1
|
Sacristán C, Ewbank AC, Duarte-Benvenuto A, Sacristán I, Zamana-Ramblas R, Costa-Silva S, Lanes Ribeiro V, Bertozzi CP, Del Rio do Valle R, Castilho PV, Colosio AC, Marcondes MCC, Lailson-Brito J, de Freitas Azevedo A, Carvalho VL, Pessi CF, Cremer M, Esperón F, Catão-Dias JL. Survey of selected viral agents (herpesvirus, adenovirus and hepatitis E virus) in liver and lung samples of cetaceans, Brazil. Sci Rep 2024; 14:2689. [PMID: 38302481 PMCID: PMC10834590 DOI: 10.1038/s41598-023-45315-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/18/2023] [Indexed: 02/03/2024] Open
Abstract
Hepatic and pulmonary lesions are common in cetaceans, despite their poorly understood viral etiology. Herpesviruses (HV), adenoviruses (AdV) and hepatitis E virus (HEV) are emerging agents in cetaceans, associated with liver and/or pulmonary damage in mammals. We isolated and molecularly tested DNA for HV and AdV (n = 218 individuals; 187 liver and 108 lung samples) and RNA for HEV (n = 147 animals; 147 liver samples) from six cetacean families. All animals stranded or were bycaught in Brazil between 2001 and 2021. Positive-animals were analyzed by histopathology. Statistical analyses assessed if the prevalence of viral infection could be associated with the variables: species, family, habitat, region, sex, and age group. All samples were negative for AdV and HEV. Overall, 8.7% (19/218) of the cetaceans were HV-positive (4.8% [9/187] liver and 11.1% [12/108] lung), without HV-associated lesions. HV-prevalence was statistically significant higher in Pontoporiidae (19.2%, 10/52) when compared to Delphinidae (4.1%, 5/121), and in southeastern (17.1%, 13/76)-the most industrialized Brazilian region-when compared to the northeastern region (2.4%, 3/126). This study broadens the herpesvirus host range in cetaceans, including its description in pygmy sperm whales (Kogia breviceps) and humpback whales (Megaptera novaeangliae). Further studies must elucidate herpesvirus drivers in cetaceans.
Collapse
Affiliation(s)
- C Sacristán
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Carretera Algete-El Casar de Talamanca, Km. 8,1, 28130, Valdeolmos, Madrid, Spain.
- School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil.
| | - A C Ewbank
- School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - A Duarte-Benvenuto
- School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - I Sacristán
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Carretera Algete-El Casar de Talamanca, Km. 8,1, 28130, Valdeolmos, Madrid, Spain
| | - R Zamana-Ramblas
- School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - S Costa-Silva
- School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - C P Bertozzi
- São Paulo State University - UNESP, São Vicente, SP, Brazil
| | - R Del Rio do Valle
- Instituto Ecoema de Estudo e Conservação do Meio Ambiente, Peruíbe, SP, Brasil
| | - P V Castilho
- Universidade do Estado de Santa Catarina-UDESC, Laguna, SC, Brazil
| | - A C Colosio
- Instituto Baleia Jubarte, Caravelas, BA, Brazil
| | | | - J Lailson-Brito
- Laboratório de Mamíferos Aquáticos e Bioindicadores 'Profa Izabel M. G. do N. Gurgel' (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - A de Freitas Azevedo
- Laboratório de Mamíferos Aquáticos e Bioindicadores 'Profa Izabel M. G. do N. Gurgel' (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - V L Carvalho
- Associação de Pesquisa e Preservação de Ecossistemas Aquáticos, Caucaia, CE, Brazil
| | - C F Pessi
- Instituto de Pesquisas Cananéia (IpeC), Cananéia, SP, Brazil
| | - M Cremer
- Laboratório de Ecologia e Conservação de Tetrápodes Marinhos e Costeiros - TETRAMAR, Universidade da Região de Joinville - UNIVILLE, São Francisco Do Sul, SC, Brazil
| | - F Esperón
- Universidad Europea, Villaviciosa de Odon, Spain
| | - J L Catão-Dias
- School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
2
|
Benkő M, Aoki K, Arnberg N, Davison AJ, Echavarría M, Hess M, Jones MS, Kaján GL, Kajon AE, Mittal SK, Podgorski II, San Martín C, Wadell G, Watanabe H, Harrach B. ICTV Virus Taxonomy Profile: Adenoviridae 2022. J Gen Virol 2022; 103:001721. [PMID: 35262477 PMCID: PMC9176265 DOI: 10.1099/jgv.0.001721] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
The family Adenoviridae includes non-enveloped viruses with linear dsDNA genomes of 25-48 kb and medium-sized icosahedral capsids. Adenoviruses have been discovered in vertebrates from fish to humans. The family is divided into six genera, each of which is more common in certain animal groups. The outcome of infection may vary from subclinical to lethal disease. This is a summary of the ICTV Report on the family Adenoviridae, which is available at ictv.global/report/adenoviridae.
