated the prevalence of Chlamydia pecorum infection and disease in 160 koalas in a peri-urban wild population in Queensland, Australia and found that 31% of koalas were Chlamydia PCR positive and 28% had clinically detectable chlamydial disease. Most infections were at the urogenital site (27%; both males and females) with only 14% at the ocular site. Interestingly, we found that 27% (4/15) of koalas considered to be sexually immature (9–13 months) were already infected with C. pecorum, suggesting that a significant percentage of animals are infected directly from their mother. Ocular infection levels were less prevalent with increasing age (8% in koalas older than 4 years), whereas the prevalence of urogenital tract infections remained high into older age (26% in koalas older than 4 years), suggesting that, after mother-to-young transmission, C. pecorum is predominantly a sexually transmitted infection. While 28% of koalas in this population had clinically detectable chlamydial disease (primarily urogenital tract disease), many PCR positive koalas had no detectable disease and importantly, not all diseased animals were PCR positive. We also observed higher chlamydial loads in koalas who were C. pecorum infected without clinical disease than in koalas who were C. pecorum infected with clinical disease. These results shed light on the potential mechanisms of transmission of C. pecorum in koalas and also guide future control measures, such as vaccination.
Collapse
Affiliation(s)
- Sharon Nyari
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Courtney A. Waugh
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Jianbao Dong
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Bonnie L. Quigley
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Jonathan Hanger
- Endeavour Veterinary Ecology, Toorbul, Queensland, Australia
| | - Joanne Loader
- Endeavour Veterinary Ecology, Toorbul, Queensland, Australia
| | - Adam Polkinghorne
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Peter Timms
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- * E-mail:
| |
Collapse
|
24
|
Lymphoma, Koala Retrovirus Infection and Reproductive Chlamydiosis in a Koala (Phascolarctos cinereus). J Comp Pathol 2017; 157:188-192. [PMID: 28942303 DOI: 10.1016/j.jcpa.2017.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/17/2017] [Accepted: 07/29/2017] [Indexed: 11/20/2022]
Abstract
Koala retrovirus (KoRV) infection, thought to be associated with lymphoid neoplasia, and Chlamydia pecorum-related ocular and urogenital disease are both highly prevalent in eastern Australian koala (Phascolarctos cinereus) populations. However, in South Australian koalas, little is known about KoRV infection and C. pecorum-associated disease. We report the first South Australian case of lymphoma in a KoRV-A-positive female koala also affected by severe reproductive chlamydiosis. The koala was from the Mount Lofty Ranges population and was presented with hindlimb lameness. Clinical examination identified right stifle crepitus, enlarged superficial lymph nodes and paraovarian cysts. Necropsy examination revealed extensive cartilage degeneration and loss over the medial femoral condyle, solid femoral bone marrow, mesenteric and ovarian tumours, paraovarian cysts and purulent metritis. Histopathology confirmed lymphoma in the bone marrow, mesenteric lymph nodes and ovary, with infiltration and parenchymal effacement in the pancreas, adrenal glands and other tissues. Lymphoma, KoRV and chlamydiosis are being investigated further in this population.
Collapse
|