1
|
Escobar LE, Velasco-Villa A, Satheshkumar PS, Nakazawa Y, Van de Vuurst P. Revealing the complexity of vampire bat rabies "spillover transmission". Infect Dis Poverty 2023; 12:10. [PMID: 36782311 PMCID: PMC9924873 DOI: 10.1186/s40249-023-01062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND The term virus 'spillover' embodies a highly complex phenomenon and is often used to refer to viral transmission from a primary reservoir host to a new, naïve yet susceptible and permissive host species. Spillover transmission can result in a virus becoming pathogenic, causing disease and death to the new host if successful infection and transmission takes place. MAIN TEXT The scientific literature across diverse disciplines has used the terms virus spillover, spillover transmission, cross-species transmission, and host shift almost indistinctly to imply the complex process of establishment of a virus from an original host (source/donor) to a naïve host (recipient), which have close or distant taxonomic or evolutionary ties. Spillover transmission may result in unsuccessful onward transmission, if the virus dies off before propagation. Alternatively, successful viral establishment in the new host can occur if subsequent secondary transmission among individuals of the same novel species and among other sympatric susceptible species occurred. As such, virus spillover transmission is a common yet highly complex phenomenon that encompasses multiple subtle stages that can be deconstructed to be studied separately to better understand the drivers of disease emergence. Rabies virus (RABV) is a well-documented viral pathogen which still inflicts heavy impact on humans, companion animals, wildlife, and livestock throughout Latin America due substantial spatial temporal and ecological-natural and expansional-overlap with several virus reservoir hosts. Thereby, the rabies disease system represents a robust avenue through which the drivers and uncertainties surrounding spillover transmission can be unravel at its different subtle stages to better understand how they may be affected by coarse, medium, and fine scale variables. CONCLUSIONS The continued study of viral spillover transmission necessitates the elucidation of its complexities to better assess the cross-scale impacts of ecological forces linked to the propensity of spillover success. Improving capacities to reconstruct and predict spillover transmission would prevent public health impacts on those most at risk populations across the globe.
Collapse
Affiliation(s)
- Luis E. Escobar
- grid.438526.e0000 0001 0694 4940Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA USA ,grid.438526.e0000 0001 0694 4940Virginia Tech Graduate School, Translational Biology, Medicine, and Health Program, Blacksburg, VA USA ,grid.438526.e0000 0001 0694 4940Global Change Center, Virginia Tech, Blacksburg, VA USA ,grid.438526.e0000 0001 0694 4940Center for Emerging Zoonotic and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA USA ,grid.442163.60000 0004 0486 6813Facultad de Ciencias Agropecuarias, Universidad de La Salle, Bogotá, Colombia
| | - Andres Velasco-Villa
- grid.416738.f0000 0001 2163 0069Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30333 USA
| | - Panayampalli S. Satheshkumar
- grid.416738.f0000 0001 2163 0069Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30333 USA
| | - Yoshinori Nakazawa
- grid.416738.f0000 0001 2163 0069Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30333 USA
| | - Paige Van de Vuurst
- grid.438526.e0000 0001 0694 4940Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA USA ,grid.438526.e0000 0001 0694 4940Virginia Tech Graduate School, Translational Biology, Medicine, and Health Program, Blacksburg, VA USA ,grid.438526.e0000 0001 0694 4940Center for Emerging Zoonotic and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA USA
| |
Collapse
|
2
|
Cook JD, Williams DM, Porter WF, Christensen SA. Improved predictions and forecasts of chronic wasting disease occurrence using multiple mechanism dynamic occupancy modeling. J Wildl Manage 2022. [DOI: 10.1002/jwmg.22296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jonathan D. Cook
- Michigan State University 480 Wilson Road East Lansing MI 48823 USA
| | | | | | | |
Collapse
|
3
|
Escobar LE, Morand S. Editorial: Disease Ecology and Biogeography. Front Vet Sci 2021; 8:765825. [PMID: 34778439 PMCID: PMC8586068 DOI: 10.3389/fvets.2021.765825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/30/2021] [Indexed: 11/23/2022] Open