Collapse
Affiliation(s)
- Mária Benkő
- Veterinary Medical Research Institute, Budapest, Hungary
| | | | | | | | | | - Michael Hess
- University of Veterinary Medicine, Vienna, Austria
| | | | - Győző L. Kaján
- Veterinary Medical Research Institute, Budapest, Hungary
| | | | | | | | | | | | | | - Balázs Harrach
- Veterinary Medical Research Institute, Budapest, Hungary
| | - ICTV Report Consortium
- Veterinary Medical Research Institute, Budapest, Hungary
- Hokkaido University, Sapporo, Japan
- Umeå University, Umeå, Sweden
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- CEMIC University Hospital, CONICET, Buenos Aires, Argentina
- University of Veterinary Medicine, Vienna, Austria
- Naval Medical Center, San Diego, CA, USA
- Lovelace Respiratory Research Institute, Albuquerque, NM, USA
- Purdue University, West Lafayette, IN, USA
- Ruđer Bošković Institute, Zagreb, Croatia
- Centro Nacional de Biotecnología, Madrid, Spain
| |
Collapse
|
3
|
Zheng J, Wang J, Gong Z, Han GZ. Molecular fossils illuminate the evolution of retroviruses following a macroevolutionary transition from land to water. PLoS Pathog 2021; 17:e1009730. [PMID: 34252162 PMCID: PMC8297934 DOI: 10.1371/journal.ppat.1009730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/22/2021] [Accepted: 06/18/2021] [Indexed: 11/18/2022] Open
Abstract
The ancestor of cetaceans underwent a macroevolutionary transition from land to water early in the Eocene Period >50 million years ago. However, little is known about how diverse retroviruses evolved during this shift from terrestrial to aquatic environments. Did retroviruses transition into water accompanying their hosts? Did retroviruses infect cetaceans through cross-species transmission after cetaceans invaded the aquatic environments? Endogenous retroviruses (ERVs) provide important molecular fossils for tracing the evolution of retroviruses during this macroevolutionary transition. Here, we use a phylogenomic approach to study the origin and evolution of ERVs in cetaceans. We identify a total of 8,724 ERVs within the genomes of 25 cetaceans, and phylogenetic analyses suggest these ERVs cluster into 315 independent lineages, each of which represents one or more independent endogenization events. We find that cetacean ERVs originated through two possible routes. 298 ERV lineages may derive from retrovirus endogenization that occurred before or during the transition from land to water of cetaceans, and most of these cetacean ERVs were reaching evolutionary dead-ends. 17 ERV lineages are likely to arise from independent retrovirus endogenization events that occurred after the split of mysticetes and odontocetes, indicating that diverse retroviruses infected cetaceans through cross-species transmission from non-cetacean mammals after the transition to aquatic life of cetaceans. Both integration time and synteny analyses support the recent or ongoing activity of multiple retroviral lineages in cetaceans, some of which proliferated into hundreds of copies within the host genomes. Although ERVs only recorded a proportion of past retroviral infections, our findings illuminate the complex evolution of retroviruses during one of the most marked macroevolutionary transitions in vertebrate history.
Collapse
Affiliation(s)
- Jialu Zheng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jianhua Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhen Gong
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Guan-Zhu Han
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
- * E-mail:
| |
Collapse
|
4
|
Abstract
The classification of viruses is relevant to a number of scientific and clinical disciplines, including the practice of diagnostic virology. Here, we provide an update to our previous review of taxonomic changes for disease-causing viruses in humans and vertebrate animals, covering changes between 2018 and 2020. Recent advances in virus taxonomy structure by the International Committee on Taxonomy of Viruses inform this update.
Collapse
|
5
|
DETECTION OF SKUNK ADENOVIRUS 1 IN TWO NORTH AMERICAN PORCUPINES ( ERETHIZON DORSATUM) WITH RESPIRATORY DISEASE. J Zoo Wildl Med 2020; 50:1012-1015. [PMID: 31926539 DOI: 10.1638/2019-0063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2019] [Indexed: 11/21/2022] Open
Abstract
Adenoviruses have been reported to affect a broad range of host species, tend to be species specific, and often affect the respiratory system. This report describes the isolation of an adenovirus from deep nasal swabs of two wild North American porcupines (Erethizon dorsatum) with respiratory diseases that presented to a wildlife hospital. Partial sequences of the deoxyribonucleic acid polymerase gene of the isolated virus were identical to skunk adenovirus (SkAdV-1), also known as pygmy marmoset adenovirus. Both porcupines survived and were released back to the wild after successful medical treatment and rehabilitation. The significance of the adenovirus isolated from these porcupines is unknown; however, this is the first report of an adenovirus in porcupines, and the first report of SkAdV-1 in a rodent.