Affiliation(s)
- Luis E Escobar
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, United States.,Global Change Center, Virginia Tech, Blacksburg, VA, United States.,Center for Emerging Zoonotic and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, United States.,Doctorado en Agrociencias, Facultad de Ciencias Agropecuarias, Universidad de La Salle, Bogotá, Colombia
| | - Serge Morand
- CNRS ISEM-CIRAD ASTRE, Montpellier University, Montpellier, France.,Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand.,Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
4
|
Moazami-Goudarzi K, Andréoletti O, Vilotte JL, Béringue V. Review on PRNP genetics and susceptibility to chronic wasting disease of Cervidae. Vet Res 2021; 52:128. [PMID: 34620247 PMCID: PMC8499490 DOI: 10.1186/s13567-021-00993-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022] Open
Abstract
To date, chronic wasting disease (CWD) is the most infectious form of prion disease affecting several captive, free ranging and wild cervid species. Responsible for marked population declines in North America, its geographical spread is now becoming a major concern in Europe. Polymorphisms in the prion protein gene (PRNP) are an important factor influencing the susceptibility to prions and their rate of propagation. All reported cervid PRNP genotypes are affected by CWD. However, in each species, some polymorphisms are associated with lower attack rates and slower progression of the disease. This has potential consequences in terms of genetic selection, CWD diffusion and strain evolution. CWD also presents a zoonotic risk due to prions capacity to cross species barriers. This review summarizes our current understanding of CWD control, focusing on PRNP genetic, strain diversity and capacity to infect other animal species, including humans.
Collapse
Affiliation(s)
| | - Olivier Andréoletti
- UMR INRAE ENVT 1225 - IHAP, École Nationale Vétérinaire de Toulouse, 31076, Toulouse, France
| | - Jean-Luc Vilotte
- University Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Vincent Béringue
- University Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| |
Collapse
|
5
|
Winter SN, Kirchgessner MS, Frimpong EA, Escobar LE. A Landscape Epidemiological Approach for Predicting Chronic Wasting Disease: A Case Study in Virginia, US. Front Vet Sci 2021; 8:698767. [PMID: 34504887 PMCID: PMC8421794 DOI: 10.3389/fvets.2021.698767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022] Open
Abstract
Many infectious diseases in wildlife occur under quantifiable landscape ecological patterns useful in facilitating epidemiological surveillance and management, though little is known about prion diseases. Chronic wasting disease (CWD), a fatal prion disease of the deer family Cervidae, currently affects white-tailed deer (Odocoileus virginianus) populations in the Mid-Atlantic United States (US) and challenges wildlife veterinarians and disease ecologists from its unclear mechanisms and associations within landscapes, particularly in early phases of an outbreak when CWD detections are sparse. We aimed to provide guidance for wildlife disease management by identifying the extent to which CWD-positive cases can be reliably predicted from landscape conditions. Using the CWD outbreak in Virginia, US from 2009 to early 2020 as a case study system, we used diverse algorithms (e.g., principal components analysis, support vector machines, kernel density estimation) and data partitioning methods to quantify remotely sensed landscape conditions associated with CWD cases. We used various model evaluation tools (e.g., AUC ratios, cumulative binomial testing, Jaccard similarity) to assess predictions of disease transmission risk using independent CWD data. We further examined model variation in the context of uncertainty. We provided significant support that vegetation phenology data representing landscape conditions can predict and map CWD transmission risk. Model predictions improved when incorporating inferred home ranges instead of raw hunter-reported coordinates. Different data availability scenarios identified variation among models. By showing that CWD could be predicted and mapped, our project adds to the available tools for understanding the landscape ecology of CWD transmission risk in free-ranging populations and natural conditions. Our modeling framework and use of widely available landscape data foster replicability for other wildlife diseases and study areas.
Collapse
Affiliation(s)
- Steven N Winter
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, United States
| | | | - Emmanuel A Frimpong
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, United States
| | - Luis E Escobar
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, United States.,Global Change Center, Virginia Tech, Blacksburg, VA, United States.,Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
6
|
Belsare AV, Millspaugh JJ, Mason JR, Sumners J, Viljugrein H, Mysterud A. Getting in Front of Chronic Wasting Disease: Model-Informed Proactive Approach for Managing an Emerging Wildlife Disease. Front Vet Sci 2021; 7:608235. [PMID: 33585599 PMCID: PMC7874108 DOI: 10.3389/fvets.2020.608235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/07/2020] [Indexed: 11/23/2022] Open
Abstract
Continuing geographic spread of chronic wasting disease (CWD) poses a serious threat to the sustainable future of cervids and hunting in North America. Moreover, CWD has been detected in captive cervids in South Korea and, in recent years, in free-ranging reindeer in Europe (Norway). Management of this disease is limited by logistical, financial, and sociopolitical considerations, and current strategies primarily focus on reducing host densities through hunter harvest and targeted culling. The success of such strategies in mitigating the spread and prevalence of CWD only upon detection is questionable. Here, we propose a proactive approach that emphasizes pre-emptive management through purposeful integration of virtual experiments (simulating alternate interventions as model scenarios) with the aim of evaluating their effectiveness. Here, we have used a published agent-based model that links white-tailed deer demography and behavior with CWD transmission dynamics to first derive a CWD outbreak trajectory and then use the trajectory to highlight issues associated with different phases of the CWD outbreak (pre-establishment/transition/endemic). Specifically, we highlight the practical constraints on surveillance in the pre-establishment phase and recommend that agencies use a realistic detection threshold for their CWD surveillance programs. We further demonstrate that many disease introductions are "dead ends" not leading to a full epidemic due to high stochasticity and harvesting in the pre-establishment phase of CWD. Model evaluated pre-emptive (pre-detection) harvest strategies could increase the resilience of the deer population to CWD spread and establishment. We conclude it is important to adaptively position CWD management ahead of, rather than behind, the CWD front.
Collapse
Affiliation(s)
- Aniruddha V. Belsare
- Department of Fisheries and Wildlife, Boone and Crockett Quantitative Wildlife Center, Michigan State University, East Lansing, MI, United States
| | - Joshua J. Millspaugh
- W.A. Franke College of Forestry and Conservation, Wildlife Biology Program, University of Montana, Missoula, MT, United States
| | - J. R. Mason
- Michigan Department of Natural Resources Executive in Residence, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, United States
| | - Jason Sumners
- Missouri Department of Conservation, Columbia, MO, United States
| | | | - Atle Mysterud
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Escobar LE. Ecological Niche Modeling: An Introduction for Veterinarians and Epidemiologists. Front Vet Sci 2020; 7:519059. [PMID: 33195507 PMCID: PMC7641643 DOI: 10.3389/fvets.2020.519059] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 08/25/2020] [Indexed: 01/08/2023] Open
Abstract
Most infectious diseases in animals are not distributed randomly. Instead, diseases in livestock and wildlife are predictable in terms of the geography, time, and species affected. Ecological niche modeling approaches have been crucial to the advancement of our understanding of diversity and diseases distributions. This contribution is an introductory overview to the field of distributional ecology, with emphasis on its application for spatial epidemiology. A new, revised modeling framework is proposed for more detailed and replicable models that account for both the biology of the disease to be modeled and the uncertainty of the data available. Considering that most disease systems need at least two organisms interacting (i.e., host and pathogen), biotic interactions lie at the core of the pathogen's ecological niche. As a result, neglecting interacting organisms in pathogen dynamics (e.g., maintenance, reproduction, and transmission) may limit efforts to forecast disease distributions in veterinary epidemiology. Although limitations of ecological niche modeling are noted, it is clear that the application and value of ecological niche modeling to epidemiology will increase in the future. Potential research lines include the examination of the effects of biotic variables on model performance, assessments of protocols for model calibration in disease systems, and new tools and metrics for robust model evaluation. Epidemiologists aiming to employ ecological niche modeling theory and methods to reconstruct and forecast epidemics should familiarize themselves with ecological literature and must consider multidisciplinary collaborations including veterinarians to develop biologically sound, statistically robust analyses. This review attempts to increase the use of tools from ecology in disease mapping.
Collapse
Affiliation(s)
- Luis E Escobar
- Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|