Collapse
|
6
|
Harrach B, Tarján ZL, Benkő M. Adenoviruses across the animal kingdom: a walk in the zoo. FEBS Lett 2019; 593:3660-3673. [PMID: 31747467 DOI: 10.1002/1873-3468.13687] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 01/14/2023]
Abstract
Adenoviruses (AdVs) infect representatives of numerous species from almost every major vertebrate class, albeit their incidence shows great variability. AdVs infecting birds, reptiles, and bats are the most common and diverse, whereas only one AdV has been so far isolated both from fish and amphibians. The family Adenoviridae is divided into five genera, each corresponding to an independent evolutionary lineage that supposedly coevolved with its respective vertebrate hosts. Members of genera Mastadenovirus and Aviadenovirus seem to infect exclusively mammals and birds, respectively. The genus Ichtadenovirus includes the single known AdV from fish. The majority of AdVs in the genus Atadenovirus originated from squamate reptiles (lizards and snakes), but also certain mammalian and avian AdVs are classified within this genus. The genus Siadenovirus contains the only AdV isolated from frog, along with numerous avian AdVs. In turtles, members of a sixth AdV lineage have been discovered, pending official recognition as an independent genus. The most likely scenario for AdV evolution includes long-term cospeciation with the hosts, as well as occasional switches between closely or, rarely, more distantly related hosts.
Collapse
Affiliation(s)
- Balázs Harrach
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| | - Zoltán L Tarján
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| | - Mária Benkő
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| |
Collapse
|
7
|
Phalen DN, Agius J, Vaz FF, Eden JS, Setyo LC, Donahoe S. A survey of a mixed species aviary provides new insights into the pathogenicity, diversity, evolution, host range, and distribution of psittacine and passerine adenoviruses. Avian Pathol 2019; 48:437-443. [PMID: 31081348 DOI: 10.1080/03079457.2019.1617835] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A Bourke's parrot (Neopsephotus bourkii) originating from an aviary in Australia, containing two species of parrots, five species of finch and a species of dove, was presented for necropsy. The Bourke's parrot died from gastritis caused by Macrorhabdus ornithogaster, but also had an interstitial nephritis and ureteritis with adenovirus-like inclusion bodies within collecting duct epithelial cells. The adenovirus causing the lesions was shown to be Psittacine adenovirus-2 (PsAdV-2) using a PCR assay specific for adenoviruses and sequencing of amplicons. A survey of droppings from other birds in the aviary using the same PCR assay with amplicon sequencing found a high prevalence of infection of PsAdV-2 in Bourke's and scarlet-chested parrots (Neophema splendida). PsAdV-2 was also present in droppings from a Namaqua dove (Oena capensis). Gouldian finches (Erythrura gouldiae), red-billed firefinches (Lagonosticta senegala), and red-throated parrot finches (Erythrura psittacea) were shedding Gouldian finch adenovirus-1 (GFAdV-1). Two novel adenoviruses, an atadenovirus and a siadenovirus, were detected in the droppings from long-tailed finches (Poephila acuticauda). Kidney tissue from three of four scarlet-chested parrots submitted for necropsy from a second aviary were also positive for PsAdv-2. These findings and previously reported findings of widespread PsAdv-2 infection in captive orange-bellied parrots (Neophemia chrysogaster) raise the possibility that PsAdV-2 is enzootic in Australian aviculture. This represents the first report of GFAdV-1 in Australia and first identification of infection in finch species other than the Gouldian finch. Identification of two novel adenoviruses in long-tailed finches suggests that other novel adenoviruses are circulating in other finch species. RESEARCH HIGHLIGHTS Psittacine adenovirus-2 was present in high prevalence in two Australian aviaries. Gouldian finch adenovirus-1 (GFAdV-1) was detected in Australia for the first time. The host range of GFAdV-1 host range was expanded to other finch species. Novel atadenovirus and siadenovirus were detected in Estrildid finches.
Collapse
Affiliation(s)
- David N Phalen
- Faculty of Science, Sydney School of Veterinary Sciences, University of Sydney , Sydney , Australia
| | - Jessica Agius
- Faculty of Science, Sydney School of Veterinary Sciences, University of Sydney , Sydney , Australia
| | - Frederico F Vaz
- School of Veterinary Medicine and Animal Science, University of São Paulo (USP) , São Paulo , Brazil
| | - John-Sebastian Eden
- Centre for Virus Research, The Westmead Institute for Medical Research , Westmead , Australia.,The Sydney Medical School, University of Sydney , Sydney , Australia
| | - Laura C Setyo
- Faculty of Science, Sydney School of Veterinary Sciences, University of Sydney , Sydney , Australia
| | - Shannon Donahoe
- Faculty of Science, Sydney School of Veterinary Sciences, University of Sydney , Sydney , Australia
| |
Collapse
|
8
|
|